Rivian Preparing to Build EVs for Ford, Amazon, and Itself – New Partnerships Emerging


Tesla and Rivian are both modern automakers dedicated to producing only electric vehicles. Both bought mothballed conventional assembly plants to build their new vehicles. Both have reconfigured those facilities as they grapple with how to disrupt manufacturing as their vehicles have aimed to disrupt the auto industry.

One difference: While Tesla CEO Elon Musk spent nights in a sleeping bag at the end of the assembly line at the plant in Fremont, California, Rivian CEO RJ Scaringe has the good sense to sleep in his own bed while overseeing the developing manufacturing process at his company’s plant in Normal, Illinois.

Rivian bought the Normal plant from Mitsubishi in 2017 for $16 million and is preparing it to make an interesting assortment of vehicles. So far, all Rivian prototypes have been built at the Plymouth Engineering and Design Center, but pilot-build vehicles will go down the plant line in the third quarter, with full production of the Rivan R1T five-passenger electric pickup starting in December.

About three months later, the Rivian R1S electric SUV, which has more content and a third row of seats, will roll off the same line. Scaringe says he wishes he could pull production forward but is mindful of the complexity. Also to be added to the factory’s mix: an electric luxury SUV for Ford and a fleet of large electric commercial delivery vans for Amazon, to be branded Prime.

The factory will have one line dedicated to building a skateboard chassis that all three brands will share—skateboard EV chassis bundle the battery pack(s), suspension, electric motors, and other hardware in a vertically short package so that various bodies can be attached. There will be another line tasked with assembling the three different battery packs Rivian will offer, and it will feed those directly to the skateboard-chassis line.

The Ford And Amazon EVs

Ford is designing its own so-called “top hat”—an EV-specific term for the vehicle bodies that use the skateboard architecture—for its high-end electric SUV, but since it will ride on the common architecture, features such as the company’s unique infotainment system must be designed to run on Rivian’s electrical systems. Scaringe would not say when Ford production begins, but design and engineering are locked in and ready to roll. “It’s a very different product from our own SUV, but it’s still in the SUV space,” Scaringe says. While Rivian is going after the adventure market, Ford will pursue luxury buyers, which leads us to deduce it will be sold as a Lincoln. Scaringe would not confirm this supposition, as it’s Ford’s announcement to make, he said. He did say the Ford SUV is “an impressive product, to say the least.”

The Amazon Prime vans will have access to the same three battery packs, and use the same electrical architecture and some drivetrains, as well as share some engine control units. To finish vehicles so wildly different in mission, there will be two separate final trim-assembly lines at the Normal plant. One will be a high-content line handling the Rivian and Ford products, while a second, low-content line will finish the Prime vans, which are essentially big, empty boxes to be filled with parcels.

Musk has said he wants to revolutionize the way vehicles are manufactured. He raised eyebrows with experiments such as his self-admittedly ill-thought robot he called the “flufferbot,” which proved to be more of a hindrance than a leap of efficiency in its attempts to place fiberglass mats atop battery packs. His firm also started building the Model 3 in a tent in 2018 to increase production. But with those experiments behind Tesla, production has normalized, and the automaker delivered a record 112,000 vehicles in the fourth quarter of 2019.

Rivian’s Plant Plans

Scaringe is not necessarily trying to reinvent car building, but he says he has spent a lot of time thinking about how assembly should be done to meet the unique needs of the varied vehicles his company will build. Out of necessity, he’s mapping out the way the former Mitsubishi small-car plant should be laid out to handle its new disparate needs.

The original Mitsubishi plant was 2.6 million square feet, and Rivian has added another 400,000 square feet. Some aspects of the plant are still usable, including some stamping presses, but they needed modifications to handle the steel and aluminum used in the bodies of the delivery vans and the mostly aluminum bodies of the R1T and R1S—the latter need to be picked up via suction cups, not magnets, for example. Presumably, the Ford SUV will feature an aluminum body, as well, given that the company has embraced that strategy with its pickups and large SUVs.

The partnership with Ford has been helpful in this regard, Scaringe says. Ford spent billions revamping its plants to switch the current generation of F-Series pickups and large SUVs to aluminum construction, and the Dearborn-based company now makes about 1 million aluminum-intensive vehicles a year. Ford employees have been generous with their time and expertise in helping Rivian.

The existing paint shop at the Rivian plant had to be scrapped; designed for littler cars, it was many sizes too small. Scaringe could probably sell tickets to watch the new e-coating process that dips vehicle bodies to prevent corrosion.

Like BMW does at its Spartanburg, South Carolina, plant, Scaringe wants vehicles to enter the tank and flip, end over end, four times, to prevent air bubbles that could lead to rust—picture that body ballet with a 30-foot-long delivery van. The plant ceilings aren’t high enough for this, though, so to solve the problem Rivian lowered the floor, digging an eight-foot pit with giant moorings to house dip tanks that stand about 33 feet tall. Scaringe thinks this makes it the world’s largest dip-process setup.

Rivian was founded in 2009 and has since grown to more than 1,800 employees. It could reach 2,500 or more by year’s end as hiring ramps up for the plant while the development team has continued to expand. The Plymouth headquarters is bursting at the seams. The cafeteria area is filled with desks until more office space on a mezzanine level is ready to house more workspace.

At the Normal plant, assembly will be on a single shift initially, but some areas, such as battery lines, will run a second shift.

The two Rivian models have 90 percent shared content—they are identical from the B-pillar forward—and were designed to have an identical build process for ease of assembly.

Normal has the capacity to make 264,000 vehicles a year. The Amazon contract is for 100,000, which Amazon CEO Jeff Bezos said will be filled by 2024. The rest of the capacity is for Rivian and Ford vehicles. On the Rivian side, Scaringe thinks there will be greater demand for the pickup initially, but eventually, orders will be equal for the truck and SUV. And the Rivian lineup will expand.

The Future of Transportation – Keynote Address from 2020 N Carolina DOT Summit – Tony Seba YouTube Video


Tony Seba is a world-renowned author, thought leader, speaker, educator entrepreneur.

Seba is also a co-founder of RethinkX, a think tank that focuses on technology disruption and its implications for society and co-author of “Rethinking Transportation 2020-2030“.

Works written: 

Clean Disruption of Energy and Transportation:

– How Silicon Valley Will Make Oil, Nuclear, Natural Gas, Coal, Electric Utilities and Conventional Cars Obsolete by 2030”, “

Solar Trillions” and “Winners Take All”.  

Seba is also a co-founder of RethinkX, a think tank that focuses on technology disruption and its implications for society and co-author of “Rethinking Transportation 2020-2030“.

Watch the Latest Video Below

Economical Water-Based Batteries to Store Solar and Wind Energy – Are They the Answer to Our Renewable Energy Future?


Introduction

In this age endless scientific advancements and technological developments, the two rapidly growing forms of energy generation in the world are wind and solar, and both have the same fundamental constraint.

These forms of energy generation are subject to weather conditions, and there are times when they don’t generate any electricity at all. Energy companies who are dependent these generation methods require some type of backup while their solar farms and wind turbines are logged off.

Since there are not many options for these energy companies, most of them turn to fossil fuels like coal or natural gas which notably undermines the advantages of green energy to a great extent.

Nonetheless, an alternate solution which is being trialled in some parts of the world is battery storage so that surplus power produced from renewable energy can be saved for the future. But batteries have their own set of intricacies and problems. Majority of the utility-scale battery systems are costly to build, and they can only last for a specified period of time.

Commonly, the lifespan of rechargeable batteries is around a decade before they can no longer hold a charge and need replacement.

Nevertheless, a group of researchers at Stanford University have come up with a new type of water-based battery. Composed of water and salt, they hope that the battery could be utilised to store energy produced from wind and solar farms, boosting the effectiveness of renewable energy sources.

To put it simply, the battery could diminish the need to burn carbon-emitting fossil fuels and provide a cost-effective measure to store wind or solar energy. Last but not least, this new type of battery developed by researchers at Stanford has the potential to solve global problems with an inexpensive, durable battery perfect for utility-scale energy storage.

All You Need To Know About The Research Project 

Yi Cui, the senior author of the research project, and a professor of materials science at the Stanford elaborated upon their project. He explained that they had dissolved a special salt in the water, and put an electrode.

Dr. Yi Cui

They developed a changeable chemical reaction that could store electrons in the form of hydrogen gas. Cui also stated that they-they had recognised catalysts that could bring them below the $100 per kilowatt-hour, which was the target of the Department of Energy (DOE).

In the meantime, Steven Chu, erstwhile DOE secretary and Nobel laureate and a professor at Stanford who was not a part of the research team recapitulated that the prototype demonstrated that science and engineering could attain newer ways of inexpensive, highly durable, and utility-scale batteries.

The prototype of the device developed connected a power source to the battery to mimic power that could be fed by energies, namely solar or wind.

The electricity was pumped through the solution, and it triggered a chemical reaction resulting in the formation of manganese dioxide and pure hydrogen gas. In simple words, the Electrons and the manganese sulphate dissolved underwent reaction and the particles of manganese dioxide that were left clinging to the electrodes.

The overabundant electrons commenced bubbling. The hydrogen gas could then be stored and later burned as fuel whenever there was a requirement for excess electricity. Therefore, the battery is highly efficient and durable. Once it is drained, it can be easily recharged with more electricity and the process continues. 

At present, the prototype is around three inches tall, and it has the potential to generate 20 milliwatt-hours of electricity. Moreover, it is reported that this could be scaled to an industrial-grade system that had the capacity to charge and recharge up to 10,000 times and develop a grid-scale battery which had a remarkable lifespan.

In addition to that, the device is also being viewed as a form of backup to deal with demand escalations.Despite all these endeavours, there is still a long way to go before the availability, and global utilisation of this type of battery becomes widespread.

The researchers have only examined a small prototype in the lab, and there is no assurance that the design will perform excellently in the field. But if the battery is as inexpensive and long-lasting as it seems to be, this type of storage will become prevalent in all parts of the world within a very short span of time. 

Final Words 

The demand for economical water-based batteries to store solar and wind energy is quickly increasing. It is so because energy generation has become necessary and it is the need of the hour.

Furthermore, inexpensive and durable batteries could increase the number of utilities building solar and wind plants. Besides that, a cost-effective battery would get rid of the biggest downside of renewable energy. On this account, water-based batteries will be nothing less than a miraculous boon to the entire world. 

Northwestern University scientists Successfully Combine a Nanomaterial effective at destroying Toxic Nerve Agents with Textile Fibers – Applications for Protective Suits and Masks


Abstract:

•Smart chemistry quickly makes toxic nerve gases nontoxic
•Material’s features bring it closer to practical use in the field 
•New approach is scalable and economical
•Seeks to replace current technology of activated carbon

This new composite material one day could be integrated into protective suits and face masks for use by people facing hazardous conditions, such as chemical warfare.

The material, a zirconium-based metal-organic framework (MOF), degrades in minutes some of the most toxic chemical agents known to mankind: VX and soman (GD), a more toxic relative of sarin.

“With the correct chemistry, we can render toxic gases nontoxic,” said Omar K. Farha, associate professor of chemistry in the Weinberg College of Arts and Sciences, who led the research. “The action takes place at the nanolevel.”

The authors write that their work represents, to the best of their knowledge, the first example of the use of MOF composites for the efficient catalytic hydrolysis of nerve agent simulants without using liquid water and toxic volatile bases — a major advantage.

The new composite material integrates MOFs and non-volatile polymeric bases onto textile fibers.

The researchers found the MOF-coated textiles efficiently detoxify nerve agents under battlefield-relevant conditions using the gaseous water in the air. They also found the material stands up over a long period of time to degrading conditions, such as sweat, atmospheric carbon dioxide and pollutants.

These features bring the promising material closer to practical use in the field.

“MOFs can capture, store and destroy a lot of the nasty material, making them very attractive for defense-related applications,” said Farha, a member of the International Institute for Nanotechnology. 

What Are MOF’s?

MOFs are well-ordered, lattice-like crystals. The nodes of the lattices are metals, and organic molecules connect the nodes. Within their very roomy pores, MOFs can effectively capture gases and vapors, such as nerve agents. 

It is these roomy pores that also can pull enough water from the humidity in the air to drive the chemical reaction in which water is used to break down the bonds of the nerve agent.

The approach developed at Northwestern seeks to replace the technology currently in use: activated carbon and metal-oxide blends, which are slower to react to nerve agents. Because the MOFs are built from simple components, the new approach is scalable and economical.

The research was supported by the Defense Threat Reduction Agency (grants HDTRA1-18-1-0003 and CB3934) and the National Science Foundation Graduate Research Fellowship (grant DGE-1842165). 

The title of the paper is “Integration of Metal–Organic Frameworks on Protective Layers for Destruction of Nerve Agents under Relevant Conditions.” The first authors are Zhijie Chen and Kaikai Ma, postdoctoral fellows in Farha’s research group.

Contacts:
Source contact: Omar Farha at o-farha@northwestern.edu

Copyright © Northwestern University

MIT – A new approach to making airplane parts, minus the massive infrastructure


MIT-Nano-plugs-PRESS-01

Carbon nanotube film produces aerospace-grade composites with no need for huge ovens or autoclaves.

A modern airplane’s fuselage is made from multiple sheets of different composite materials, like so many layers in a phyllo-dough pastry. Once these layers are stacked and molded into the shape of a fuselage, the structures are wheeled into warehouse-sized ovens and autoclaves, where the layers fuse together to form a resilient, aerodynamic shell.

Now MIT engineers have developed a method to produce aerospace-grade composites without the enormous ovens and pressure vessels. The technique may help to speed up the manufacturing of airplanes and other large, high-performance composite structures, such as blades for wind turbines.

The researchers detail their new method in a paper published today in the journal Advanced Materials Interfaces.

“If you’re making a primary structure like a fuselage or wing, you need to build a pressure vessel, or autoclave, the size of a two- or three-story building, which itself requires time and money to pressurize,” says Brian Wardle, professor of aeronautics and astronautics at MIT. “These things are massive pieces of infrastructure. Now we can make primary structure materials without autoclave pressure, so we can get rid of all that infrastructure.”

Wardle’s co-authors on the paper are lead author and MIT postdoc Jeonyoon Lee, and Seth Kessler of Metis Design Corporation, an aerospace structural health monitoring company based in Boston.

Out of the oven, into a blanket

In 2015, Lee led the team, along with another member of Wardle’s lab, in creating a method to make aerospace-grade composites without requiring an oven to fuse the materials together. Instead of placing layers of material inside an oven to cure, the researchers essentially wrapped them in an ultrathin film of carbon nanotubes (CNTs). When they applied an electric current to the film, the CNTs, like a nanoscale electric blanket, quickly generated heat, causing the materials within to cure and fuse together.

With this out-of-oven, or OoO, technique, the team was able to produce composites as strong as the materials made in conventional airplane manufacturing ovens, using only 1 percent of the energy.

The researchers next looked for ways to make high-performance composites without the use of large, high-pressure autoclaves — building-sized vessels that generate high enough pressures to press materials together, squeezing out any voids, or air pockets, at their interface.

“There’s microscopic surface roughness on each ply of a material, and when you put two plys together, air gets trapped between the rough areas, which is the primary source of voids and weakness in a composite,” Wardle says. “An autoclave can push those voids to the edges and get rid of them.”

Researchers including Wardle’s group have explored “out-of-autoclave,” or OoA, techniques to manufacture composites without using the huge machines. But most of these techniques have produced composites where nearly 1 percent of the material contains voids, which can compromise a material’s strength and lifetime. In comparison, aerospace-grade composites made in autoclaves are of such high quality that any voids they contain are neglible and not easily measured.

“The problem with these OoA approaches is also that the materials have been specially formulated, and none are qualified for primary structures such as wings and fuselages,” Wardle says. “They’re making some inroads in secondary structures, such as flaps and doors, but they still get voids.”

Straw pressure

Part of Wardle’s work focuses on developing nanoporous networks — ultrathin films made from aligned, microscopic material such as carbon nanotubes, that can be engineered with exceptional properties, including color, strength, and electrical capacity. The researchers wondered whether these nanoporous films could be used in place of giant autoclaves to squeeze out voids between two material layers, as unlikely as that may seem.

A thin film of carbon nanotubes is somewhat like a dense forest of trees, and the spaces between the trees can function like thin nanoscale tubes, or capillaries. A capillary such as a straw can generate pressure based on its geometry and its surface energy, or the material’s ability to attract liquids or other materials.

The researchers proposed that if a thin film of carbon nanotubes were sandwiched between two materials, then, as the materials were heated and softened, the capillaries between the carbon nanotubes should have a surface energy and geometry such that they would draw the materials in toward each other, rather than leaving a void between them. Lee calculated that the capillary pressure should be larger than the pressure applied by the autoclaves.

The researchers tested their idea in the lab by growing films of vertically aligned carbon nanotubes using a technique they previously developed, then laying the films between layers of materials that are typically used in the autoclave-based manufacturing of primary aircraft structures. They wrapped the layers in a second film of carbon nanotubes, which they applied an electric current to to heat it up. They observed that as the materials heated and softened in response, they were pulled into the capillaries of the intermediate CNT film.

The resulting composite lacked voids, similar to aerospace-grade composites that are produced in an autoclave. The researchers subjected the composites to strength tests, attempting to push the layers apart, the idea being that voids, if present, would allow the layers to separate more easily.

“In these tests, we found that our out-of-autoclave composite was just as strong as the gold-standard autoclave process composite used for primary aerospace structures,” Wardle says.

The team will next look for ways to scale up the pressure-generating CNT film. In their experiments, they worked with samples measuring several centimeters wide — large enough to demonstrate that nanoporous networks can pressurize materials and prevent voids from forming. To make this process viable for manufacturing entire wings and fuselages, researchers will have to find ways to manufacture CNT and other nanoporous films at a much larger scale.

“There are ways to make really large blankets of this stuff, and there’s continuous production of sheets, yarns, and rolls of material that can be incorporated in the process,” Wardle says.

He plans also to explore different formulations of nanoporous films, engineering capillaries of varying surface energies and geometries, to be able to pressurize and bond other high-performance materials.

“Now we have this new material solution that can provide on-demand pressure where you need it,” Wardle says. “Beyond airplanes, most of the composite production in the world is composite pipes, for water, gas, oil, all the things that go in and out of our lives. This could make making all those things, without the oven and autoclave infrastructure.”

This research was supported, in part, by Airbus, ANSYS, Embraer, Lockheed Martin, Saab AB, Saertex, and Teijin Carbon America through MIT’s Nano-Engineered Composite aerospace Structures (NECST) Consortium.

Making computers and smartphones more energy efficient with novel tiny structures


nano makingcomput

With enhanced properties such as greater strength, lighter weight, increased electrical conductivity and chemical reactivity, nanomaterials (NMs) are widely used in areas like ICT, energy and medicine. For example, nanotubes, nanorods and nanowires with different size, structure and chemical composition have been successfully synthesised for various applications in mechanical, electromechanical, electric and optoelectronic devices.

Defined as materials with at least one external dimension sized between 1 nm and 100 nm, or with  measuring 100 nm or less, NMs play a crucial role in the next generation of mobile phones, computer chips, batteries, autonomous devices and robotics. Therefore, it’s important to know which set of structural and  for such materials gives the best performance for a particular application. Scientists and engineers are increasingly focusing on developing NMs that are highly energy efficient. But, the tinier NMs become, the harder it gets for them to manage the heat generated during the processing of information.

The EU-funded ENGIMA project has been addressing these issues. It was set up to explore “the structure-property relationships in the elaborated nanostructured multifunctional materials,” as noted on the project website. “It [ENGIMA] focuses on how to redistribute electricity efficiently at miniscule scales, harnessing nanotechnology breakthroughs that are opening up new possibilities and applications thought impossible until just a few years ago,” according to an article on the European Commission website.

As stated in the article, researchers involved with the project “developed a permanent static ‘negative ,’ a device thought impossible until about a decade ago. Previously proposed designs for negative capacitors worked on a temporary, transient basis but the ENGIMA-developed negative capacitor is the first to operate as a steady-state reversible device.” Capacitance refers to a measure of the amount of electric potential energy stored or separated for a given electric potential.

The same article adds: “The proposed approach harnesses properties of ferroelectric materials, which possess spontaneous polarization that can be reversed by an external electric field. Increasing the charge on the positive capacitor increases the voltage. The reverse occurs with the negative capacitor—its voltage drops as the charge increases.” The combination of the two capacitors “enables electricity to be distributed to regions of the circuit requiring higher voltage while the entire circuit operates at a lower voltage.” This is a crucial development because it helps tackle overheating problems affecting the performance of conventional computing circuits. “Building on this research, we are developing a practical platform for implementing ultra-low-power devices for information processing,” says ENGIMA lead researcher Igor Lukyanchuk.

Increasing the performance of processors means smartphones and various other electronic systems will become more energy efficient. Scheduled to end in late 2021, the ENGIMA (Engineering of Nanostructures with Giant Magneto-Piezoelectric and Multicaloric Functionalities) project will also help scientists design new nanostructures for future photovoltaic materials. “The results emerging from ENGIMA promise to open significant new opportunities and possibilities for high-tech industries, particularly in addressing current energy consumption and harvesting issues, with applications across many fields,” the European Commission article says.


Explore further

Novel nanostructures could make smartphones more efficient


More information: ENGIMA project website: www.engima.ferroix.net/
Provided by CORDIS

Nano-objects of desire: Assembling ordered nanostructures in 3-D


nanoobjectso 3D
A schematic of the programmable assembly of 3-D ordered nanostructures from material voxels that can carry inorganic or organic nanoparticles with different functions, such as light emitters and absorbers, proteins, and enzymes with chemical activity. Material voxels are fabricated from DNA and nano-objects of different kinds, and their assembly is guided by the voxel design and DNA-programmable interactions. Credit: Brookhaven National Laboratory

Scientists have developed a platform for assembling nanosized material components, or “nano-objects,” of very different types—inorganic or organic—into desired 3-D structures. Though self-assembly (SA) has successfully been used to organize nanomaterials of several kinds, the process has been extremely system-specific, generating different structures based on the intrinsic properties of the materials. As reported in a paper published today in Nature Materials, their new DNA-programmable nanofabrication platform can be applied to organize a variety of 3-D materials in the same prescribed ways at the nanoscale (billionths of a meter), where unique optical, chemical, and other properties emerge.

“One of the major reasons why SA is not a technique of choice for practical applications is that the same SA process cannot be applied across a broad range of materials to create identical 3-D ordered arrays from different nanocomponents,” explained corresponding author Oleg Gang, leader of the Soft and Bio Nanomaterials Group at the Center for Functional Nanomaterials (CFN)—a U.S. Department of Energy (DOE) Office of Science User Facility at Brookhaven National Laboratory—and a professor of Chemical Engineering and of Applied Physics and Materials Science at Columbia Engineering. “Here, we decoupled the SA process from material properties by designing rigid polyhedral DNA frames that can encapsulate various inorganic or organic nano-objects, including metals, semiconductors, and even proteins and enzymes.”

The scientists engineered synthetic DNA frames in the shape of a cube, octahedron, and tetrahedron. Inside the frames are DNA “arms” that only nano-objects with the complementary DNA sequence can bind to. These material voxels—the integration of the DNA frame and nano-object—are the building blocks from which macro-scale 3-D structures can be made. The frames connect to each other regardless of what kind of nano-object is inside (or not) according to the complementary sequences they are encoded with at their vertices. Depending on their shape, frames have a different number of vertices and thus form entirely different structures. Any nano-objects hosted inside the frames take on that specific frame structure.

Nano-objects of desire: Assembling ordered nanostructures in 3D

Schematic of the platform for assembling 3-D lattices from inorganic and organic nano-objects with DNA frames shaped as a tetrahedron (top row), octahedron (middle row), and cube (bottom row). The frame valence is determined by the vertices and corresponds to the number of connections (bonds) and how these connections are organized relative to one another. For example, the tetrahedral frame has a valence of four. The resulting 3-D lattices are based on the shape of the DNA frame–tetrahedral frames assemble into diamond structures, octahedral into simple cubic, and cubic into body-centered cubic–regardless of which nano-object (if any) is inside the frame. Credit: Nature Materials

To demonstrate their assembly approach, the scientists selected metallic (gold) and semiconducting (cadmium selenide) nanoparticles and a bacterial protein (streptavidin) as the inorganic and organic nano-objects to be placed inside the DNA frames. First, they confirmed the integrity of the DNA frames and formation of material voxels by imaging with electron microscopes at the CFN Electron Microscopy Facility and the Van Andel Institute, which has a suite of instruments that operate at cryogenic temperatures for biological samples. They then probed the 3-D lattice structures at the Coherent Hard X-ray Scattering and Complex Materials Scattering beamlines of the National Synchrotron Light Source II (NSLS-II)—another DOE Office of Science User Facility at Brookhaven Lab. Columbia Engineering Bykhovsky Professor of Chemical Engineering Sanat Kumar and his group performed computational modeling revealing that the experimentally observed lattice structures (based on the X-ray scattering patterns) were the most thermodynamically stable ones that the material voxels could form.

“These material voxels allow us to begin to use ideas derived from atoms (and molecules) and the crystals that they form, and port this vast knowledge and database to systems of interest at the nanoscale,” explained Kumar.

Gang’s students at Columbia then demonstrated how the assembly platform could be used to drive the organization of two different kinds of materials with chemical and optical functions. In one case, they co-assembled two enzymes, creating 3-D arrays with a high packing density. Though the enzymes remained chemically unchanged, they showed about a fourfold increase in enzymatic activity. These “nanoreactors” could be used to manipulate cascade reactions and enable the fabrication of chemically active materials. For the optical material demonstration, they mixed two different colors of quantum dots—tiny nanocrystals that are being used to make television displays with high color saturation and brightness. Images captured with a fluorescence microscope showed that the formed lattice maintained color purity below the diffraction limit (wavelength) of light; this property could allow for significant resolution improvement in various display and optical communication technologies.

“We need to rethink how materials can be formed and how they function,” said Gang. “Material redesign may not be necessary; simply packaging existing materials in new ways could enhance their properties. Potentially, our platform could be an enabling technology ‘beyond 3-D printing manufacturing’ to control materials at much smaller scales and with greater material variety and designed compositions. Using the same approach to form 3-D lattices from desired nano-objects of different material classes, integrating those that would otherwise be considered incompatible, could revolutionize nanomanufacturing.”


Explore further

Nanoscale sculpturing leads to unusual packing of nanocubes


More information: Ordered three-dimensional nanomaterials using DNA-prescribed and valence-controlled material voxels, Nature Materials (2020). DOI: 10.1038/s41563-019-0550-x , https://nature.com/articles/s41563-019-0550-x

Journal information: Nature Materials

Copper-based Nanomaterials can KILL Cancer Cells in Mice


Cancer cell during cell division. Credit: National Institutes of Health

An interdisciplinary team of scientists from KU Leuven, the University of Bremen, the Leibniz Institute of Materials Engineering, and the University of Ioannina has succeeded in killing tumour cells in mice using nano-sized copper compounds together with immunotherapy. After the therapy, the cancer did not return.

Recent advances in  therapy use one’s own immunity to fight the cancer. However, in some cases, immunotherapy has proven unsuccessful.

The team of biomedical researchers, physicists, and chemical engineers found that tumours are sensitive to copper oxide nanoparticles—a compound composed of copper and oxygen. Once inside a living organism, these nanoparticles dissolve and become toxic.

By creating the nanoparticles using iron oxide, the researchers were able to control this process to eliminate , while healthy cells were not affected.

“Any material that you create at a nanoscale has slightly different characteristics than its normal-sized counterpart,” explain Professor Stefaan Soenen and Dr. Bella B. Manshian from the Department of Imaging and Pathology, who worked together on the study.

“If we would ingest  in large quantities, they can be dangerous, but at a nanoscale and at controlled, safe, concentrations, they can actually be beneficial.”

As the researchers expected, the cancer returned after treating with only the nanoparticles. Therefore, they combined the nanoparticles with immunotherapy. “We noticed that the copper compounds not only could kill the tumour cells directly, they also could assist those cells in the  that fight foreign substances, like tumours,” says Dr. Manshian.

The combination of the nanoparticles and immunotherapy made the tumours disappear entirely and, as a result, works as a vaccine for lung and colon cancer—the two types that were investigated in the study. To confirm their finding, the researchers injected tumour cells back into the mice. These cells were immediately eliminated by the immune system, which was on the lookout for any new, similar, cells invading the body.

The authors state that the novel technique can be used for about sixty percent of all cancers, given that the cancer cells stem from a mutation in the p53 gene. Examples include lung, breast, ovarian, and colon cancer.

A  is that the tumours disappeared without the use of chemotherapy, which typically comes with major side-effects. Chemotherapeutic drugs not only attack cancer cells, they often damage healthy cells along the way.

For example, some of these drugs wipe out white blood cells, abolishing the immune system.

“As far as I’m aware, this is the first time that metal oxides are used to efficiently fight cancer  with long-lasting immune effects in live models,” Professor Soenen says. “As a next step, we want to create other metal , and identify which particles affect which types of cancer. This should result in a comprehensive database.”

The team also plans to test  derived from cancer patient tissue. If the results remain the same, Professor Soenen plans to set up a clinical trial. For that to happen, however, there are still some hurdles along the way.

He explains: “Nanomedicine is on the rise in the U.S. and Asia, but Europe is lagging behind. It’s a challenge to advance in this field, because doctors and engineers often speak a different language. We need more interdisciplinary collaboration, so that we can understand each other better and build upon each other’s knowledge.”

More information: 
Hendrik Naatz et al, Model-Based Nanoengineered Pharmacokinetics of Iron-Doped Copper Oxide for Nanomedical Applications, Angewandte Chemie International Edition (2019).  DOI: 10.1002/anie.201912312

Journal information: Angewandte Chemie International Edition

Provided by KU Leuven

Study finds Salt Nanoparticles (Sodium Chloride or SCNP’s) are Toxic to Cancer Cells – University of Georgia


A new study at the University of Georgia has found a way to attack cancer cells that is potentially less harmful to the patient.

Sodium chloride nanoparticles—more commonly known as salt—are toxic to cancer cells and offer the potential for therapies that have fewer negative side effects than current treatments.

Led by Jin Xie, associate professor of chemistry, the study found that SCNPs can be used as a Trojan horse to deliver ions into cells and disrupt their internal environment, leading to cell death. SCNPs become salt when they degrade, so they’re not harmful to the body.

“This technology is well suited for localized destruction of cancer cells,” said Xie, a faculty member in the Franklin College of Arts and Sciences. “We expect it to find wide applications in treatment of bladder, prostate, liver, and head and neck cancer.”

Nanoparticles are the key to delivering SCNPs into cells, according to Xie and the team of researchers. Cell membranes maintain a gradient that keeps relatively low sodium concentrations inside cells and relatively high sodium concentrations outside cells.

The plasma membrane prevents sodium from entering a cell, but SCNPs are able to pass through because the cell doesn’t recognize them as sodium ions.

Once inside a cell, SCNPs dissolve into millions of sodium and chloride ions that are trapped inside by the gradient and overwhelm protective mechanisms, inducing rupture of the plasma membrane and cell death. When the plasma membrane ruptures, the molecules that leak out signal the immune system that there’s tissue damage, inducing an inflammatory response that helps the body fight pathogens.

“This mechanism is actually more toxic to cancer cells than normal cells, because cancer cells have relatively high sodium concentrations to start with,” Xie said.

Using a mouse model, Xie and the team tested SCNPs as a potential cancer therapeutic, injecting SCNPs into tumors. They found that SCNP treatment suppressed tumor growth by 66 percent compared to the control group, with no drop in body weight and no sign of toxicity to major organs.

They also performed a vaccination study, inoculating mice with cancer cells that had been killed via SCNPs or freeze thaw. These mice showed much greater resistance to a subsequent live cancer cell challenge, with all animals remaining tumor free for more than two weeks.

The researchers also explored anti-cancer immunity in a tumor model. After injecting primary tumors with SCNPs and leaving secondary tumors untreated, they found that the secondary tumors grew at a much lower speed than the control, showing a tumor inhibition rate of 53 percent.

Collectively, the results suggest that SCNPs killed cancer cells and converted the dying cancer cells to an in situ vaccine.

SCNPs are unique in the world of inorganic particles because they are made of a benign material, and their toxicity is based on the nanoparticle form, according to Xie.

“With a relatively short half-life in aqueous solutions, SCNPs are best suited for localized rather than systemic therapy. The treatment will cause immediate and immunogenic cancer cell death,” he said. “After the treatment, the nanoparticles are reduced to salts, which are merged with the body’s fluid system and cause no systematic or accumulative toxicity. No sign of systematic toxicity was observed with SCNPs injected at high doses.”

The study was published in Advanced Materials.

A Quantum Breakthrough brings a technique from Astronomy to the Nano-scale – UC San Diego and Columbia University


Researchers at Columbia University and University of California, San Diego, have introduced a novel “multi-messenger” approach to quantum physics that signifies a technological leap in how scientists can explore quantum materials.

The findings appear in a recent article published in Nature Materials, led by A. S. McLeod, postdoctoral researcher, Columbia Nano Initiative, with co-authors Dmitri Basov and A. J. Millis at Columbia and R.A. Averitt at UC San Diego.

“We have brought a technique from the inter-galactic scale down to the realm of the ultra-small,” said Basov, Higgins Professor of Physics and Director of the Energy Frontier Research Center at Columbia. Equipped with multi-modal nanoscience tools we can now routinely go places no one thought would be possible as recently as five years ago.”

The work was inspired by “multi-messenger” astrophysics, which emerged during the last decade as a revolutionary technique for the study of distant phenomena like black hole mergers. Simultaneous measurements from instruments, including infrared, optical, X-ray and gravitational-wave telescopes can, taken together, deliver a physical picture greater than the sum of their individual parts.

The search is on for new materials that can supplement the current reliance on electronic semiconductors. Control over material properties using light can offer improved functionality, speed, flexibility and energy efficiency for next-generation computing platforms.

Experimental papers on quantum materials have typically reported results obtained by using only one type of spectroscopy. The researchers have shown the power of using a combination of measurement techniques to simultaneously examine electrical and optical properties.

The researchers performed their experiment by focusing laser light onto the sharp tip of a needle probe coated with magnetic material. When thin films of metal oxide are subject to a unique strain, ultra-fast light pulses can trigger the material to switch into an unexplored phase of nanometer-scale domains, and the change is reversible.

By scanning the probe over the surface of their thin film sample, the researchers were able to trigger the change locally and simultaneously manipulate and record the electrical, magnetic and optical properties of these light-triggered domains with nanometer-scale precision.

The study reveals how unanticipated properties can emerge in long-studied quantum materials at ultra-small scales when scientists tune them by strain.

“It is relatively common to study these nano-phase materials with scanning probes. But this is the first time an optical nano-probe has been combined with simultaneous magnetic nano-imaging, and all at the very low temperatures where quantum materials show their merits,” McLeod said. “Now, investigation of quantum materials by multi-modal nanoscience offers a means to close the loop on programs to engineer them.”

###

The study, “Multi-messenger nanoprobes of hidden magnetism in a strained manganite,” was developed with support from Programmable Quantum Materials, an Energy Frontier Research Center funded by the United States Department of Energy (DOE), Office of Science and Basic Energy Sciences.