Beyond Cars: General Motors and Others Look to Expand Market for Hydrogen Fuel Cells


GM-aims-to-use-hydrogen-fuel-cells-for-mobile-power

General Motors is finding new markets for its hydrogen fuel cell systems, announcing that it will work with another company to build mobile electricity generators, electric vehicle charging stations and power generators for military camps.

The emissions-free generators will be designed to power large commercial buildings in the event of a power outage, but the company says it’s possible that smaller ones could someday be marketed for home use.

The automaker says it will supply fuel cell power systems to Renewable Innovations of Lindon, Utah, which will build the generators and rapid charging stations. The partnership adds more products and revenue from GM’s hydrogen power systems that now are being developed for heavy trucks, locomotives and even airplanes.

Hydrogen generators are far quieter than those powered by petroleum, and their only byproduct is water, Charlie Freese, executive director of GM’s hydrogen business, told reporters Wednesday.

He said it’s too early to talk about prices, but said production of the systems should start in the next year. At first the generators will be aimed at powering police stations or industrial uses, as well as outdoor concerts.

“These systems run extremely quietly,” he said. “You can stand next to them while having a conversation,” he said.

But Freese said the technology also can be very compact and could be used to power homes at some point.

GM would provide the hydrogen fuel cells built at a plant in Brownstown Township, Michigan, while Renewable Innovations will build the generator units, he said.

GM is not alone in entering the hydrogen generator market. Multiple companies, including AFC Energy in the United Kingdom, are selling or testing the products, said Shawn Litster, a professor of mechanical engineering at Carnegie Mellon University who has studied hydrogen fuel cells for about two decades.

There will be more demand for the generators as vehicles switch from internal combustion to electric power. Police departments and municipal governments, he said, will need backup power to charge emergency vehicles in case of a power outage. Hydrogen can be stored for long periods and used in emergency cases, he said.

Hydrogen, the most abundant element in the universe, is increasingly viewed, along with electric vehicles, as a way to slow the environmentally destructive impact of the planet’s 1.2 billion vehicles, most of which burn gasoline and diesel fuel. Manufacturers of large trucks and commercial vehicles are beginning to embrace hydrogen fuel cell technologies as a way forward. So are makers of planes, trains and passenger vehicles.

But generating hydrogen isn’t always clean. At present, most it is produced by using natural gas or coal for refineries and fertilizer manufacturing. That process pollutes the air, warming the planet rather than saving it. A new study by researchers from Cornell and Stanford universities found that most hydrogen production emits carbon dioxide, which means that hydrogen-fueled transportation cannot yet be considered clean energy.

Yet proponents say that in the long run, hydrogen production is destined to become more environmentally safe. They envision a growing use of electricity from wind and solar energy, which can separate hydrogen and oxygen in water. As such renewable forms of energy gain broader use, hydrogen production should become a cleaner and less expensive process.

Read More in the Scientific American: Read how other Renewable Energy Sources could power a new industrial revolution ….. that has been long delayed, but may now be ready to fulfill the promise envisioned by futurist Jeremy Rifkin in his book “The Hydrogen Economy” that prophesiedJ Rifkin the hydrogen Economy hydrogen gas would catalyze a new industrial revolution. 

Solar and Wind Power Could Ignite a Hydrogen Energy Comeback

Freese said GM would always look to get hydrogen from a green source. But he conceded that supplies synthesized from natural gas would have to be a “stepping stone” to greener sources.

The EV charging stations would be able to charge up to four vehicles at once, and they could be installed quickly without changes to the electrical grid, Freese said. They also could go up to handle seasonal demand in places where people travel, he said.

The quietness and relative lack of heat make the military generators ideal for powering a camp of soldiers, Freese said.

GM wouldn’t say how much revenue it expects from the products, and it did not release financial arrangements of the deal.

Related video:

GM looks beyond cars for hydrogen fuel cell markets originally appeared on Autoblog on Thu, 20 Jan 2022 08:28:00 EST.

One Step closer to Mainstream: Quantum computing in silicon hits 99 per cent accuracy: University of NSW: Video


Quantum Comp 99 percent

Australian researchers have proven that near error-free quantum computing is possible, paving the way to build silicon-based quantum devices compatible with current semiconductor manufacturing technology.

“Today’s publication shows our operations were 99 per cent error-free,” says Professor Andrea Morello of UNSW, who led the work with partners in the US, Japan, Egypt, and at UTS and the University of Melbourne.
“When the errors are so rare, it becomes possible to detect them and correct them when they occur. This shows that it is possible to build quantum computers that have enough scale, and enough power, to handle meaningful computation.”
The team’s goal is building what’s called a ‘universal quantum computer’ that won’t be specific to any one application.
“This piece of research is an important milestone on the journey that will get us there,” Prof. Morello says.
Quantum operations with 99% fidelity – the key to practical quantum computers.

Quantum computing in silicon hits the 99 per cent threshold

Prof. Morello’s paper is one of three published in Nature (“Precision tomography of a three-qubit donor quantum processor in silicon”) that independently confirm that robust, reliable quantum computing in silicon is now a reality. The breakthrough features on the front cover of the journal.
  • Morello et al achieved one-qubit operation fidelities up to 99.95 per cent, and two-qubit fidelity of 99.37 per cent with a three-qubit system comprising an electron and two phosphorous atoms, introduced in silicon via ion implantation.
  • A Delft team in the Netherlands led by Lieven Vandersypen achieved 99.87 per cent one-qubit and 99.65 per cent two-qubit fidelities using electron spins in quantum dots formed in a stack of silicon and silicon-germanium alloy (Si/SiGe).
  • A RIKEN team in Japan led by Seigo Tarucha similarly achieved 99.84 per cent one-qubit and 99.51 per cent two-qubit fidelities in a two-electron system using Si/SiGe quantum dots.
The UNSW and Delft teams certified the performance of their quantum processors using a sophisticated method called gate set tomography, developed at Sandia National Laboratories in the U.S. and made openly available to the research community.
Prof. Morello had previously demonstrated that he could preserve quantum information in silicon for 35 seconds, due to the extreme isolation of nuclear spins from their environment.
“In the quantum world, 35 seconds is an eternity,” says Prof. Morello. “To give a comparison, in the famous Google and IBM superconducting quantum computers the lifetime is about a hundred microseconds – nearly a million times shorter.”
But the trade-off was that isolating the qubits made it seemingly impossible for them to interact with each other, as necessary to perform actual computations.
A representation of the two phosphorous atoms sharing a single electron
An artist’s impression of quantum entanglement between three qubits in silicon: the two nuclear spins (red spheres) and one electron spin (shiny ellipse) which wraps around both nuclei. (Image: UNSW/Tony Melov)

Nuclear spins learn to interact accurately

Today’s paper describes how his team overcame this problem by using an electron encompassing two nuclei of phosphorus atoms.
“If you have two nuclei that are connected to the same electron, you can make them do a quantum operation,” says Mateusz Mądzik, one of the lead experimental authors.
“While you don’t operate the electron, those nuclei safely store their quantum information. But now you have the option of making them talk to each other via the electron, to realise universal quantum operations that can be adapted to any computational problem.”
“This really is an unlocking technology,” says Dr Serwan Asaad, another lead experimental author. “The nuclear spins are the core quantum processor. If you entangle them with the electron, then the electron can then be moved to another place and entangled with other qubit nuclei further afield, opening the way to making large arrays of qubits capable of robust and useful computations.”
Professor David Jamieson, research leader at the University of Melbourne, says: “The phosphorous atoms were introduced in the silicon chip using ion implantation, the same method used in all existing silicon computer chips. This ensures that our quantum breakthrough is compatible with the broader semiconductor industry.”
All existing computers deploy some form of error correction and data redundancy, but the laws of quantum physics pose severe restrictions on how the correction takes place in a quantum computer. Prof. Morello explains: “You typically need error rates below 1 per cent, in order to apply quantum error correction protocols. Having now achieved this goal, we can start designing silicon quantum processors that scale up and operate reliably for useful calculations.”

Global collaboration key to today’s trifecta

Semiconductor spin qubits in silicon are well-placed to become the platform of choice for reliable quantum computers. They are stable enough to hold quantum information for long periods and can be scaled up using techniques familiar from existing advanced semiconductor manufacturing technology.
“Until now, however, the challenge has been performing quantum logic operations with sufficiently high accuracy,” Prof. Morello says.
“Each of the three papers published today shows how this challenge can be overcome to such a degree that errors can be corrected faster than they appear.”
While the three papers report independent results, they illustrate the benefits that arise from free academic research, and the free circulation of ideas, people and materials. For instance, the silicon and silicon-germanium material used by the Delft and RIKEN groups was grown in Delft and shared between the two groups. The isotopically purified silicon material used by the UNSW group was provided by Professor Kohei Itoh, from Keio University in Japan.
The gate set tomography (GST) method, which was key to quantifying and improving the quantum gate fidelities in the UNSW and Delft papers, was developed at Sandia National Laboratories in the US, and made publicly available. The Sandia team worked directly with the UNSW group to develop methods specific for their nuclear spin system, but the Delft group was able to independently adopt it for its research too.
There has also been significant sharing of ideas through the movement of people between the teams, for example:
  • Dr Mateusz Mądzik, an author on the UNSW paper, is now a postdoctoral researcher with the Delft team.
  • Dr Serwan Asaad, an author on the UNSW paper, was formerly a student at Delft.
  • Prof. Lieven Vandersypen, the leader of the Delft team, spent a five-month sabbatical leave at UNSW in 2016, hosted by Prof. Andrea Morello.
  • The leader of the material growth team, Dr Giordano Scappucci, is a former UNSW researcher.
The UNSW-led paper is the result of a large collaboration, involving researchers from UNSW itself, University of Melbourne (for the ion implantation), University of Technology Sydney (for the initial application of the GST method), Sandia National Laboratories (Invention and refinement of the GST method), and Keio University (supply of the isotopically purified silicon material).
Source: University of New South Wales

EV’s Benefit from Intense Competition in the Silicon Anode for NextGen Batteries Market – $1.9 Billion in Start-Up Funding … So Far


Commercial interest in silicon anodes and investments into start-up companies has continued through 2021 – IDTechEx estimates that $1.9B of funding has now made its way into silicon anode start-ups.

Beyond investments, there has also been greater activity regarding companies beginning to license technologies, enter into supply relationships or commercialize technologies in early adopter markets, highlighting that the promise of silicon anode technology may soon be realized.

For example:• Enevate entered into a license agreement with batterymanufacturer EnerTech International• Enovix went public via a SPAC that valued the company at $1.1B• Elkem established a separate silicon anode company Vianode• Group 14 entered into a joint venture with SK materials for the supply of silane gas• Sila Nano launched their battery technology in the Whoop fitness wearable

IDTechEx estimates that cumulative funding for silicon anode start-ups has reached $1.9B. Source: IDTechEx – “Advanced Li-ion and Beyond Lithium Batteries 2022-2032: Technologies, Players, Trends, Markets

The above examples of commercial development and investment highlight the ongoing and significant interest in silicon anode technology. Much of this stems from the potential for silicon to significantly improve energy density. But beyond energy density, silicon anodes also have the potential to improve fast charge capability, cost, and safety.

In short, fast-charge capability is feasible due to the high porosity inherent to silicon anode solutions, cost can be reduced due to the high capacity of silicon material resulting in lower material requirements while safety improvements stem from the reduced risk of lithium plating and dendrite formation.

Though cycle and calendar life may need to be further demonstrated, improvements are being made. Combined, silicon anodes present a highly valuable proposition for electric vehicles and indeed the largest opportunity for silicon anode material lies in BEVs with the possibility of silicon being used as an additive or as the dominant active material.

Demand from other EV segments and consumer devices still represent a significant opportunity for silicon anode material and IDTechEx forecast that by 2032, demand for silicon anode material will reach $12.9B.

However, with nearly 30 start-up companies looking to commercialize silicon anode solutions, not to mention development at more established materials and battery players, competition in the silicon anode space is intensifying.

Start-ups and earlier stage companies find themselves in a race to lock in investments, partnerships, and orders. While the market is beginning to look increasingly crowded, the rewards for succeeding will be significant, and this competition will play a role in accelerating the commercialization of the better, cheaper, and more environmentally friendly batteries that are needed for better products and electric vehicles.

Watch GNT’s Short Presentation Video

Tenka Energy, Inc. Building Ultra-Thin Energy Dense SuperCaps and NexGen Nano-Enabled Pouch & Cylindrical Batteries – Energy Storage Made Small and POWERFUL!

Samsung and IBM Could Break the Nanosheet Threshold in Chips With ‘Vertically Stacked Transistors’ – IBM & Samsung Indicate This Could DOUBLE Processor Performance (MIT/ NTU)


This design can either double the performance of chips or reduce power use by 85%.

In May of 2021, we brought you a breakthrough in semiconductor materials that saw the creation of a chip that could push back the “end” of Moore’s Law and further widen the capability gap between China and U.S.-adjacent efforts in the field of 1-nanometer chips.

Now, IBM and Samsung claim they have also made a breakthrough in semiconductor design, revealing a new concept for stacking transistors vertically on a chip, according to a press release acquired by . It’s called Vertical Transport Field Effect Transistors (VTFET) and it sees transistors lie perpendicular to one another while current flows vertically.

The breakthrough was accomplished in a joint effort, involving the Massachusetts Institute of Technology (MIT), National Taiwan University (NTU), and the Taiwan Semiconductor Manufacturing Co (TSMC), which is the world’s largest contract manufacturer of advanced chips. At the core of the breakthrough was a process that employs semi-metal bismuth to allow for the manufacture of semiconductors below the 1-nanometer (nm) level.

This is a drastic change from today’s models where transistors lie flat on the surface of the silicon, and then electric current flows from side to side. By doing this, IBM and Samsung hope to extend Moore’s Law beyond the nanosheet threshold and waste less energy.

What will that look like in terms of processors? Well, IBM and Samsung state that these features will double the performance or use 85 percent less power than chips designed with FinFET transistors. But these two firms are not the only ones testing this type of technology.

Intel is also experimenting with chips stacked above each other, as reported by Reuters. “By stacking the devices directly on top of each other, we’re clearly saving area,” Paul Fischer, director and senior principal engineer of Intel’s Components Research Group told Reuters in an interview. “We’re reducing interconnect lengths and really saving energy, making this not only more cost efficient, but also better performing.”

All these advances are great for our cell phones who could one day go weeks without charging and for energy-intensive activities such as crypto mining. But then, we might also find ourselves in a Jevon’s paradox, which occurs when technological progress increases the efficiency with which a resource is used, but the rate of consumption of that resource also rises due to increasing demand. Isn’t that what’s going on with cryptocurrencies in a way?

The Rapid Cost Decline of lithium-ion batteries’ – Why?


Lithium-ion batteries, those marvels of lightweight power that have made possible today’s age of handheld electronics and electric vehicles, have plunged in cost since their introduction three decades ago at a rate similar to the drop in solar panel prices, as documented by a study published last March.

But what brought about such an astonishing cost decline, of about 97 percent?

Some of the researchers behind that earlier study have now analyzed what accounted for the extraordinary savings. They found that by far the biggest factor was work on research and development, particularly in chemistry and materials science. This outweighed the gains achieved through economies of scale, though that turned out to be the second-largest category of reductions.

The new findings are being published in the journal Energy and Environmental Science, in a paper by MIT postdoc Micah Ziegler, recent graduate student Juhyun Song Ph.D. ’19, and Jessika Trancik, a professor in MIT’s Institute for Data, Systems and Society.

The findings could be useful for policymakers and planners to help guide spending priorities in order to continue the pathway toward ever-lower costs for this and other crucial energy storage technologies, according to Trancik. Their work suggests that there is still considerable room for further improvement in electrochemical battery technologies, she says.

The analysis required digging through a variety of sources, since much of the relevant information consists of closely held proprietary business data. “The data collection effort was extensive,” Ziegler says. “We looked at academic articles, industry and government reports, press releases, and specification sheets. We even looked at some legal filings that came out. We had to piece together data from many different sources to get a sense of what was happening.” He says they collected “about 15,000 qualitative and quantitative data points, across 1,000 individual records from approximately 280 references.”

Data from the earliest times are hardest to access and can have the greatest uncertainties, Trancik says, but by comparing different data sources from the same period they have attempted to account for these uncertainties.

Overall, she says, “we estimate that the majority of the cost decline, more than 50 percent, came from research-and-development-related activities.” That included both private sector and government-funded research and development, and “the vast majority” of that cost decline within that R&D category came from chemistry and materials research.

That was an interesting finding, she says, because “there were so many variables that people were working on through very different kinds of efforts,” including the design of the battery cells themselves, their manufacturing systems, supply chains, and so on. “The cost improvement emerged from a diverse set of efforts and many people, and not from the work of only a few individuals.”

The findings about the importance of investment in R&D were especially significant, Ziegler says, because much of this investment happened after lithium-ion battery technology was commercialized, a stage at which some analysts thought the research contribution would become less significant. Over roughly a 20-year period starting five years after the batteries’ introduction in the early 1990s, he says, “most of the cost reduction still came from R&D. The R&D contribution didn’t end when commercialization began. In fact, it was still the biggest contributor to cost reduction.”

The study took advantage of an analytical approach that Trancik and her team initially developed to analyze the similarly precipitous drop in costs of silicon solar panels over the last few decades. They also applied the approach to understand the rising costs of nuclear energy. “This is really getting at the fundamental mechanisms of technological change,” she says. “And we can also develop these models looking forward in time, which allows us to uncover the levers that people could use to improve the technology in the future.”

One advantage of the methodology Trancik and her colleagues have developed, she says, is that it helps to sort out the relative importance of different factors when many variables are changing all at once, which typically happens as a technology improves. “It’s not simply adding up the cost effects of these variables,” she says, “because many of these variables affect many different cost components. There’s this kind of intricate web of dependencies.” But the team’s methodology makes it possible to “look at how that overall cost change can be attributed to those variables, by essentially mapping out that network of dependencies,” she says.

This can help provide guidance on public spending, private investments, and other incentives. “What are all the things that different decision makers could do?” she asks. “What decisions do they have agency over so that they could improve the technology, which is important in the case of low-carbon technologies, where we’re looking for solutions to climate change and we have limited time and limited resources? The new approach allows us to potentially be a bit more intentional about where we make those investments of time and money.”

David Chandler MIT Technology

More information: Determinants of lithium-ion battery technology cost decline, Energy and Environmental Science (2021). DOI: 10.1039/d1ee01313k

Journal information: Energy and Environmental Science

Provided by Massachusetts Institute of Technology

Cancer chemotherapy drug reverses Alzheimer’s symptoms in mice – Read More at GenesisNanotech Online


GenesisNanotech – “Great Things From Small Thing”

Read GenesisNanotech Online: Articles Like: “Cancer chemotherapy drug reverses Alzheimer’s symptoms in mice” (Link) https://medicalxpress.com/news/2021-10-cancer-chemotherapy-drug-reverses-alzheimer.html

And … “Tiny bubbles can be future treatment for inflammation”

Scientists hope that tiny sacs of material excreted by cells—so-called extracellular vesicles—can be used to deliver drugs inside the body. (Link) https://medicalxpress.com/news/2021-10-tiny-future-treatment-inflammation.html

+More … Read The Latest Full Edition Here:

https://paper.li/GenesisNanoTech/1354215819#/

Iron-Flow Battery Technology Breakthrough Could Displace Lithium Batteries as ‘Top Choice’ for Renewable Energy Storage


iron-flow-batteries 2

Iron-flow technology from ESS is being deployed at scale in the U.S.

The world’s electric grids are creaking under the pressure of volatile fossil-fuel prices and the imperative of weaning the world off polluting energy sources. A solution may be at hand, thanks to an innovative battery that’s a cheaper alternative to lithium-ion technology.

SB Energy Corp., a U.S. renewable-energy firm that’s an arm of Japan’s SoftBank Group Corp., is making a record purchase of the batteries manufactured by ESS Inc. The Oregon company says it has new technology that can store renewable energy for longer and help overcome some of the reliability problems that have caused blackouts in California and record-high energy prices in Europe.

Battery Breakthrough May Help End Globe’s Grid Failures
ESS batteries Photographer: Tojo Andrianarivo/Bloomberg

The units, which rely on something called “iron-flow chemistry,” will be used in utility-scale solar projects dotted across the U.S., allowing those power plants to provide electricity for hours after the sun sets. SB Energy will buy enough batteries over the next five years to power 50,000 American homes for a day.

“Long-duration energy storage, like this iron-flow battery, are key to adding more renewables to the grid,” said Venkat Viswanathan, a battery expert and associate professor of mechanical engineering at Carnegie Mellon University.

Battery Breakthrough May Help End Globe’s Grid Failures
Founder: Craig Evans: Credit: Tojo Andrianarivo/Bloomberg

ESS was founded in 2011 by Craig Evans, now president, and Julia Song, the chief technology officer. They recognized that while lithium-ion batteries will play a key role in electrification of transport, longer duration grid-scale energy storage needed a different battery. That’s because while the price of lithium-ion batteries has declined 90% over the last decade, their ingredients, which sometimes include expensive metals such as cobalt and nickel, limit how low the price can fall.

The deal for 2 gigawatt-hours of batteries is worth at least $300 million, according to ESS. Rich Hossfeld, chief executive officer of SB Energy, said the genius of the units lies in their simplicity.

Battery Breakthrough May Help End Globe’s Grid Failures
Julia Song: Credit: Tojo Andrianarivo/Bloomberg

“The battery is made of iron salt and water,” said Hossfeld. “Unlike lithium-ion batteries, iron flow batteries are really cheap to manufacture.”

Every battery has four components: two electrodes between which charged particles shuffle as the battery is charged and discharged, electrolyte that allows the particles to flow smoothly and a separator that prevents the two electrodes from forming a short circuit.

Flow batteries, however, look nothing like the battery inside smartphones or electric cars. That’s because the electrolyte needs to be physically moved using pumps as the battery charges or discharges. That makes these batteries large, with ESS’s main product sold inside a shipping container.

What they take up in space, they can make up in cost. Lithium-ion batteries for grid-scale storage can cost as much as $350 per kilowatt-hour. But ESS says its battery could cost $200 per kWh or less by 2025.

Crucially, adding storage capacity to cover longer interruptions at a solar or wind plant may not require purchasing an entirely new battery. Flow batteries require only extra electrolyte, which in ESS’s case can cost as little as $20 per kilowatt hour.

“This is a big, big deal,” said Eric Toone, science lead at Breakthrough Energy Ventures, which has invested in ESS. “We’ve been talking about flow batteries forever and ever and now it’s actually happening.”

Battery Breakthrough May Help End Globe’s Grid Failures
A worker at the ESS facility in Wilsonville, OR Credit: Tojo Andrianarivo/Bloomberg

The U.S. National Aeronautics and Space Administration built a flow battery as early as 1980. Because these batteries used water, they presented a much safer option for space applications than lithium-ion batteries developed around that time, which were infamous for catching on fire. Hossfeld says he’s been able to get permits for ESS batteries, even in wildfire-prone California, that wouldn’t have been given to lithium-ion versions.

Still, there was a problem with iron flow batteries. During charging, the battery can produce a small amount of hydrogen, which is a symptom of reactions that, left unchecked, shorten the battery’s life. ESS’s main innovation, said Song, was a way of keeping any hydrogen produced within the system and thus hugely extending its life.

“As soon as you close the loop on hydrogen, you suddenly turn a lab prototype into a commercially viable battery option,” said Viswanathan. ESS’s iron-flow battery can endure more than 20 years of daily use without losing much performance, said Hossfeld.

Battery Breakthrough May Help End Globe’s Grid Failures
Plastic sheets are treated with plasma at the ESS manufacturing facility in Wilsonville, OR
Credit: Tojo Andrianarivo/Bloomberg

At the company’s factory near Portland, yellow robots cover plastic sheets with chemicals and glue them together to form the battery cores. Inside the shipping containers, vats full of electrolyte feed into each electrode through pumps — allowing the battery to do its job of absorbing renewable power when the sun shines and releasing it when it gets dark.

It’s a promising first step. ESS’s battery is a cheap solution that can currently provide about 12 hours of storage, but utilities will eventually need batteries that can last much longer as more renewables are added to the grid. Earlier this month, for example, the lack of storage contributed to a record spike in power prices across the U.K. when wind speeds remained low for weeks. Startups such as Form Energy Inc. are also using iron, an abundant and cheap material, to build newer forms of batteries that could beat ESS on price.

So far, ESS has commercially deployed 8 megawatt-hours of iron flow batteries. Last week, after a six-month evaluation, Spanish utility Enel Green Power SpA signed a single deal for ESS to build an equivalent amount. SB Energy’s Hossfeld, who also sits on ESS’s board, said the company would likely buy still more battery capacity from ESS in the next five years.

Even as its order books fill up, ESS faces a challenging road ahead. Bringing new batteries to market is notoriously difficult and the sector is littered with failed startups. Crucially, lithium-ion technology got a head start and customers are more familiar with its pros and cons. ESS will have to prove that its batteries can meet the rigorous demands of power plant operators.

The new order should help ESS as it looks to go public within weeks through a special-purpose acquisition company at a valuation of $1.07 billion. The listing will net the company $465 million, which it plans to use to scale up its operations.

Contributions by Tom Metcalf

Construction Begins on World’s Largest Green Hydrogen Power Plant – Part of Unique Baseload Solar Project


Hydrogen Power

Siemens Energy will operate the unique €170m facility in a remote part of French Guiana, which will provide 10MW of power during the day and 3MW at night.

A unique baseload renewables project that combines the world’s largest hydrogen power plant with a 16MW electrolyser, a 3MW fuel cell, 55MW of solar panels and 20MW/38MWh of batteries has begun construction in French Guiana.

The set-up will enable the Centrale Électrique de l’Ouest Guyanais (CEOG) project to provide 10MW of baseload renewable power from 8am-8pm and 3MW from 8pm-8am.

The variable power from the solar panels will be sent to the grid during the day, with the batteries smoothing the output and extending it into the evening as the sun goes down. Excess solar power during the day will be converted into green hydrogen using the electrolyser, with up to 88MWh of hydrogen stored, and its energy converted back into electricity using the fuel cell, primarily at night.

Why hydrogen-fired power plants ‘will play a major role in the energy transition’

Read more

Enel and Siemens Energy start building ‘world-first’ hydrogen plant to help Porsche go greener

Read more

Because French Guiana — situated in northern South America, but technically a region of both France and the EU — is close to the equator, it has around 12 hours of daylight throughout the year, ensuring that the solar output and therefore operation of the project will remain fairly constant all year round.

Siemens Energy will act as manufacturer and operator of the €170m ($197m) facility, which is owned by French infrastructure company Meridiam (60%), Martinique-based oil refiner Société Anonyme de la Raffinerie des Antilles (30%), and French hydrogen power developer HDF Energy (10%).

The project is in a remote part of northwestern French Guiana, and the electricity will be injected into the local grid under a 25-year capacity contract with French utility EDF.

“This project is not only currently the largest power plant project in the world to store intermittent renewable energy using hydrogen, it is highly innovative,” said Meridiam CEO Thierry Déau. “It will stimulate local economic activity and contribute to positive environment and social impacts.”

Ambroise Fayolle, vice-president of the European Investment Bank, which provided a €25m loan to the project, added: “This project, combining a photovoltaic plant with innovative storage technologies including hydrogen systems, illustrates very well how climate change issues may find efficient answers through innovative solutions of energy production and storage.

“For the European Union and its climate bank, it is very important to support the deployment of very advanced renewable energy technologies that can be adapted to the specific characteristics of each territory.”

Although construction started on 30 September, it is not due to be fully commissioned until 2024.

According to a recent World Bank report, the price of power from the project will be lower or at least the same as local diesel-fired electricity.

Scientists Demonstrate Pathway to Forerunner of Rugged Nanotubes That Could Lead to Widespread Industrial Fabrication


 

Nanotubes 100521

Scientists have identified a chemical pathway to an innovative insulating nanomaterial that could lead to large-scale industrial production for a variety of uses – including in spacesuits and military vehicles. The nanomaterial — thousands of times thinner than a human hair, stronger than steel, and noncombustible — could block radiation to astronauts and help shore up military vehicle armor, for example.

Collaborative researchers at the U.S. Department of Energy’s (DOE) Princeton Plasma Physics Laboratory (PPPL) have proposed a step-by-step chemical pathway to the precursors of this nanomaterial, known as boron nitride nanotubes (BNNT), which could lead to their large-scale production. 

“Pioneering work”

The breakthrough brings together plasma physics and quantum chemistry and is part of the expansion of research at PPPL. “This is pioneering work that takes the Laboratory in new directions,” said PPPL physicist Igor Kaganovich, principal investigator of the BNNT project and co-author of the paper that details the results in the journal Nanotechnology.

Collaborators identified the key chemical pathway steps as the formation of molecular nitrogen and small clusters of boron, which can chemically react together as the temperature created by a plasma jet cools, said lead author Yuri Barsukov of the Peter the Great St. Petersburg Polytechnic University. He developed the chemical reaction pathways by performing quantum chemistry simulations with the assistance of Omesh Dwivedi, a PPPL intern from Drexel University, and Sierra Jubin, a graduate student in the Princeton Program in Plasma Physics.

The interdisciplinary team included Alexander Khrabry, a former PPPL researcher now at Lawrence Livermore National Laboratory who developed a thermodynamic code used in this research, and PPPL physicist Stephane Ethier who helped the students compile the software and set up the simulations. 

The results solved the mystery of how molecular nitrogen, which has the second strongest chemical bond among diatomic, or double-atom molecules, can nonetheless break apart through reactions with boron to form various boron-nitride molecules, Kaganovich said. “We spent considerable amount of time thinking about how to get boron – nitride compounds from a mixture of boron and nitrogen,” he said. “What we found was that small clusters of boron, as opposed to much larger boron droplets, readily interact with nitrogen molecules. That’s why we needed a quantum chemist to go through the detailed quantum chemistry calculations with us.”

BNNTs have properties similar to carbon nanotubes, which are produced by the ton and found in everything from sporting goods and sportswear to dental implants and electrodes. But the greater difficulty of producing BNNTs has limited their applications and availability. 

Chemical pathway

Demonstration of a chemical pathway to the formation of BNNT precursors could facilitate BNNT production. The process of BNNT synthesis begins when scientists use a 10,000-degree plasma jet to turn boron and nitrogen gas into plasma consisting of free electrons and atomic nuclei, or ions, embedded in a background gas. This shows how the process unfolds:

− The jet evaporates the boron while the molecular nitrogen largely stays intact;
− The boron condenses into droplets as the plasma cools;
− The droplets form small clusters as the temperature falls to a few thousand degrees;
− The critical next step is the reaction of nitrogen with small clusters of boron molecules to form boron-nitrogen chains;
− The chains grow longer by colliding with one another and fold into precursors of boron nitride nanotubes.

“During the high-temperature synthesis the density of small boron clusters is low,” Barsukov said. “This is the main impediment to large-scale production.”

The findings have opened a new chapter in BNNT nanomaterial synthesis. “After two years of work we have found the pathway,” Kaganovich said. “As boron condenses it forms big clusters that nitrogen doesn’t react with. But the process starts with small clusters that nitrogen reacts with and there is still a percentage of small clusters as the droplets grow larger,” he said.

“The beauty of this work,” he added, “is that since we had experts in plasma and fluid mechanics and quantum chemistry we could go through all these processes together in an interdisciplinary group. Now we need to compare possible BNNT output from our model with experiments. That will be the next stage of modeling.”

Read the original article on Princeton Plasma Physics Lab.

Silicon Anodes as a Solution for Today’s Battery Technology – Scientists at Pacific Northwest National Laboratory Explore Opportunities for 10X Energy +Safety


silicon-anodes-muscle
A silicon anode virtually intact after one cycle, with the silicon (green) clearly separate from a component of the solid electrolyte interphase (fluorine, in red). Credit: Chongmin Wang | Pacific Northwest National Laboratory

Silicon is a staple of the digital revolution, shunting loads of signals on a device that’s likely just inches from your eyes at this very moment.

Now, that same plentiful, cheap material is becoming a serious candidate for a big role in the burgeoning battery business. It’s especially attractive because it’s able to hold 10 times as much energy in an important part of a battery, the , than widely used graphite.

But not so fast. While  has a swell reputation among scientists, the material itself swells when it’s part of a battery. It swells so much that the anode flakes and cracks, causing the battery to lose its ability to hold a charge and ultimately to fail.

Now scientists have witnessed the process for the first time, an important step toward making silicon a viable choice that could improve the cost, performance and charging speed of batteries for electric vehicles as well as cell phones, laptops, smart watches and other gadgets.

“Many people have imagined what might be happening but no one had actually demonstrated it before,” said Chongmin Wang, a scientist at the Department of Energy’s Pacific Northwest National Laboratory. Wang is a corresponding author of the paper recently published in Nature Nanotechnology.

Of silicon anodes, peanut butter cups and packed airline passengers

Lithium ions are the energy currency in a , traveling back and forth between two electrodes through liquid called electrolyte. When lithium ions enter an anode made of silicon, they muscle their way into the orderly structure, pushing the silicon atoms askew, like a stout airline passenger squeezing into the middle seat on a packed flight. This “lithium squeeze” makes the anode swell to three or four times its original size.

When the lithium ions depart, things don’t return to normal. Empty spaces known as vacancies remain. Displaced silicon atoms fill in many, but not all, of the vacancies, like passengers quickly taking back the empty space when the middle passenger heads for the restroom. But the lithium ions return, pushing their way in again. The process repeats as the lithium ions scoot back and forth between the anode and cathode, and the empty spaces in the silicon anode merge to form voids or gaps. These gaps translate to battery failure.

Scientists have known about the process for years, but they hadn’t before witnessed precisely how it results in battery failure. Some have attributed the failure to the loss of silicon and lithium. Others have blamed the thickening of a key component known as the solid-electrolyte interphase or SEI. The SEI is a delicate structure at the edge of the anode that is an important gateway between the anode and the liquid electrolyte.

In its experiments, the team watched as the vacancies left by lithium ions in the silicon anode evolved into larger and larger gaps. Then they watched as the liquid electrolyte flowed into the gaps like tiny rivulets along a shoreline, infiltrating the silicon. This inflow allowed the SEI to develop in areas within the silicon where it shouldn’t be, a molecular invader in a part of the battery where it doesn’t belong.

That created dead zones, destroying the ability of the silicon to store lithium and ruining the anode.

Think of a peanut butter cup in pristine shape: The chocolate outside is distinct from the soft peanut butter inside. But if you hold it in your hand too long with too tight a grip, the outer shell softens and mixes with the soft chocolate inside. You’re left with a single disordered mass whose structure is changed irreversibly. You no longer have a true peanut butter cup. Likewise, after the electrolyte and the SEI infiltrate the silicon, scientists no longer have a workable anode.

Silicon anodes muscle in on battery technology
A silicon anode after 100 cycles: The anode is barely recognizable as a silicon structure and is instead a mix of the silicon (green) and the fluorine (red) from the solid electrolyte interphase. Credit: Chongmin Wang | Pacific Northwest National Laboratory

The team witnessed this process begin immediately after just one battery cycle. After 36 cycles, the battery’s ability to hold a charge had fallen dramatically. After 100 cycles, the anode was ruined.

Exploring the promise of silicon anodes

Scientists are working on ways to protect the silicon from the electrolyte. Several groups, including scientists at PNNL, are developing coatings designed to act as gatekeepers, allowing lithium ions to go into and out of the anode while stopping other components of the electrolyte.

Scientists from several institutions pooled their expertise to do the work. Scientists at Los Alamos National Laboratory created the silicon nanowires used in the study. PNNL scientists worked together with counterparts at Thermo Fisher Scientific to modify a cryogenic transmission electron microscope to reduce the damage from the electrons used for imaging. And Penn State University scientists developed an algorithm to simulate the molecular action between the liquid and the silicon.

Altogether, the team used electrons to make ultra-high-resolution images of the process and then reconstructed the images in 3-D, similar to how physicians create a 3-D image of a patient’s limb or organ.

“This work offers a clear roadmap for developing silicon as the anode for a high-capacity battery,” said Wang.


Explore further

Novel method of imaging silicon anode degradation may lead to better batteries


More information: Chongmin Wang et al, Progressive growth of the solid–electrolyte interphase towards the Si anode interior causes capacity fading, Nature Nanotechnology (2021). DOI: 10.1038/s41565-021-00947-8

Journal information: Nature Nanotechnology

%d bloggers like this: