How Nanotechnology Is Changing Your World


WEH Change World RTXZ960-628x330The American engineer Eric Drexler, who coined the term nanotechnology in the 1980s, is not afraid of ambitious thinking. In his 2013 book Radical Abundance: How a Revolution in Nanotechnology Will Change Civilization, Drexler imagines a 3D printer-like “factory in a box”, which could manipulate atoms precisely enough to manufacture almost anything.

We may still be far from realizing Drexler’s vision, but the field which he named is maturing quickly. Only a few years ago, nanotech was still caricatured as the preserve of crazy scientists. According to Aymeric Sallin, chief executive officer of venture capital firm NanoDimension, that has all changed and “it is now getting traction from large corporates and institutional investors. CEOs are moving from big, established companies to nanotech enterprises”.

No-needle vaccines


Nanotech is everywhere – from the needle-less Nanopatch vaccine delivery system of Vaxxas, one of the World Economic Forum’s new crop of Technology Pioneers, to the work of the Forum’s Young Scientist community member Hele Savin on making solar panels more efficient by removing impurities in silicon. So how big is the nanotech industry?

The question makes no sense, says Sallin. “Nanotech is not an industry in itself, but an enabler across all industries. By manipulating individual atoms and molecules, you can access intermediary states of matter where nature’s physical properties have changed; this is unlocking commercial opportunities from health to manufacturing, energy to farming.”

In medicine, especially, the promise of nanotechnology has been apparent for years but is only now coming to fruition. CEO of venture capital firm Flagship Ventures, Noubar Afeyan, explains: “If we could cure diseases with human imagination alone, we’d be done by now. You can write things down, and design them, and they should work – but reality is always more complex. For example, original approaches to creating nanomedicine often underestimated the need for targeting, so they were interacting with all kinds of things in the body.”

Targeted cancer treatment


An example of targeting is the nanoparticles called Accurins, developed by BIND Therapeutics, which bind only to certain types of cells. They promise to revolutionise cancer treatment, in particular. At present, the only way to get tumour-killing drugs into cancer cells is to treat the patient’s whole body, which causes side effects as the drugs interact also with healthy cells. Packaging the drugs in Accurins means they bypass healthy cells and are delivered directly to the diseased cells, where the drugs are released at a pre-programmed rate.Rice Cancer 50167

As Afeyan, among the company’s backers, says: “This sounded like science fiction when it was developed at MIT seven or eight years ago. Now the technology is mature, and we are limited only by the time it takes to complete clinical trials. We are in phase II, and if all goes well, in about two or three years we could start to see these treatments becoming available.”

Selecta Biosciences – like BIND, one of last year’s crop of Technology Pioneers – uses nanotech to target immune cells rather than diseased cells. Selecta has designed nanoparticles which dampen the response of the immune system to specified triggers, inducing tolerance – an approach that could help treat allergies and autoimmune diseases. While these treatments are still in the preclinical phase, results from animal tests are promising.

Ending animal tests
Sallin, meanwhile, hopes that a newly launched start-up could make animal tests a thing of the past. Emulate was set up to commercialize research by Harvard’s Wyss Institute on creating “organs-on-chips” – translucent flexible polymers, about the size of a computer memory stick, which mimic the workings of human organs such as the lung, heart and intestine.

As Sallin explains, testing a new drug on human cells in a lab doesn’t replicate the stresses the molecule will be exposed to in a real body – from the blood flow, the immune system and so on. And even if a molecule copes with those stresses in the body of a mouse or a rat, it often fails to do so when eventually tested on people. Replicating a human body, by linking various organs on chips together, could make the process of testing new treatments – which currently takes years and costs millions of dollars – much quicker, cheaper and more reliable.

Sallin adds: “Further down the line, one could even imagine personalized chips made from patients’ own cell samples. You could test whether a particular drug will work on a particular individual before administering it to them, opening the door to highly customized treatments.”

The difficulties of making the leap from theory to the complexities of the real world are not limited to medicine. With nanotech applications in industry, the challenge is how to take what works in the lab and scale it up to be commercially viable.

Like a cake for 8,000 people


Nicole Grobert, Professor of Nanomaterials at the University of Oxford, likens laboratory work to baking a cake for eight people and commercial production to baking the same cake for 8,000: “It’s not as simple as buying a thousand times as many eggs and bags of flour and sugar. For a start, you’d need a vastly bigger cake tin, one that wouldn’t fit in your oven – so you’d need to build a much bigger oven. And you might find that the temperature in a bigger oven would be less uniform. It could be a lot harder to fine-tune the cooking process so your cake isn’t burnt on the outside and raw in the middle.”

An example: Joule Unlimited is working to produce biofuel from industry’s waste carbon dioxide, using solar power and genetically-modified photosynthetic bacteria as a catalyst. Its 1,200-acre demonstration plant in the New Mexico desert is already producing ethanol at about three-quarters of the theoretical maximum in the lab – around 25,000 tonnes per acre per year, which would make it cheaper than ethanol produced traditionally from sugarcane, biomass or corn. The same technique is also producing diesel in the lab, but there is further to go before this becomes viable at large scale.

As Afeyan, the company’s co-founder, says: “It’s a question of going through optimization and better process engineering steps, to try to scale up from the lab to commercial production.”

SA Solar 5 191b940e-6e05-402a-bfbb-3e7be5f8a46f_16x9_600x338Smarter solar

Sallin’s portfolio includes View Glass, which employs over 300 people in rural Mississippi making electrochromic glass. The glazing tints itself either automatically, following the position of the sun, or on demand using a smartphone app, making the building more comfortable in direct sunlight while saving money on air conditioning and blinds. As he says: “This is one example of how nanotech is disrupting entire market places and creating value in industries which have not seen any big new ideas for the last two or three decades.”

Nano – Technology

Often, fundamental breakthroughs can have applications in multiple, very different areas. Returning to BIND Therapeutics, Sallin – another of the company’s backers – points out that the nanoparticles which target diseased cells can be pre-programmed to release their disease-treating drugs at an optimal rate. What other uses might there be for a polymer with these properties? Sallin mentions irrigation: “There are lots of places in the world – such as North Africa – where there are fertile soils and theoretically enough water throughout the year to grow food, but not spread over the right timespan. When you have prolonged periods without rainfall, you need irrigation. The problem with irrigation, however, is that much of the water either evaporates or gravitates through the dirt and doesn’t benefit the crop.

“So suppose you can take this polymer which controls the release of a drug on a cancer cell, and use it to capture water, turn it into a gel and release it in a controlled way over extended periods. More and more land would become available for agriculture.”

The idea illustrates how nanotechnology seems to lend itself to conceiving of ambitious goals. But it also shows, in Afeyan’s words, how “nanotech has moved from being a curiosity to a capability, part of our arsenal of tools. And that’s a good thing”.

Andrew Wright – Special to WEF

 

Nanotechnology’s Revolutionary Next Phase: A Conversation with Eric Drexler


GNT LogoBruce Dorminey Contributor Forbes Technology

The term “nanotechnology” has been bandied about so much over the last few decades that even the researcher who popularized the term is the first to point out that it’s lost its original meaning.

Nanotech, or the manipulation of matter on atomic and molecular scales, is currently used to describe micro-scale technology in everything from space technology to biotech.

As such, nanotech has already changed the world. But the fruition of atomically precise manufacturing (APM) — nanotech’s next phase — promises to create such “radical abundance” that it will not only change industry but civilization itself.

At least that’s the view of Eric Drexler, considered by most to be the father of nanotechnology. An American engineer, technologist and author with three degrees from M.I.T., Drexler is currently at the “Programme on the Impacts of Future Technology” at Oxford University in the U.K.drexler-300x219

Forbes.com questioned Drexler about points discussed in his forthcoming book, Radical Abundance: How a Revolution in Nanotechnology Will Change Civilization, due out in May.

Has nanotechnology, as most of the world currently understands it, been over-hyped?

At the outset, “nanotechnology” essentially meant atomically precise manufacturing (APM). But by the time something called nanotechnology won large-scale funding a decade ago, the term sometimes meant APM, and sometimes meant something more like conventional materials science. But expecting to get APM-level technologies out of typical areas of materials science is like expecting to get a Swiss watch out of a cement mixer. [APM] progress has been in the molecular sciences. People looking to materials science for progress in APM have been setting themselves up to be blindsided, because some of the most important boostrapping technologies for APM are not labeled “nanotechnology.”

In “Radical Abundance,” you note that APM-level production technology will allow a box on a desktop “to manufacture an infinite range of products drawn from a digital library.” This almost sounds like magic. How would the atoms be arranged and manipulated to facilitate the manufacturing process?

An ordinary printer shows how digital information can be used to arrange small things — pixels — to make a virtually infinite range of images. By doing something similar with small bits of matter, and APM-level technologies can fabricate a virtually infinite range of products. 3D printing also illustrates this principle.

Imagine factory machinery putting small components together to make larger components and you have a good idea of how APM-based production can work. Down at the bottom, the parts are simple molecules from ordinary commercial materials in a can or a drum, somewhat like large ink cartridges. Simple molecules are atomically precise, so they make a good starting point for atomically precise manufacturing. This works if the factory machines themselves are atomically precise and guide molecular motions accurately enough, and physics shows that nanoscale machines can, in fact, do this.

Factories that use very small machines can be very compact, just a few times larger than what they produce. A desktop-scale machine could manufacture a tablet computer or a roll of solar photovoltaic cells.

What about the cost-effectiveness of APM?

Cost-effectiveness depends on both production cost and product value. APM products can have very high performance and value because atomically precise materials based on carbon nanotubes can be extremely strong and lightweight, because atomically precise computer devices can far outperform today’s nanoscale electronics, and so on through a range of other examples.

Production costs can be low because the raw materials are inexpensive and the processing can go straight from raw materials to final products using highly productive machinery. The key insight here is that nanoscale mechanical devices can move and act almost exactly like larger machines, but moving at much higher frequencies. This is a consequence of physical scaling laws of the kind that [physicist] Richard Feynman described almost 50 years ago, and it enables high throughput. So the prospect is a technology that combines high performance with low cost, typically by large factors.

How can what you term the “cardinal rules of exploratory engineering” be applied to developing APM?

It’s important to ask the right questions. This means setting aside questions of development dates, market prospects, and so on, and instead asking, “What does physics tell us about what is and isn’t possible under physical law?”A-Nanolamp-with-Lightning-Fast-Switch

To be an exploratory engineer means applying conservative engineering principles — margins of safety, redundant options, and so on — and design analysis based on well-established, textbook-quality scientific knowledge. This is the only way to draw reliable conclusions about what can be accomplished.

The place to look for new and surprising results is in the range of technologies that are beyond reach of current fabrication technologies. APM-level technologies are in this range. We can see paths forward toward these technologies — using today’s molecular tools to step by step build better tools. But a clear view isn’t the same as a short path. APM-level technologies are not around the corner.

Would APM make revolutionary inroads into biotech — specifically, in developing nano-machines that could unclog arteries; reverse brain damage in stroke victims; or even manufacture a truly robust artificial heart?

APM is very different from biotechnology (think of the difference between a car and a horse). But we already see nanoscale atomically precise devices being used to read and synthesize DNA, devices borrowed from biological molecular machinery. Nanoscale atomically precise technologies like these can be made much faster and more efficient. Nanomedicine is already researching nanoscale functional particles that can circulate in the body and target cancer cells. Technologies of this kind have enormous room for improvement, and advances in atomically precise fabrication will be the key. The body relies on atomically precise devices to do its work, and atomically precise devices are the best way to accomplish precise medical interventions at the molecular level.

star_trek_space_stationWould APM lower the cost of access to outer space?

The main barrier to space activity today is cost. With the ability to make materials tens of times stronger and lighter than aluminum, and at a low cost per kilogram, access to space becomes far more practical. The difficulties of producing high-performance, low-defect, high-reliability systems also decline sharply with atomically precise manufacturing.

In what fields would APM cause the most pronounced economic disruption and the collapse of global supply chains to more local chains?

The digital revolution had far-reaching effects on information industries. APM-based production promises to have similarly far-reaching effects, but transposed into the world of physical products. In thinking about implications for international trade and economic organization, three aspects should be kept in mind: a shift from scarce to common raw materials, a shift from long supply chains to more direct paths from raw materials to finished products, and a shift toward flexible, localized manufacturing based on production systems with capabilities that are comparable on-demand printing. This is enough to at least suggest the scope of the changes to expect from a mature form of APM-based production — which again is a clear prospect but emphatically not around the corner.

Would APM help make war obsolete?

I don’t see that anything will make war obsolete, but the prospect of APM-level technologies changes national interests in two major ways:

By deeply reducing the demand for scarce resources — including petroleum — APM technologies will reduce the motivations for geopolitical struggles for what are now considered strategic resources.

Secondly, by making calculations of future military power radically uncertain, the prospect of these technologies gives good reason to examine approaches to cooperative development merged with confidence-building mutual transparency among major powers. Changes in national interests will call for developing [military] contingency plans premised on the emergence of these technologies.

When will we actually see the onset of the APM revolution?

The paths forward require further advances in atomically precise fabrication, an area that began with organic chemistry more than a century ago and continues to make great strides. A sharper engineering focus will bring faster progress and further rewards, just as progress in atomically precise fabrication has brought rewards since the beginning in science, industry, and medicine.

Although advanced objectives like full-scale APM stand beyond a normal business R&D investment horizon, incremental steps in key technologies are steadily emerging. But we need a more focused program of design, analysis, research, and development.

Do all roads lead to APM? Thus, is some form of APM likely to be ubiquitous among intelligent civilizations in the galaxy, if of course such civilizations exist?

There’s no substitute for atomic precision because there’s no substitute for precisely controlling the structure of matter. The only known way to do this is by guiding the motion of molecules to put them in place, according to plan, by means of directed bonding — in other words, by some form of atomically precise manufacturing. Since there are many ways to develop these technologies, I’d say that all roads forward do indeed lead to APM.

Eric Drexler lecture & debate (Video): “Radical Abundance” – Nanotechnology


Published on Oct 11, 2013

mix-id328072.jpgK. Eric Drexler is the founding father of nanotechnology—the science of engineering on a molecular level. In Radical Abundance, he shows how rapid scientific progress is about to change our world.

 

 

Thanks to atomically precise manufacturing, we will soon have the power to produce radically more of what people want, and at a lower cost. The result will shake the very foundations of our economy and environment.
Already, scientists have constructed prototypes for circuit boards built of millions of precisely arranged atoms. The advent of this kind of atomic precision promises to change the way we make things—cleanly, inexpensively, and on a global scale. It allows us to imagine a world where solar arrays cost no more than cardboard and aluminum foil, and laptops cost about the same.
A provocative tour of cutting edge science and its implications by the field’s founder and master, Radical Abundance offers a mind-expanding vision of a world hurtling toward an unexpected future.

Watch the Video Presentation Here:

 

 

Nanotechnology’s Revolutionary Next Phase: Eric Drexler on “APM”


QDOTS imagesCAKXSY1K 8The term “nanotechnology” has been bandied about so much over the last few decades that even the researcher who popularized the term is the first to point out that it’s lost its original meaning. Nanotech, or the manipulation of matter on atomic and molecular scales, is currently used to describe micro-scale technology in everything from space technology to biotech.

 

As such, nanotech has already changed the world. But the fruition of atomically precise manufacturing (APM) — nanotech’s next phase — promises to create such “radical abundance” that it will not only change industry but civilization itself.

At least that’s the view of Eric Drexler, considered by most to be the father of nanotechnology. An American engineer, technologist and author with three degrees from M.I.T., Drexler is currently at the “Programme on the Impacts of Future Technology” at Oxford University in the U.K.

Forbes.com questioned Drexler about points discussed in his forthcoming book, Radical Abundance: How a Revolution in Nanotechnology Will Change Civilization, due out in May.

Has nanotechnology, as most of the world currently understands it, been over-hyped? At the outset, “nanotechnology” essentially meant atomically precise manufacturing (APM). But by the time something called nanotechnology won large-scale funding a decade ago, the term sometimes meant APM, and sometimes meant something more like conventional materials science. But expecting to get APM-level technologies out of typical areas of materials science is like expecting to get a Swiss watch out of a cement mixer. [APM] progress has been in the molecular sciences. People looking to materials science for progress in APM have been setting themselves up to be blindsided, because some of the most important boostrapping technologies for APM are not labeled “nanotechnology.”

In “Radical Abundance,” you note that APM-level production technology will allow a box on a desktop “to manufacture an infinite range of products drawn from a digital library.” This almost sounds like magic. How would the atoms be arranged and manipulated to facilitate the manufacturing process?

An ordinary printer shows how digital information can be used to arrange small things — pixels — to make a virtually infinite range of images. By doing something similar with small bits of matter, and APM-level technologies can fabricate a virtually infinite range of products. 3D printing also illustrates this principle.

Carbon NanotubeImagine factory machinery putting small components together to make larger components and you have a good idea of how APM-based production can work. Down at the bottom, the parts are simple molecules from ordinary commercial materials in a can or a drum, somewhat like large ink cartridges. Simple molecules are atomically precise, so they make a good starting point for atomically precise manufacturing. This works if the factory machines themselves are atomically precise and guide molecular motions accurately enough, and physics shows that nanoscale machines can, in fact, do this.

Factories that use very small machines can be very compact, just a few times larger than what they produce. A desktop-scale machine could manufacture a tablet computer or a roll of solar photovoltaic cells.

What about the cost-effectiveness of APM? Cost-effectiveness depends on both production cost and product value. APM products can have very high performance and value because atomically precise materials based on carbon nanotubes can be extremely strong and lightweight, because atomically precise computer devices can far outperform today’s nanoscale electronics, and so on through a range of other examples.

Production costs can be low because the raw materials are inexpensive and the processing can go straight from raw materials to final products using highly productive machinery. The key insight here is that nanoscale mechanical devices can move and act almost exactly like larger machines, but moving at much higher frequencies. This is a consequence of physical scaling laws of the kind that [physicist] Richard Feynman described almost 50 years ago, and it enables high throughput. So the prospect is a technology that combines high performance with low cost, typically by large factors.

To be an exploratory engineer means applying conservative engineering principles — margins of safety, redundant options, and so on — and design analysis based on well-established, textbook-quality scientific knowledge. This is the only way to draw reliable conclusions about what can be accomplished.

The place to look for new and surprising results is in the range of technologies that are beyond reach of current fabrication technologies. APM-level technologies are in this range. We can see paths forward toward these technologies — using today’s molecular tools to step by step build better tools. But a clear view isn’t the same as a short path. APM-level technologies are not around the corner.

Would APM make revolutionary inroads into biotech — specifically, in developing nano-machines that could unclog arteries; reverse brain damage in stroke victims; or even manufacture a truly robust artificial heart? APM is very different from biotechnology (think of the difference between a car and a horse). But we already see nanoscale atomically precise devices being used to read and synthesize DNA, devices borrowed from biological molecular machinery. Nanoscale atomically precise technologies like these can be made much faster and more efficient. Nanomedicine is already researching nanoscale functional particles that can circulate in the body and target cancer cells. Technologies of this kind have enormous room for improvement, and advances in atomically precise fabrication will be the key. The body relies on atomically precise devices to do its work, and atomically precise devices are the best way to accomplish precise medical interventions at the molecular level.

Would APM lower the cost of access to outer space? The main barrier to space activity today is cost. With the ability to make materials tens of times stronger and lighter than aluminum, and at a low cost per kilogram, access to space becomes far more practical. The difficulties of producing high-performance, low-defect, high-reliability systems also decline sharply with atomically precise manufacturing.

In what fields would APM cause the most pronounced economic disruption and the collapse of global supply chains to more local chains? The digital revolution had far-reaching effects on information industries. APM-based production promises to have similarly far-reaching effects, but transposed into the world of physical products. In thinking about implications for international trade and economic organization, three aspects should be kept in mind: a shift from scarce to common raw materials, a shift from long supply chains to more direct paths from raw materials to finished products, and a shift toward flexible, localized manufacturing based on production systems with capabilities that are comparable on-demand printing. This is enough to at least suggest the scope of the changes to expect from a mature form of APM-based production — which again is a clear prospect but emphatically not around the corner.

Would APM help make war obsolete? I don’t see that anything will make war obsolete, but the prospect of APM-level technologies changes national interests in two major ways:

By deeply reducing the demand for scarce resources — including petroleum — APM technologies will reduce the motivations for geopolitical struggles for what are now considered strategic resources.

Secondly, by making calculations of future military power radically uncertain, the prospect of these technologies gives good reason to examine approaches to cooperative development merged with confidence-building mutual transparency among major powers. Changes in national interests will call for developing [military] contingency plans premised on the emergence of these technologies.

A Steel worker is pictured as he works with mo...Atomically Precise Manufacturing would make steel works such as this one obsolete. (Image Credit: AFP/Getty Images via @daylife)

When will we actually see the onset of the APM revolution? The paths forward require further advances in atomically precise fabrication, an area that began with organic chemistry more than a century ago and continues to make great strides. A sharper engineering focus will bring faster progress and further rewards, just as progress in atomically precise fabrication has brought rewards since the beginning in science, industry, and medicine.

Although advanced objectives like full-scale APM stand beyond a normal business R&D investment horizon, incremental steps in key technologies are steadily emerging. But we need a more focused program of design, analysis, research, and development.

Do all roads lead to APM? Thus, is some form of APM likely to be ubiquitous among intelligent civilizations in the galaxy, if of course such civilizations exist? There’s no substitute for atomic precision because there’s no substitute for precisely controlling the structure of matter. The only known way to do this is by guiding the motion of molecules to put them in place, according to plan, by means of directed bonding — in other words, by some form of atomically precise manufacturing. Since there are many ways to develop these technologies, I’d say that all roads forward do indeed lead to APM.