From Electric Vehicles – Micro Mobility and the NextGen ‘Green Revolution’ – Panasonic far from being ONLY a battery supplier: CES 2018 with (5) Videos


Panasonic is far from being satisfied with only a battery supplier role. The Japanese company has greater ambitions and intends to offer its scalable “ePowertrain” platform for small EVs.

The main target for the ePowertrain are EV bikes and micro EVs. These should now be easier to develop and produce using Panasonic’s power unit (with an on-board charger, junction box, inverter and DC-to-DC converter) and a motor unit. Of course, batteries are available too.

“Panasonic Corporation announced today that it has developed a scalable “ePowertrain” platform, a solution for the effective development of small electric vehicles (EVs). The platform is a systematized application of devices used in the EVs of major global carmakers, and is intended to contribute to the advancement of the coming mobility society.

Global demand for EVs is expected to expand rapidly, along with a wide variety of new mobility. These include not only conventional passenger vehicles but also new types of EVs, such as EV bikes and micro EVs, which suit various lifestyles and uses in each region.

The platform Panasonic has developed for EV bikes and micro EVs is an energy-efficient, safe powertrain that features integrated compactness, high efficiency, and flexible scalability. It consists of basic units, including a power unit (with an on-board charger, junction box, inverter and DC-to-DC converter) and a motor unit. The platform will help reduce costs and lead time for vehicle development by scaling up or down the combination of basic units in accordance with vehicle specifications such as size, speed and torque.

Panasonic has developed and delivered a wide range of components – including batteries, on-board chargers, film capacitors, DC-to-DC converters and relays – specifically for EVs, plug-in hybrids, and hybrid EVs. Panasonic will continue to contribute to the global growth in EVs through system development that makes use of the strengths of our devices.”

In the case of full-size cars, Panasonic is most known for its battery cells supplied to Tesla. The partnership was recently expanded to include solar cells.

Panasonic feels pretty independent from Tesla, stressing that it has its own battery factory “inside” the Tesla Gigafactory, however the cells were “jointly designed and engineered”.

Annual production of 35 GWh is expected in 2019.

Production of New Battery Cells for Tesla’s “Model 3”

Panasonic’s lithium-ion battery factory within Tesla’s Gigafactory handles production of 2170-size*1 cylindrical battery cells for Tesla’s energy storage system and its new “Model 3” sedan, which began production in July 2017. The high performance cylindrical “2170 cell” was jointly designed and engineered by Tesla and Panasonic to offer the best performance at the lowest production cost in an optimal form factor for both electric vehicles (EVs) and energy products. Panasonic and Tesla are conducting phased investment in the Gigafactory, which will have 35 GWh*/year production capacity of lithium-ion battery cells, more than was produced worldwide in 2013. Panasonic is estimating that global production volume for electric vehicles in fiscal 2026 will see an approximately six-fold increase from fiscal 2017 to over 3 million units. The Company will contribute to the realization of a sustainable energy society through the provision of electric vehicle batteries.

 

 

 

 

 

In regards to solar cells, Panasonic expects 1 GW output at the Tesla Gigafactory 2 in Buffalo, New York in 2019.

The solar cells are used both in conventional modules, as well as in Tesla Solar Roof tiles.

Strengthening Collaboration with Tesla

In addition to the collaboration with Tesla in the lithium-ion battery business (for details, refer to pages 5-6), Panasonic also collaborates with the company in the solar cell business and will begin production of solar cells this summer at its Buffalo, New York, factory. Solar cells produced at this factory are supplied to Tesla. In addition, the solar cells are used in roof tiles sold by Tesla, a product that integrates solar cells with roofing materials.Panasonic will continue its investment in the factory going forward and plans to raise solar cell production capacity to 1 GW by 2019.

Advertisements

“Crumpled” Graphene Balls Could Improve Batteries’ Performance by Preventing Lithium Dendrite Growth: Northwestern University


 

Crumpled Graphene NewsImage_36035Jiaxing Huang discovered crumpled graphene balls six years ago. (Image credit: Jiaxing Huang)

Lithium metal-based batteries have the potential to revolutionize the battery sector. With the theoretically ultra-high capacity of lithium metal used by itself, this new type of battery can be employed to power everything from personal gadgets to cars.

“In current batteries, lithium is usually atomically distributed in another material such as graphite or silicon in the anode,” explains Northwestern Engineering’s Jiaxing Huang. “But using an additional material ‘dilutes’ the battery’s performance. Lithium is already a metal, so why not use lithium by itself?”

The answer is a research challenge that scientists have spent years attempting to overcome. As lithium gets charged and discharged in a battery, it begins to grow dendrites and filaments, “which causes a number of problems,” Huang said. “At best, it leads to rapid degradation of the battery’s performance. At worst, it causes the battery to short or even catch fire.”Northwestern-Hero

One existing solution to avoid lithium’s destructive dendrites is to employ a porous scaffold, such as those made from carbon materials, on which lithium preferentially deposits. Then during battery charging, lithium can deposit along the surface of the scaffold, bypassing dendrite growth. This, however, introduces a new issue. As lithium deposits onto and then dissolves from the porous support as the battery cycles, its volume wavers significantly. This volume fluctuation causes stress that could break the porous support.

Huang and his collaborators have deciphered this problem by choosing a different approach — one that even makes batteries lighter weight and able to contain more lithium.

The answer lies in a scaffold composed of crumpled graphene balls, which can stack with ease to form a porous scaffold, because of their paper ball-like shape. They not only prevent dendrite growth but can also survive the stress from the wavering volume of lithium. The research was featured on the cover of the January edition of the journal Joule.

“One general philosophy for making something that can maintain high stress is to make it so strong that it’s unbreakable,” said Huang, professor of materials science and engineering in Northwestern’s McCormick School of Engineering. “Our strategy is based on an opposite idea. Instead of trying to make it unbreakable, our scaffold is made of loosely stacked particles that can readily restack.”

Huang discovered crumpled graphene balls six years ago.  Crumpled graphene balls are novel ultrafine particles that look like crumpled paper balls. He formed the particles by atomizing a dispersion of graphene-based sheets into minute water droplets. When the water droplets evaporated, they produced a capillary force that crumpled the sheets into miniaturized paper balls.

crumpling-graphene-electronics-Illinois-img_assist-350x197In Huang’s team’s battery, the crumpled graphene scaffold houses the fluctuation of lithium as it cycles between the cathode and anode. The crumpled balls can travel apart when lithium deposits and then freely assemble back together when the lithium is depleted. Since minute paper balls are conductive and allow lithium ions to flow quickly along their surface, the scaffold forms a continuously conductive, porous, dynamic network for lithium.

“Closely packed, the crumpled graphene balls operate like a highly uniform, continuous solid,” said Jiayan Luo, the paper’s co-corresponding author and professor of chemical engineering at Tianjin University in China. “We also found that the crumpled graphene balls do not form clusters but instead are quite evenly distributed.”

Formerly advised by Huang, Luo received his PhD in materials science and engineering in 2013. Currently as a professor and researcher at Tianjin University, Luo continues to partner with Huang.

In contrast to batteries that use graphite as the host material in the anode, Huang’s solution is a lot lighter in weight and can stabilize a higher load of lithium during cycling. While typical batteries encapsulate lithium that measures only tens of microns in thickness, Huang’s battery holds lithium stacked 150 µm high.

Huang and his collaborators have filed a provisional patent via Northwestern’s Innovation and New Ventures Office (INVO).

The National Natural Science Foundation of China, the Natural Science Foundation of Tianjin, China, the State Key Laboratory of Chemical Engineering, and the Office of Naval Research supported the research.

 

“On the Rebound” The quest to introduce self-healing behaviors in Nanoparticles: Stanford University


In a newly discovered twist, Argonne scientists and collaborators found that palladium nanoparticles can repair atomic dislocations in their crystal structure. This self-healing behavior could be worth exploring in other materials. (Image by Argonne National Laboratory.)

Our bodies have a remarkable ability to heal from broken ankles or dislocated wrists. Now, a new study has shown that some nanoparticles can also “self-heal” after experiencing intense strain, once that strain is removed.

New research from the U.S. Department of Energy’s (DOE) Argonne National Laboratory and Stanford University has found that palladium nanoparticles can repair atomic dislocations in their crystal structure. This newly discovered twist could ultimately advance the quest to introduce self-healing behaviors in other materials.

“It turns out that these nanoparticles function much more like the human body healing from an injury than like a broken machine that can’t fix itself.” – Andrew Ulvestad, Argonne materials scientist

The research follows a study from last year, in which Argonne researchers looked at the sponge-like way that palladium nanoparticles absorb hydrogen.

When palladium particles absorb hydrogen, their spongy surfaces swell. However, the interiors of the palladium particles remain less flexible. As the process continues, something eventually cracks in a particle’s crystal structure, dislocating one or more atoms.

“One would never expect the dislocation to come out under normal conditions,” said Argonne materials scientist Andrew Ulvestad, the lead author of the study. “But it turns out that these nanoparticles function much more like the human body healing from an injury than like a broken machine that can’t fix itself.”

Ulvestad explained that the dislocations form as a way for the material to relieve the stress placed on its atoms by the infusion of additional hydrogen. When scientists remove the hydrogen from the nanoparticle, the dislocations have room to mend.

Using the X-rays provided by Argonne’s Advanced Photon Source, a DOE Office of Science User Facility, Ulvestad was able to track the motion of the dislocations before and after the healing process. To do so, he used a technique called Bragg coherent diffraction imaging, which identifies a dislocation by the ripple effects it produces in the rest of the particle’s crystal lattice.

In some particles, the stress of the hydrogen absorption introduced multiple dislocations. But even particles that dislocated in multiple places could heal to the point where they were almost pristine.

“In some cases, we saw five to eight original dislocations, and some of those were deep in the particle,” Ulvestad said. “After the particle healed, there would be maybe one or two close to the surface.”

Although Ulvestad said that researchers are still unsure exactly how the material heals, it likely involves the relationship between the material’s surface and its interior, he explained.

By better understanding how the material heals, Ulvestad and his colleagues hope to tailor the dislocations to improve material properties. “Dislocations aren’t necessarily bad, but we want to control how they form and how they can be removed,” he said.

The study, entitled “The self-healing of defects induced by the hydriding phase transformation in palladium nanoparticles,” appeared November 9 in Nature Communications.

The work was supported by DOE’s Office of Science and the National Science Foundation.

Argonne National Laboratory seeks solutions to pressing national problems in science and technology. The nation’s first national laboratory, Argonne conducts leading-edge basic and applied scientific research in virtually every scientific discipline. Argonne researchers work closely with researchers from hundreds of companies, universities, and federal, state and municipal agencies to help them solve their specific problems, advance America’s scientific leadership and prepare the nation for a better future. With employees from more than 60 nations, Argonne is managed by UChicago Argonne, LLC for the U.S. Department of Energy’s Office of Science.

The U.S. Department of Energy’s Office of Science is the single largest supporter of basic research in the physical sciences in the United States and is working to address some of the most pressing challenges of our time. For more information, visit the Office of Science website.

A Step Closer for Clean Fuel: New Catalyst (Carbon-Based Nanocomposites) for Hydrogen Production


Flask in scientist handCarbon-based nanocomposite with embedded metal ions yields impressive performance as catalyst for electrolysis of water to generate hydrogen

A nanostructured composite material developed at UC Santa Cruz has shown impressive performance as a catalyst for the electrochemical splitting of water to produce hydrogen. An efficient, low-cost catalyst is essential for realizing the promise of hydrogen as a clean, environmentally friendly fuel.

Researchers led by Shaowei Chen, professor of chemistry and biochemistry at UC Santa Cruz, have been investigating the use of carbon-based nanostructured materials as catalysts for the reaction that generates hydrogen from water. In one recent study, they obtained good results by incorporating ruthenium ions into a sheet-like nanostructure composed of carbon nitride. Performance was further improved by combining the ruthenium-doped carbon nitride with graphene, a sheet-like form of carbon, to form a layered composite.

“The bonding chemistry of ruthenium with nitrogen in these nanostructured materials plays a key role in the high catalytic performance,” Chen said. “We also showed that the stability of the catalyst is very good.”

The new findings were published in ChemSusChem, a top journal covering sustainable chemistry and energy materials, and the paper is featured on the cover of the January 10 issue. First author Yi Peng, a graduate student in Chen’s lab, led the study and designed the cover image.

Hydrogen has long been attractive as a clean and renewable fuel. A hydrogen fuel cell powering an electric vehicle, for example, emits only water vapor. Currently, however, hydrogen production still depends heavily on fossil fuels (mostly using steam to extract it from natural gas). Finding a low-cost, efficient way to extract hydrogen from water through electrolysis would be a major breakthrough. Electricity from renewable sources such as solar and wind power, which can be intermittent and unreliable, could then be easily stored and distributed as hydrogen fuel.Figs-2A-and-2B

Polymer electrolyte membrane (PEM) water electrolysis cell Figure 2B (right): Schematic of an electrochemical energy producer. PEM hydrogen /oxygen fuel …

Currently, the most efficient catalysts for the electrochemical reaction that generates hydrogen from water are based on platinum, which is scarce and expensive. Carbon-based materials have shown promise, but their performance has not come close to that of platinum-based catalysts.

In the new composite material developed by Chen’s lab, the ruthenium ions embedded in the carbon nitride nanosheets change the distribution of electrons in the matrix, creating more active sites for the binding of protons to generate hydrogen. Adding graphene to the structure further enhances the redistribution of electrons.

water-splitting 2

 

“The graphene forms a sandwich structure with the carbon nitride nanosheets and results in further redistribution of electrons. This gives us greater proton reduction efficiencies,” Chen said.

The electrocatalytic performance of the composite was comparable to that of commercial platinum catalysts, the authors reported. Chen noted, however, that researchers still have a long way to go to achieve cheap and efficient hydrogen production.

In addition to Peng and Chen, coauthors of the study include Wanzhang Pan and Jia-En Liu at UC Santa Cruz and Nan Wang at South China University of Technology. This work was supported by the National Science Foundation and the NASA-funded Merced Nanomaterials Center for Energy and Sensing.

Story Source:

Materials provided by University of California – Santa Cruz. Original written by Tim Stephens. Note: Content may be edited for style and length.


Journal Reference:

  1. Yi Peng, Wanzhang Pan, Nan Wang, Jia-En Lu, Shaowei Chen. Ruthenium Ion-Complexed Graphitic Carbon Nitride Nanosheets Supported on Reduced Graphene Oxide as High-Performance Catalysts for Electrochemical Hydrogen EvolutionChemSusChem, 2018; 11 (1): 130 DOI: 10.1002/cssc.201701880

“Nano-Wrinkles” (nano-structured surface coatings) would save Shipping and Aquaculture $$$$ Billions


nanowrinklesThe Nepenthes pitcher plant (left) and its nano-wrinkled ‘mouth’ (centre) inspired the engineered nanomaterial (right). Credit: Sydney Nano

A team of chemistry researchers from the University of Sydney Nano Institute has developed nanostructured surface coatings that have anti-fouling properties without using any toxic components.

Biofouling – the build-up of damaging biological material – is a huge economic issue, costing the aquaculture and shipping industries billions of dollars a year in maintenance and extra fuel usage. It is estimated that the increased drag on  due to biofouling costs the shipping industry in Australia $320 million a year a b.

Since the banning of the toxic anti-fouling agent tributyltin, the need for new non-toxic methods to stop marine biofouling has been pressing.

Leader of the research team, Associate Professor Chiara Neto, said: “We are keen to understand how these surfaces work and also push the boundaries of their application, especially for energy efficiency. Slippery coatings are expected to be drag-reducing, which means that objects, such as ships, could move through water with much less energy required.”

The new materials were tested tied to shark netting in Sydney’s Watson Bay, showing that the nanomaterials were efficient at resisting biofouling in a marine environment.

The research has been published in ACS Applied Materials & Interfaces.

Nanowrinkles could save billions in shipping and aquaculture
PhD candidate Sam Peppou Chapman in Watsons Bay, Sydney, next to the test samples of the nanomaterials attached to a shark net. Credit: University of Sydney Nano Institute

The new coating uses ‘nanowrinkles’ inspired by the carnivorous Nepenthes pitcher plant. The plant traps a layer of water on the tiny structures around the rim of its opening. This creates a slippery layer causing insects to aquaplane on the , before they slip into the pitcher where they are digested.

Nanostructures utilise materials engineered at the scale of billionths of a metre – 100,000 times smaller than the width of a human hair. Associate Professor Neto’s group at Sydney Nano is developing nanoscale materials for future development in industry.

Biofouling can occur on any surface that is wet for a long period of time, for example aquaculture nets, marine sensors and cameras, and ship hulls. The slippery surface developed by the Neto group stops the initial adhesion of bacteria, inhibiting the formation of a biofilm from which larger marine fouling organisms can grow.

The interdisciplinary University of Sydney team included biofouling expert Professor Truis Smith-Palmer of St Francis Xavier University in Nova Scotia, Canada, who was on sabbatical visit to the Neto group for a year, partially funded by the Faculty of Science scheme for visiting women.

In the lab, the slippery surfaces resisted almost all fouling from a common species of marine bacteria, while control Teflon samples without the lubricating layer were completely fouled. Not satisfied with testing the surfaces under highly controlled lab conditions with only one type of bacteria the team also tested the surfaces in the ocean, with the help of marine biologist Professor Ross Coleman.

Test surfaces were attached to swimming nets at Watsons Bay baths in Sydney Harbour for a period of seven weeks. In the much harsher marine environment, the slippery surfaces were still very efficient at resisting fouling.

The antifouling coatings are mouldable and transparent, making their application ideal for underwater cameras and sensors.

 Explore further: Researchers show laser-induced graphene kills bacteria, resists biofouling

More information: Cameron S. Ware et al, Marine Antifouling Behavior of Lubricant-Infused Nanowrinkled Polymeric Surfaces, ACS Applied Materials & Interfaces (2017). DOI: 10.1021/acsami.7b14736

 

More Powerful Computing Possible from Ultra-thin memory storage device: University of Texas, Austin


ultrathinmemIllustration of a voltage-induced memory effect in monolayer nanomaterials, which layer to create “atomristors,” the thinnest memory storage device that could lead to faster, smaller and smarter computer chips. Credit: Cockrell School of Engineering, The University of Texas at Austin

Engineers worldwide have been developing alternative ways to provide greater memory storage capacity on even smaller computer chips. Previous research into two-dimensional atomic sheets for memory storage has failed to uncover their potential—until now.

A team of electrical engineers at The University of Texas at Austin, in collaboration with Peking University scientists, has developed the thinnest  device with dense  capacity, paving the way for faster, smaller and smarter computer chips for everything from consumer electronics to big data to brain-inspired computing.

“For a long time, the consensus was that it wasn’t possible to make memory devices from materials that were only one atomic layer thick,” said Deji Akinwande, associate professor in the Cockrell School of Engineering’s Department of Electrical and Computer Engineering. “With our new ‘atomristors,’ we have shown it is indeed possible.”

Made from 2-D nanomaterials, the “atomristors”—a term Akinwande coined—improve upon memristors, an emerging memory storage technology with lower memory scalability. He and his team published their findings in the January issue of Nano Letters.

“Atomristors will allow for the advancement of Moore’s Law at the system level by enabling the 3-D integration of nanoscale memory with nanoscale transistors on the same chip for advanced computing systems,” Akinwande said.

Memory storage and transistors have, to date, always been separate components on a microchip, but atomristors combine both functions on a single, more efficient computer system. By using metallic  (graphene) as electrodes and semiconducting atomic sheets (molybdenum sulfide) as the active layer, the entire memory cell is a sandwich about 1.5 nanometers thick, which makes it possible to densely pack atomristors layer by layer in a plane. This is a substantial advantage over conventional flash memory, which occupies far larger space. In addition, the thinness allows for faster and more efficient electric current flow.

Given their size, capacity and integration flexibility, atomristors can be packed together to make advanced 3-D chips that are crucial to the successful development of brain-inspired computing. One of the greatest challenges in this burgeoning field of engineering is how to make a memory architecture with 3-D connections akin to those found in the human brain.

“The sheer density of memory  that can be made possible by layering these synthetic atomic sheets onto each other, coupled with integrated transistor design, means we can potentially make computers that learn and remember the same way our brains do,” Akinwande said.

The research team also discovered another unique application for the technology. In existing ubiquitous devices such as smartphones and tablets, radio frequency switches are used to connect incoming signals from the antenna to one of the many wireless communication bands in order for different parts of a device to communicate and cooperate with one another. This activity can significantly affect a smartphone’s battery life.

The atomristors are the smallest radio frequency memory switches to be demonstrated with no DC battery consumption, which can ultimately lead to longer battery life.

“Overall, we feel that this discovery has real commercialization value as it won’t disrupt existing technologies,” Akinwande said. “Rather, it has been designed to complement and integrate with the silicon chips already in use in modern tech devices.”

 Explore further: A more efficient way to write data into non-volatile memory devices improves their performance

More information: Ruijing Ge et al, Atomristor: Nonvolatile Resistance Switching in Atomic Sheets of Transition Metal Dichalcogenides, Nano Letters (2017). DOI: 10.1021/acs.nanolett.7b04342

 

A novel electric propulsion technology for nanorobots: 100K Faster computer controls for molecular machines


fastcomputerElectric fields drive the rotating nano-crane – 100,000 times faster than previous methods. Credit: Enzo Kopperger / TUM

Scientists at the Technical University of Munich (TUM) have developed a novel electric propulsion technology for nanorobots. It allows molecular machines to move a hundred thousand times faster than with the biochemical processes used to date. This makes nanobots fast enough to do assembly line work in molecular factories. The new research results will appear as the cover story on 19th January in the renowned scientific journal Science.

Up and down, up and down. The points of light alternate back and forth in lockstep. They are produced by glowing molecules affixed to the ends of tiny robot arms. Prof. Friedrich Simmel observes the movement of the nanomachines on the monitor of a fluorescence microscope. A simple mouse click is all it takes for the points of light to move in another direction.

“By applying electric fields, we can arbitrarily rotate the arms in a plane,” explains the head of the Chair of Physics of Synthetic Biological Systems at TU Munich. His team has for the first time managed to control nanobots electrically and has at the same time set a record: The new technique is 100 000 times faster than all previous methods.

DNA-origami robots for the manufacturing plants of tomorrow

Scientists around the world are working on new technologies for the nanofactories of the future. They hope these will one day be used to analyse biochemical samples or produce active medical agents. The required miniature machines can already be produced cost-effectively using the DNA-origami technique.

The only reason these  have not been deployed on a large scale to date is that they are too slow. The building blocks are activated with enzymes, strands of DNA or light to then perform specific tasks, for example to gather and transport molecules.

Fast computer control for molecular machines
Rotation of the arm between two docking points (red and blue). Credit: Enzo Kopperger / TUM

However, traditional nanobots take minutes to carry out these actions, sometimes even hours. Therefore, efficient molecular assembly lines cannot, for all practical intents and purposes, be implemented using these methodologies.

Electronic speed boost

“Building up a nanotechnological assembly line calls for a different kind of propulsion technology. We came up with the idea of dropping biochemical nanomachine switching completely in favour of the interactions between DNA structures and electric fields,” explains TUM researcher Simmel, who is also the co-coordinator of the Excellence Cluster Nanosystems Initiative Munich (NIM).

The principle behind the propulsion technology is simple: DNA molecules have negative charges. The biomolecules can thus be moved by applying electric fields. Theoretically, this should allow nanobots made of DNA to be steered using electrical impulses.

Robotic movement under the microscope

To determine whether and how fast the robot arms would line up with an electric field, the researchers affixed several million nanobot arms to a glass substrate and placed this into a sample holder with electrical contacts designed specifically for the purpose.

Each of the miniature machines produced by the lead author Enzo Kopperger comprises a 400 nanometer arm attached to a rigid 55 by 55 nanometer base plate with a flexible joint made of unpaired bases. This construction ensures that the arms can rotate arbitrarily in the horizontal plane.

In collaboration with fluorescence specialists headed by Prof. Don C. Lamb of the Ludwig Maximillians University Munich, the researchers marked the tips of the  using pigment molecules. They observed their motion using a . They then changed the direction of the electric field. This allowed the researchers to arbitrarily alter the orientation of the arms and control the locomotion process.

“The experiment demonstrated that molecular machines can be moved, and thus also driven electrically,” says Simmel. “Thanks to the electronic control process, we can now initiate movements on a millisecond time scale and are thus 100 000 times faster than with previously used biochemical approaches.”

On the road to a nanofactory

The new control technology is suited not only for moving around pigments and nanoparticles. The arms of the miniature robots can also apply force to molecules. These interactions can be utilized for diagnostics and in pharmaceutical development, emphasizes Simmel. “Nanobots are small and economical. Millions of them could work in parallel to look for specific substances in samples or to synthesize complex molecules – not unlike an .”

 Explore further: Scientists create world’s first ‘molecular robot’ capable of building molecules

More information: Enzo Kopperger et al. A self-assembled nanoscale robotic arm controlled by electric fields, Science (2018). DOI: 10.1126/science.aao4284

 

Shaping Stem Cell Research with Nanotechnology – Hope for Treating Parkinson’s; Heart Disease and ???


Nanoscientists have developed a technique that allows them to transform stem cells into bone cells on command. But could the process be used to treat deadly conditions such as heart disease and Parkinson’s?

Anyone who knows a thing or two about biology knows that stem cells have tremendous potential in medicine: anything from repairing and replenishing heart cells after an attack to replacing nerve cells that are progressively lost in the brain of a person with Parkinson’s.

One of the big challenges of using stem cells as a therapy is coaxing them to grow into the specific type of tissue that is required. In the body this happens thanks to precise chemical and physical signals, not all of which are yet understood or characterised.

Using chemicals to direct the fate of stem cells has worked in laboratories, but the outcomes are not always safe or predictable.

Now, a team from Northwestern University in the US thinks it has a solution. They say that they can direct the developmental fate of stem cells using only physical cues, by adapting a well-known technique that traces three-dimensional microscopic shapes and reconstructs them on flat surfaces.

The process is called scanning probe lithography.

By placing the stem cells on the nanopatterned surface, and without adding any kind of chemicals, the scientists found that they could induce the stem cells to develop into bone cells.

Extend this technique, they say, and it might be possible to turn stem cells into any type of cell on command.

When the body needs a repair to be carried out, a special type of stem cell – called mesenchymal stem cells or MSCs – can enter the blood circulation system. These cells travel around the body and actually home in on where they are needed.

MSCs have the potential to develop into a whole range of different tissue types – in other words, they are pluripotent.

The developmental decision that they make depends, in part, on the molecular structures in the matrix surrounding the cells that make up the tissue.

The structure of the matrix affects the softness of the tissue – so the brain is a soft, mushy tissue, while stiffer tissues include muscle, and rigid tissues include bone.

The US team has mimicked this real-life situation. Using the molecular structures in the matrix that surround a cell as a pattern, and with an array of pyramid-like points that are a hundred-thousand times smaller than the tip of a pencil and incredibly sharp, molecule by molecule they have built up a kind of nano-landscape with sculptures ranging in size from the nano- to the microscale, on a small piece of glass. The technique is called polymer pen lithography.

The researchers grew MSCs on one type of nanoscopic sculpture, and were able to direct their developmental fate.

“Starting with millions of possibilities, we quickly zeroed in on the pattern of features that best directed the stem cells into osteocytes [bone cells],” says Chad A Mirkin, who led the work.

Mirkin is professor of chemistry in the Weinberg College of Arts and Sciences and is also the director of Northwestern’s International Institute for Nanotechnology.

The potential of this tool is to be able to take pluripotent stem cells from a patient, run them over a selected three-dimensional matrix in order to convert them rapidly into a particular cell type of choice, and then return them to the patient for repair and replenishment of damaged tissues.

“With further development, researchers might be able to use this approach to prepare cells of any lineage on command,” Mirkin says.

“The three-dimensional aspect is very interesting, and mimics aspects of the environment in a highly stylized way,” says Fiona Watt, professor and director of the Centre for Stem Cells and Regenerative Medicine at Kings College London.

“Several reports argue that the topology imposed on a stem cell – how a stem cell is contained in 3D – affects its behaviour. When you consider your bones and cartilage, this makes perfect sense,” Watt adds.

One important aspect of this work according to Marilyn Monk, emeritus professor of molecular embryology at University College London’s Institute of Child Health, is that it provides evidence that stem-cell fate can solely be informed by the local three-dimensional molecular structure.

“But that’s not to say that this is the only way to direct stem-cell fate,” Monk says. “We know that regulation of development involves multiple mechanisms that operate independently and inter-dependently to bring about a final specific cell function.”

Nonetheless he believes the technique is a real advance. “It would be neat to see if they can take a stem cell, already committed in one developmental direction, and back it up so that it might become another type of cell again, using only their patterning technique,” he says.

“That would be the Nobel prize.”

Ultra-bright Ultra-fast light emission ‘Nano-crystals’ (Quantum Dots) Applications the for Displays and Super-Computers


Extremely bright and fast light emission Nano-Crystals

An international team of researchers from ETH Zurich, IBM Research Zurich, Empa and four American research institutions have found the explanation for why a class of nanocrystals that has been intensively studied in recent years shines in such incredibly bright colours.

The nanocrystals contain caesium lead halide compounds that are arranged in a perovskite lattice structure.

Three years ago, Maksym Kovalenko, a professor at ETH Zurich and Empa, succeeded in creating nanocrystals – or quantum dots, as they are also known – from this semiconductor material. “These tiny crystals have proved to be extremely bright and fast emitting light sources, brighter and faster than any other type of quantum dot studied so far,” says Kovalenko.

By varying the composition of the chemical elements and the size of the nanoparticles, he also succeeded in producing a variety of nanocrystals that light up in the colours of the whole visible spectrum. These quantum dots are thus also being treated as components for future light-emitting diodes and displays.

A caesium lead bromide nanocrystal under the electron microscope (crystal width: 14 nanometres). Individual atoms are visible as points. (Image: ETH Zurich / Empa / Maksym Kovalenko)

In a study published in the most recent edition of the scientific journal Nature (“Bright triplet excitons in caesium lead halide perovskites”), the international research team examined these nanocrystals individually and in great detail. The scientists were able to confirm that the nanocrystals emit light extremely quickly.

Previously-studied quantum dots typically emit light around 20 nanoseconds after being excited when at room temperature, which is already very quick. “However, caesium lead halide quantum dots emit light at room temperature after just one nanosecond,” explains Michael Becker, first author of the study. He is a doctoral student at ETH Zurich and is carrying out his doctoral project at IBM Research.

Electron-hole pair in an excited energy state

Understanding why caesium lead halide quantum dots are not only fast but also very bright entails diving into the world of individual atoms, light particles (photons) and electrons. “You can use a photon to excite semiconductor nanocrystals so that an electron leaves its original place in the crystal lattice, leaving behind a hole,” explains David Norris, Professor of Materials Engineering at ETH Zurich.

The result is an electron-hole pair in an excited energy state. If the electron-hole pair reverts to its energy ground state, light is emitted.

Under certain conditions, different excited energy states are possible; in many materials, the most likely of these states is called a dark one. “In such a dark state, the electron hole pair cannot revert to its energy ground state immediately and therefore the light emission is suppressed and occurs delayed. This limits the brightness”, says Rainer Mahrt, a scientist at IBM Research.

A sample with several green glowing perovskite quantum dots excited by a blue laser. (Image: IBM Research / Thilo Stöferle)

No dark state

The researchers were able to show that the caesium lead halide quantum dots differ from other quantum dots: their most likely excited energy state is not a dark state. Excited electron-hole pairs are much more likely to find themselves in a state in which they can emit light immediately. “This is the reason that they shine so brightly,” says Norris.

The researchers came to this conclusion using their new experimental data and with the help of theoretical work led by Alexander Efros, a theoretical physicist at the Naval Research Laboratory in Washington. He is a pioneer in quantum dot research and, 35 years ago, was among the first scientists to explain how traditional semiconductor quantum dots function.

Great news for data transmission

As the examined caesium lead halide quantum dots are not only bright but also inexpensive to produce they could be applied in television displays, with efforts being undertaken by several companies, in Switzerland and world-wide. “Also, as these quantum dots can rapidly emit photons, they are of particular interest for use in optical communication within data centres and supercomputers, where fast, small and efficient components are central,” says Mahrt.

Another future application could be the optical simulation of quantum systems which is of great importance to fundamental research and materials science.

ETH professor Norris is also interested in using the new knowledge for the development of new materials. “As we now understand why these quantum dots are so bright, we can also think about engineering other materials with similar or even better properties,” he says.

Source: By Fabio Bergamin, ETH Zurich

The Knowledge Entrepreneur: A New Paradigm For Preparing Tomorrow’s Engineers And Scientists


Knowledge Entrpreneur Engineering-Researchers.Jan18-1200x801
Photo courtesy of UVA EngineeringWorking in the Link Lab for cyber-physical systems, engineering students at the University of Virginia are designing the next generation of intelligent devices for smart buildings and homes.  *** Special Re-Post from Forbes Leadership – by Bernie Carlson

The Knowledge Entrepreneur: A New Paradigm For Preparing Tomorrow’s Engineers And Scientists

It is tempting to apply the old saying, “East is East, West is West, but the twain shall never meet,” to science and entrepreneurship.  In the popular imagination, scientists discover new knowledge while entrepreneurs build companies to launch new products.

Most people assume that scientists are motivated by the high ideal of advancing human progress while entrepreneurs are driven by the base motives of ego and greed.  Like oil and water, science and entrepreneurship, it would seem, don’t mix.

Yet to solve the major problems confronting humanity—disease, hunger, global warming and terrorism—science and entrepreneurship need to mix. The world needs STEM specialists who possess not only a deep understanding of scientific theory and laboratory practice but also the skills needed to move ideas from the laboratory to the wider world.

At the University of Virginia’s School of Engineering and Applied Science, we call these new experts Knowledge Entrepreneurs.

By Knowledge Entrepreneur, we don’t mean all our STEM students will launch a new startup business [though we hope that some do] but rather that they possess the habits which will allow them to be agents of change, to intentionally shape their research programs and careers in ways that address major challenges.

We share with KEEN [the Kern Entrepreneurial Engineering Network] the vision that engineering students can transform the world by developing an entrepreneurial mindset.

Douglas E. Melton, Ph.D, shares why the entrepreneurial mindset is the key to success for engineering undergraduate students.

An entrepreneurial mindset is particularly important for students pursuing advanced masters and doctoral degrees.  Generally speaking, undergraduate students in engineering and science are passive consumers who master the material in textbooks, lectures, and laboratory exercises.

However, when they move up to graduate studies, we need to teach students how to be active producers of knowledge, to have the skills to not only generate new ideas and designs but also to be able to implement these solutions in society.

To become active producers of knowledge, graduate students should acquire five habits of effective entrepreneurs:

First, as Knowledge Entrepreneurs, students must identify a problem out there in the world and frame it as a question that can be investigated using available scientific techniques. 

While Thomas Edison is often criticized for tinkering and trying random solutions, he always began work on an invention by defining a specific problem that he could solve.

With his electric lighting system in the late 1870s, for instance, Edison decided early on that he wanted an electric lamp which could be substituted for the gas lamps people were already using.  This electric-to-gas analogy led him to experimenting with incandescent lamps and to concentrating on finding the right material for a high-resistance filament.brain-quantum-2-b2b_wsf

Problem definition means engaging multiple stakeholders; for Edison, this meant studying the economics of the gas-lighting industry, talking to potential customers and consulting with leading scientists.

For contemporary STEM graduate students, problem definition requires talking with funding agencies, fellow professionals and end users in order to understand each group’s needs.

In our course on Knowledge Entrepreneurship in UVa’s Engineering School, we borrow customer discovery techniques from the I-Corps program of the National Science Foundation, teaching our Ph.D. students how to ask people from different backgrounds open-ended questions about their problems and wishes.  Depending on their project, we encourage students to reach out to researchers, manufacturers, patients and end-users.

Thomas Edison talking about the invention of the light bulb, late 1920s. Newsreel clip from the Motion Picture Division of the U.S. National Archives.

Second, once they have defined a problem, Knowledge Entrepreneurs mobilize a network of people and resources needed to convert that problem into an opportunity.

To develop his electric lighting system, Edison assembled at Menlo Park a first-class team of technicians and scientists and provided them with laboratory instruments and machine tools as well as technical journals and books.

As Edison’s team zeroed in on a vegetable-based carbon filament, his network became global and he dispatched agents to collect plant samples from around the world; eventually, Edison found that Japanese bamboo made the best lamp filaments.

Drawing on the entrepreneurial effectuation principles of our Darden Business School colleague, Saras Sarasvathy, we show our students how to build a social network that includes faculty advisors, lab support personnel, equipment and space, and data.

One of the most popular lectures in our Knowledge Entrepreneurship course is titled “The Care and Feeding of Dissertation Advisors,” during which we help students to understand how to manage relationships with their mentors.  Emulating Edison, we encourage our students to recognize that science and engineering are complex enterprises and they need to collaborate not only across disciplines but across cultures, seeking opportunities to work with and learn from experts around the world.

Third, Knowledge Entrepreneurs recognize that innovation involves not just the development of a single idea in the laboratory but also the strategic positioning of ideas in the larger world. 

Tesla Elec Semi I 4w2a6750A clear example of this can be seen if we shift from Edison to his rival Nikola Tesla.  Along with perfecting his alternating current motor, Tesla vigorously promoted this invention by securing strong patents, writing papers for engineering journals, giving newspaper interviews and doing spectacular public demonstrations.

By doing so, Tesla secured a lucrative licensing deal with Westinghouse and established himself as a great electrical wizard.

Principles of Effectuation

This Video gives the summary of “Principles of Effectuation”. The original author is Prof. Saras Sarasvathy, Darden University.

While we don’t expect our graduate students to market themselves as wizards, we do work with them to create a strategy for promoting their work through a variety of channels—papers in key journals, presentations at conferences, elevator pitches, popular articles, blogs and websites—which ensure their ideas and designs are accessible to multiple audiences.

In particular, we push our graduate students to view the popularization of their research as not “dumbing it down” but rather as an opportunity to focus and clarify what are the essential elements of their work.  We remind them that every paper and every talk has to answer the question “So what?” in a way which is meaningful to the audience.

Fourth, Knowledge Entrepreneurs understand that innovation requires fostering a positive environment for learning and creativity. 

In developing the first stealth fighter jet at Lockheed in the late seventies, engineer-entrepreneur Ben Rich devoted significant energy to shaping the culture of the Skunk Works, the company’s famous R&D lab.  As Rich recalled, “We encouraged our people to work imaginatively, to improvise and try unconventional approaches to problem-solving, and then get out of their way.”

In doing so, Rich and his team “saved tremendous amounts of time and money, while operating in an atmosphere of trust and cooperation with our Government customers and between our white-collar and blue-collar employees.”

For Ph.D. students in STEM, the critical environment that they will shape will be the classroom.  In the course of their careers as researchers and teachers, they will mentor the next generation of scientists and citizens.

Teaching, however, cannot simply be the transmission of scientific facts and data; as Knowledge Entrepreneurs, our students need to master the latest pedagogical techniques—such as flipped classrooms and maker spaces—so that science is accessible and useful not only for future experts but also ordinary citizens who need to understand the underpinning of modern technology.

Along with doing breakthrough research on electricity, the British scientist Michael Faraday initiated in 1825 the Royal Institution’s Christmas lectures on science, seeking to ensure that Victorians of all social classes had the chance to learn about the wonders of the natural and technological worlds.

60 Minutes feature on author and aeronautical designer and engineer Ben Rich with Ed Bradley. Rich talks about his work in designing the F-117 Stealth Fighter and other spy plane projects while Director of Lockheed Martin’s Skunk Works. Aired on CBS in 1994.

Fifth and finally, Knowledge Entrepreneurs are ethical and compassionate, mindful of the principles of conducting responsible science as well as being aware of how their research can help people.

Complementing our course on Knowledge Entrepreneurship, our Ph.D. students can also take a course on the “Responsible Conduct of Research,” which introduces ethical theory as well as the practical research guidelines mandated by the National Institutes of Health.

Our Ph.D. students are inspired by contemporary entrepreneurs such as Marc Benioff, the CEO of Salesforce, whose motto is “The business of business is improving the state of the world.”  Benioff is leading a movement where he invites other high-tech leaders to join him in committing 1% of product, time, profits or resources to addressing major world problems.

UVA maxresdefault (2)But compassion isn’t just about philanthropy; we invite our students to consider how compassion is integral to innovation.

One story we tell them concerns a Japanese basket-maker and a fisherman.  One day, a fisherman asked the basket-maker to fashion a basket for him so he could carry fish home from his boat.  While the basket-maker pointed out the fisherman’s design would not work very well, the fisherman insisted that he weave it for him.  A week later, the fisherman returned and found that the basket-maker had made him two baskets.  “One basket is the one you asked for,” the basket-maker explained, “and the other is the one that you will find works better.”  The basket-maker only charged the fisherman for one basket and the fisherman went away happy.

The best entrepreneurs know that innovation should be about delighting people and enriching their lives.

As STEM graduate students acquire these entrepreneurial habits, they will possess the skills needed to set themselves on career paths which will allow them to thrive in a variety of settings—in academia, industry or government.

Indeed, an entrepreneurial mindset will help them become leaders in whatever setting our graduates find themselves.  But most importantly, they will have the tools they need to apply their scientific training to the major challenges facing the world.

As Louis Pasteur advised young scientists, “Live in the serene peace of laboratories and libraries.  Say to yourselves first: ‘What have I done for my instruction?’ and, as you gradually advance, ‘What have I done for my country?’”  The Knowledge Entrepreneur understands how to move ideas from the serene laboratory to the bustling, needy world.

Bernie Carlson is professor and chair of the Engineering & Society Department at the University of Virginia. His most recent book is Tesla: Inventor of the Electrical Age (Princeton, 2013).

For More information about Genesis Nanotechnology Go To/ Follow Our Blog:

GNT New Thumbnail LARGE 2016Great Things from Small Things”

Watch a YouTube Video on Our Latest Project: