Rice University: Nano-coating makes coaxial cables lighter: Aerospace


Rice University scientists replace metal with carbon nanotubes for aerospace use 

Rice Coaxial 0201_COAXIAL-3-smallHOUSTON – (Jan. 27, 2016) – Common coaxial cables could be made 50 percent lighter with a new nanotube-based outer conductor developed by Rice University scientists.

The Rice lab of Professor Matteo Pasquali has developed a coating that could replace the tin-coated copper braid that transmits the signal and shields the cable from electromagnetic interference. The metal braid is the heaviest component in modern coaxial data cables.

The research appears this month in the American Chemical Society journal ACS Applied Materials and Interfaces.

Replacing the outer conductor with Rice’s flexible, high-performance coating would benefit airplanes and spacecraft, in which the weight and strength of data-carrying cables are significant factors in performance.

Rice research scientist Francesca Mirri, lead author of the paper, made three versions of the new cable by varying the carbon-nanotube thickness of the coating. She found that the thickest, about 90 microns – approximately the width of the average human hair – met military-grade standards for shielding and was also the most robust; it handled 10,000 bending cycles with no detrimental effect on the cable performance.

“Current coaxial cables have to use a thick metal braid to meet the mechanical requirements and appropriate conductance,” Mirri said. “Our cable meets military standards, but we’re able to supply the strength and flexibility without the bulk.”

Coaxial cables consist of four elements: a conductive copper core, an electrically insulating polymer sheath, an outer conductor and a polymer jacket. The Rice lab replaced only the outer conductor by coating sheathed cores with a solution of carbon nanotubes in chlorosulfonic acid. Compared with earlier attempts to use carbon nanotubes in cables, this method yields a more uniform conductor and has higher throughput, Pasquali said. “This is one of the few cases where you can have your cake and eat it, too,” he said. “We obtained better processing and improved performance.”

Replacing the braided metal conductor with the nanotube coating eliminated 97 percent of the component’s mass, Mirri said.

She said the lab is working on a method to scale up production. The lab is drawing on its experience in producing high-performance nanotube-based fibers.

“It’s a very similar process,” Mirri said. “We just need to substitute the exit of the fiber extrusion setup with a wire-coating die. These are high-throughput processes currently used in the polymer industry to make a lot of commercial products. The Air Force seems very interested in this technology, and we are currently working on a Small Business Innovation Research project with the Air Force Research Laboratory to see how far we can take it.”

Co-authors are graduate students Robert Headrick and Amram Bengio and alumni April Choi and Yimin Luo, all of Rice; Nathan Orloff, Aaron Forster, Angela Hight Walker, Paul Butler and Kalman Migler of the National Institute of Standards and Technology (NIST); Rana Ashkar of NIST, the University of Maryland and Oak Ridge National Laboratory; and Christian Long of NIST and the University of Maryland.

Pasquali is the A.J. Hartsook Professor of Chemical and Biomolecular Engineering, chair of the Department of Chemistry and a professor of materials science and nanoengineering and of chemistry.

The research was supported by the Air Force Office of Scientific Research, the Air Force Research Laboratories, the Robert A. Welch Foundation, NIST, the National Science Foundation and a NASA Space Technology Research Fellowship.

Read the abstract at http://pubs.acs.org/doi/abs/10.1021/acsami.5b11600

Video: Spinning nanotube fibers at Rice University: https://youtu.be/4XDJC64tDR0

 

Must see TV: take a peek inside Nanosys’ Silicon Valley Quantum Dot fab with NBC Learn & Dr. Paul Alivisatos (Berkeley)


QD Images Scale and Size quantum_dots_c

 

Readers’ Note: Dr. Alivisatos (Berkeley) has been a pioneer of ‘nano-cystals’ and their potential applications. Most recently these ‘crystals’ or Quantum Dots have found their way into commercial application for Display Screens. However the much larger vision for QD’s has significant (“game changing”) implications for: Solar Energy, Bio-Medicine, Drug Theranostics & Delivery, Lighting and Hybrid-Materials (Coatings, Paints, Security Inks as examples).  Enjoy the Video ~ Team GNT

Nanosys scientific co-founder and Director of the Lawerence Berkeley National Lab, Dr. Paul Alivisatos, takes NBC Learn on a tour of Nanosys’ Silicon Valley Quantum Dot manufacturing facility.

The section on Nanosys begins at 2:16 – enjoy!

Watch: NanoSys: Quantum Dot Video

Dr Alivisatos, who recently received the 2016 National Medal of Science, talks with NBC reporter Kate Snow about how this amazing nanotechnology that he helped pioneer is changing the way our TVs work today:

SNOW: When quantum dots of different sizes are grouped together by the billions, they produce vivid colors that have changed the way we look at display screens. The initial research, funded by the NSF, has found its way into many applications, including a nanotechnology company called Nanosys, which produces 25 tons of quantum dot materials every year, enough for approximately 6 million 60 inch TVs.

ALIVISATOS: What we have here is a plastic film that contains inside of it quantum dots, very tiny, tiny crystals made out of semiconductors. It actually contains two sizes of nanoparticle – a very small size that emits a green color and a slightly larger size that emits a red color of light.

SNOW: This film is embedded into tablets, televisions, and laptops to enhance their displays with brilliant color.

ALIVISATOS: One of the things that we’ve learned about vision is that we have receptors in our eyes for green, red and blue colors. And if we want a really high quality display, we need to match the light emission from our display to the receptors in our eyes.

Rice University: Graphene-Nano Ribbons Composite Could Keep Wings/ Helo Blades/ Transmission Lines Ice-Free


Tour De Ice graphenecomp

Rice University scientists embedded graphene nanoribbon-infused epoxy in a section of helicopter blade to test its ability to remove ice through Joule heating. Credit: Tour Group/Rice University 

A thin coating of graphene nanoribbons in epoxy developed at Rice University has proven effective at melting ice on a helicopter blade.

The coating by the Rice lab of chemist Dr. James M. Tour may be an effective real-time de-icer for aircraft, , transmission lines and other surfaces exposed to winter weather, according to a new paper in the American Chemical Society journal ACS Applied Materials and Interfaces.

In tests, the lab melted centimeter-thick ice from a static helicopter rotor blade in a minus-4-degree Fahrenheit environment. When a small voltage was applied, the coating delivered electrothermal heat – called Joule heating – to the surface, which melted the ice.

The nanoribbons produced commercially by unzipping nanotubes, a process also invented at Rice, are highly conductive. Rather than trying to produce large sheets of expensive graphene, the lab determined years ago that nanoribbons in composites would interconnect and conduct electricity across the material with much lower loadings than traditionally needed.

Previous experiments showed how the nanoribbons in films could be used to de-ice radar domes and even glass, since the films can be transparent to the eye.

Graphene composite may keep wings ice-free
 (L-Click to Enlarge Image)

Lab tests at Rice University on a section of a helicopter rotor chilled to minus-4 degrees Fahrenheit show that a thin coat of nanoribbon-infused epoxy can be used as a de-icer. The composite, imbedded between an abrasion shield and the …more

 

“Applying this composite to wings could save time and money at airports where the glycol-based chemicals now used to de-ice aircraft are also an environmental concern,” Tour said.

In Rice’s lab tests, nanoribbons were no more than 5 percent of the composite. The researchers led by Rice graduate student Abdul-Rahman Raji spread a thin coat of the composite on a segment of rotor blade supplied by a helicopter manufacturer; they then replaced the thermally conductive nickel abrasion sleeve used as a leading edge on . They were able to heat the composite to more than 200 degrees Fahrenheit.

For wings or blades in motion, the thin layer of water that forms first between the heated composite and the surface should be enough to loosen ice and allow it to fall off without having to melt completely, Tour said.

The lab reported that the remained robust in temperatures up to nearly 600 degrees Fahrenheit.

As a bonus, Tour said, the coating may also help protect aircraft from lightning strikes and provide an extra layer of electromagnetic shielding.

Explore further: Researchers create sub-10-nanometer graphene nanoribbon patterns

More information: Abdul-Rahman O. Raji et al. Composites of Graphene Nanoribbon Stacks and Epoxy for Joule Heating and Deicing of Surfaces, ACS Applied Materials & Interfaces (2016). DOI: 10.1021/acsami.5b11131

Targeted drug delivery could help fight tumors and local infections


Drug Delivery 050815 onereallytin

Some drug regimens, such as those designed to eliminate tumors, are notorious for nasty side effects. Unwanted symptoms are often the result of medicine going where it’s not needed and harming healthy cells. To minimize this risk, researchers in Quebec have developed nanoparticles that only release a drug when exposed to near-infrared light, which doctors could beam onto a specific site. Their report appears in the Journal of the American Chemical Society.

For years, scientists have been striving to develop localized treatments to reduce side effects of therapeutic drugs. They have designed drug-delivery systems that respond to light, temperature, ultrasound and pH changes. One promising approach involved drug-carrying materials that are sensitive to ultraviolet (UV) light. Shining a beam in this part of the light spectrum causes the materials to release their therapeutic cargo at a designated location. But UV light has major limitations. It can’t penetrate body tissues, and it is carcinogenic. Near-infrared (NIR) light can go through 1 to 2 centimeters of tissue and would be a safer alternative, but photosensitive drug-carriers don’t react to it. McGill University engineering professor Marta Cerruti and colleagues sought a way to bring the two kinds of light together in one possible solution.

The researchers started with nanoparticles that convert NIR light into UV light and coated them in a UV-sensitive hydrogel shell infused with a fluorescent protein, a stand-in for drug molecules. When exposed to NIR light, the nanoparticles instantaneously converted it to UV, which induced the shell to release the protein payload. The researchers note that their on-demand delivery system could not only supply drug molecules but also agents for imaging and diagnostics.


Story Source:

The above post is reprinted from materials provided by McGill University. Note: Materials may be edited for content and length.


Journal Reference:

  1. Ghulam Jalani, Rafik Naccache, Derek H. Rosenzweig, Lisbet Haglund, Fiorenzo Vetrone, Marta Cerruti.Photocleavable Hydrogel-Coated Upconverting Nanoparticles: A Multifunctional Theranostic Platform for NIR Imaging and On-Demand Macromolecular Delivery. Journal of the American Chemical Society, 2016; DOI: 10.1021/jacs.5b12357

Berkeley National Laboratory: Weaving a new story for Nanomaterials (COFS and MOFs)


Nano Weaving RD_COF

There are many different ways to make nano-materials but weaving, the oldest and most enduring method of making fabrics, has not been one of them – until now. An international collaboration led by scientists at the U.S. Department of Energy (DOE)’s Lawrence Berkeley National Laboratory (Berkeley Lab) and the University of California (UC) Berkeley, has woven the first three-dimensional covalent organic frameworks (COFs) from helical organic threads. The woven COFs display significant advantages in structural flexibility, resiliency and reversibility over previous COFs – materials that are highly prized for their potential to capture and store carbon dioxide then convert it into valuable chemical products.

“We have taken the art of weaving into the atomic and molecular level, giving us a powerful new way of manipulating matter with incredible precision in order to achieve unique and valuable mechanical properties,” says Omar Yaghi, a chemist who holds joint appointments with Berkeley Lab’s Materials Sciences Division and UC Berkeley’s Chemistry Department, and is the co-director of the Kavli Energy NanoScience Institute (Kavli-ENSI).

“Weaving in chemistry has been long sought after and is unknown in biology,” Yaghi says. “However, we have found a way of weaving organic threads that enables us to design and make complex two- and three-dimensional organic extended structures.”

Yaghi is the corresponding author of a paper in Science reporting this new technique. The paper is titled “Weaving of organic threads into a crystalline covalent organic framework.” The lead authors are Yuzhong Liu, Yanhang Ma and Yingbo Zhao. Other co-authors are Xixi Sun, Felipe Gándara, Hiroyasu Furukawa, Zheng Liu, Hanyu Zhu, Chenhui Zhu, Kazutomo Suenaga, Peter Oleynikov, Ahmad Alshammari, Xiang Zhang and Osamu Terasaki.

COFs and their cousin materials, metal organic frameworks (MOFs), are porous three-dimensional crystals with extraordinarily large internal surface areas that can absorb and store enormous quantities of targeted molecules. Invented by Yaghi, COFs and MOFs consist of molecules (organics for COFs and metal-organics for MOFs) that are stitched into large and extended netlike frameworks whose structures are held together by strong chemical bonds. Such frameworks show great promise for, among other applications, carbon sequestration.

Through another technique developed by Yaghi, called “reticular chemistry,” these frameworks can also be embedded with catalysts to carry out desired functions: for example, reducing carbon dioxide into carbon monoxide, which serves as a primary building block for a wide range of chemical products including fuels, pharmaceuticals and plastics.

In this latest study, Yaghi and his collaborators used a copper(I) complex as a template for bringing threads of the organic compound “phenanthroline” into a woven pattern to produce an immine-based framework they dubbed COF-505. Through X-ray and electron diffraction characterizations, the researchers discovered that the copper(I) ions can be reversibly removed or restored to COF-505 without changing its woven structure. Demetalation of the COF resulted in a tenfold increase in its elasticity and remetalation restored the COF to its original stiffness.

“That our system can switch between two states of elasticity reversibly by a simple operation, the first such demonstration in an extended chemical structure, means that cycling between these states can be done repeatedly without degrading or altering the structure,” Yaghi says. “Based on these results, it is easy to imagine the creation of molecular cloths that combine unusual resiliency, strength, flexibility and chemical variability in one material.”

Yaghi says that MOFs can also be woven as can all structures based on netlike frameworks. In addition, these woven structures can also be made as nanoparticles or polymers, which means they can be fabricated into thin films and electronic devices.

“Our weaving technique allows long threads of covalently linked molecules to cross at regular intervals,” Yaghi says. “These crossings serve as points of registry, so that the threads have many degrees of freedom to move away from and back to such points without collapsing the overall structure, a boon to making materials with exceptional mechanical properties and dynamics.”

Source: Lawrence Berkeley National Laboratory

Indiana University: Scientists Create ‘nano-reactor’ for the Production of Hydrogen Biofuel


Nano Hydrogen 012216 iuscientists

Scientists at Indiana University have created a highly efficient biomaterial that catalyzes the formation of hydrogen—one half of the “holy grail” of splitting H2O to make hydrogen and oxygen for fueling cheap and efficient cars that run on water.

A modified enzyme that gains strength from being protected within the protein shell—or “capsid”—of a bacterial virus, this new material is 150 times more efficient than the unaltered form of the enzyme.

The process of creating the material was recently reported in “Self-assembling biomolecular catalysts for hydrogen production” in the journal Nature Chemistry.

“Essentially, we’ve taken a virus’s ability to self-assemble myriad genetic building blocks and incorporated a very fragile and sensitive enzyme with the remarkable property of taking in protons and spitting out hydrogen gas,” said Trevor Douglas, the Earl Blough Professor of Chemistry in the IU Bloomington College of Arts and Sciences’ Department of Chemistry, who led the study. “The end result is a virus-like particle that behaves the same as a highly sophisticated material that catalyzes the production of hydrogen.”

Other IU scientists who contributed to the research were Megan C. Thielges, an assistant professor of chemistry; Ethan J. Edwards, a Ph.D. student; and Paul C. Jordan, a postdoctoral researcher at Alios BioPharma, who was an IU Ph.D. student at the time of the study.

IU scientists create 'nano-reactor' for the production of hydrogen biofuel
Illustration showing the release of NiFe-hydrogenase from inside the virus shell, or ‘capsid’, of bacteriophage P22. Credit: Indiana University

The genetic material used to create the enzyme, hydrogenase, is produced by two genes from the common bacteria Escherichia coli, inserted inside the protective capsid using methods previously developed by these IU scientists. The genes, hyaA and hyaB, are two genes in E. coli that encode key subunits of the hydrogenase enzyme. The capsid comes from the known as bacteriophage P22.

The resulting biomaterial, called “P22-Hyd,” is not only more efficient than the unaltered enzyme but also is produced through a simple fermentation process at room temperature.

The material is potentially far less expensive and more environmentally friendly to produce than other materials currently used to create fuel cells. The costly and rare metal platinum, for example, is commonly used to catalyze hydrogen as fuel in products such as high-end concept cars.

“This material is comparable to platinum, except it’s truly renewable,” Douglas said. “You don’t need to mine it; you can create it at room temperature on a massive scale using fermentation technology; it’s biodegradable. It’s a very green process to make a very high-end sustainable material.”

In addition, P22-Hyd both breaks the chemical bonds of water to create hydrogen and also works in reverse to recombine hydrogen and oxygen to generate power. “The reaction runs both ways—it can be used either as a catalyst or as a fuel cell catalyst,” Douglas said.

The form of hydrogenase is one of three occurring in nature: di-iron (FeFe)-, iron-only (Fe-only)- and nickel-iron (NiFe)-hydrogenase. The third form was selected for the new material due to its ability to easily integrate into biomaterials and tolerate exposure to oxygen.

NiFe-hydrogenase also gains significantly greater resistance upon encapsulation to breakdown from chemicals in the environment, and it retains the ability to catalyze at room temperature. Unaltered NiFe-hydrogenase, by contrast, is highly susceptible to destruction from chemicals in the environment and breaks down at temperatures above —both of which make the unprotected enzyme a poor choice for use in manufacturing and commercial products such as cars.

These sensitivities are “some of the key reasons enzymes haven’t previously lived up to their promise in technology,” Douglas said. Another is their difficulty to produce.

“No one’s ever had a way to create a large enough amount of this hydrogenase despite its incredible potential for biofuel production. But now we’ve got a method to stabilize and produce high quantities of the material—and enormous increases in efficiency,” he said.

The development is highly significant according to Seung-Wuk Lee, professor of bioengineering at the University of California-Berkeley, who was not a part of the study.

“Douglas’ group has been leading protein- or virus-based nanomaterial development for the last two decades. This is a new pioneering work to produce green and clean fuels to tackle the real-world energy problem that we face today and make an immediate impact in our life in the near future,” said Lee, whose work has been cited in a U.S. Congressional report on the use of viruses in manufacturing.

Beyond the new study, Douglas and his colleagues continue to craft P22-Hyd into an ideal ingredient for hydrogen power by investigating ways to activate a catalytic reaction with sunlight, as opposed to introducing elections using laboratory methods.

“Incorporating this material into a solar-powered system is the next step,” Douglas said.

Explore further: Temporary storage for electrons: Natural method of producing hydrogen

More information: Paul C. Jordan et al. Self-assembling biomolecular catalysts for hydrogen production, Nature Chemistry (2015). DOI: 10.1038/nchem.2416

 

 

The 7 Technologies Changing Our world: When will the Future “Arrive”?


Fourth Industrial Revo 012016 AAEAAQAAAAAAAAZqAAAAJGM1YzM0NGYxLWIxZTMtNGYyNi1iMjIyLTM1MjUwNDRjYjIyYQ
Fulvia Montresor, Director, World Economic Forum ~ From intelligent robots and self-driving cars to gene editing and 3D printing, dramatic technological change is happening at lightning speed all around us.

The Fourth Industrial Revolution is being driven by a staggering range of new technologies that are blurring the boundaries between people, the internet and the physical world. It’s a convergence of the digital, physical and biological spheres. It’s a transformation in the way we live, work and relate to one another in the coming years, affecting entire industries and economies, and even challenging our notion of what it means to be human.

So what exactly are these technologies, and what do they mean for us?

When Will the Future Arrive iN5Ek8cZrTu2fovJEY8kCZKnwvkshVtHWNwirq1w3Q0.png


Computing capabilities, storage and access

 

Between 1985 and 1989, the Cray-2 was the world’s fastest computer. It was roughly the size of a washing machine. Today, a smart watch has twice its capabilities.

As mobile devices become increasingly sophisticated, experts say it won’t be long before we are all carrying “supercomputers” in our pockets. Meanwhile, the cost of data storage continues to fall, making it possible keep expanding our digital footprints.

Today, 43% of the world’s population are connected to the internet, mostly in developed countries. The United Nations has set the goal of connecting all the world’s inhabitants to affordable internet by 2020. This will increase access to information, education and global marketplaces, which will empower many people to improve their living conditions and escape poverty. Imagine a world where everyone is connected by mobile devices with unprecedented processing power and storage capacity!

If we can achieving the goal of universal internet access and overcome other barriers such as digital illiteracy, everybody could have access to knowledge, and all the possibilities this brings.

Big Data

 

Each time you run a Google search, scan your passport, make an online purchase or tweet, you are leaving a data trail behind that can be analysed and monetized.

Thanks to supercomputers and algorithms, we can make sense of massive amounts of data in real time. Computers are already making decisions based on this information, and in less than 10 years computer processors are expected to reach the processing power of the human brain. This means there’s a good chance your job could be done by computers in the coming decades. Two Oxford researchers, Carl Bendikt Frey and Michael A Osborne, estimated that 47% of American jobs are at high risk of automation.

Computerized Jobs 47% pj58OKD8UccRMpfk2i9IU5MmndKQf1I7pjsF979j_eA
A survey done by the Global Agenda Council on the Future of Software & Society shows people expect artificial intelligence machines to be part of a company’s board of directors by 2026.

Digital Health

 

Analyzing medical data collated from different populations and demographics enables researchers to understand patterns and connections in diseases and identify which conditions improve the effectiveness of certain treatments and which don’t.

 

Big data will help to reduce costs and inefficiencies in healthcare systems, improve access and quality of care, and make medicine more personalized and precise.

In the future, we will all have very detailed digital medical profiles … including information that we’d rather keep private. Digitization is empowering people to look after their own health. Think of apps that track how much you eat, sleep and exercise, and being able to ask a doctor a question by simply tapping it into your smartphone.

In addition, advances in technologies such as CRISPR/Cas9, which unlike other gene-editing tools, is cheap, quick and easy to use, could also have a transformative effect on health, with the potential to treat genetic defects and eradicate diseases.

 

The digitization of matter

 

3D printers will create not only cars, houses and other objects, but also human tissue, bones and custom prosthetics. Patients would not have to die waiting for organ donations if hospitals could bioprint them. In fact, we may have already reached this stage: in 2014, doctors in China gave a boy a 3D-printed spine implant, according to the journal Popular Science.

 

The 3D printing market for healthcare is predicted to reach some $4.04 billion by 2018. According to a survey by the Global Agenda Council on the Future of Software and Society, most people expect that the first 3D printed liver will happen by 2025. The survey also reveals that most people expect the first 3D printed car will be in production by 2022.

Three-dimensional printing, which brings together computational design, manufacturing, materials engineering and synthetic biology, reduces the gap between makers and users and removes the limitations of mass production. Consumers can already design personalized products online, and will soon be able to simply press “print” instead of waiting for a delivery.

The Internet of Things (IOT)

 

Within the next decade, it is expected that more than a trillion sensors will be connected to the internet. If almost everything is connected, it will transform how we do business and help us manage resources more efficiently and sustainably. Connected sensors will be able to share information from their environment and organize themselves to make our lives easier and safer. For example, self-driving vehicles could “communicate” with one another, preventing accidents.

By 2020 around 22% of the world’s cars will be connected to the internet (290 million vehicles), and by 2024, more than half of home internet traffic will be used by appliances and devices.

Internet of Things IOT fLuhKST2x25RoIh9N6GPL9PVLO-fL16gm_R_UoNyPac

Home automation is also happening fast. We can control our lights, heating, air conditioning and security systems remotely, but how much longer will it be before sensors are able to detect crumbs under the table and tell our automated vacuum cleaners to tidy up? The internet of things will create huge amounts of data, raising concerns over who will own it and how it will be stored. And what about the possibility that your home or car could be hacked?

Blockchain

 

Only a tiny fraction of the world’s GDP (around 0.025%) is currently held on blockchain, the shared database technology where transactions in digital currencies such as the Bitcoin are made. But this could be about to change, as banks, insurers and companies race to work out how they can use the technology to cut costs.

 

A blockchain is essentially a network of computers that must all approve a transaction before it can be verified and recorded. Using cryptography to keep transactions secure, the technology provides a decentralized digital ledger that anyone on the network can see.

Before blockchain, we relied on trusted institution such as a bank to act as a middleman. Now the blockchain can act as that trusted authority on every type of transaction involving value including money, goods and property. The uses of blockchain technology are endless. Some expect that in less than 10 years it will be used to collect taxes. It will make it easier for immigrants to send money back to countries where access to financial institutions is limited.

And financial fraud will be significantly reduced, as every transaction will be recorded and distributed on a public ledger, which will be accessible by anyone who has an internet connection.

BlockChain v01xWeARxsa4gC98kn0v6VFizLp9nAkK7m6pNAdJars

Source: Financial Times

Wearable internet

 

Technology is getting increasingly personal. Computers are moving from our desks, to our laps, to our pockets and soon they will be integrated into our clothing. By 2025, 10% of people are expected to be wearing clothes connected to the internet and the first implantable mobile phone is expected to be sold.

 

Implantable and wearable devices such as sports shirts that provide real-time workout data by measuring sweat output, heart rate and breathing intensity are changing our understanding of what it means to be online and blurring the lines between the physical and digital worlds.

wearable-technology

 

The potential benefits are great, but so are the challenges. These devices can provide immediate information about our health and about what we see, or help locate missing children. Being able to control devices with our brains would enable disabled people to engage fully with the world. There would be exciting possibilities for learning and new experiences.

But how would it affect our personal privacy, data security and our personal relationships? In the future, will it ever be possible to be offline anymore?

 

Medical Nanotechnology: 3 Areas of Research – Investing News Network


Optimized-Nanotechnology_book_coverProponents of “bigger is better” may want to think again, particularly when it comes to nanotechnology. That’s because advancements in nanotechnology could also mean advancements in the medical devices market.

Nanotechnology is proving to be a viable avenue for the medical technology sector, which, as Nanotechnology Now explains, is “having a massive effect on how doctors and scientists treat patients and gain further insight into the human body and disease prevention.”

Medical nanotechnology for heart disease

One disease prevention measure being researched is heart attack detection. Researchers at the San Diego-based Scripps Health Institute are looking at injecting nanosensor chips into the bloodstreams of test subjects at high risk of heart attacks. According to Nanotechnology Now, the aim of the research is to “create a chip that could notice the chemical changes that precede a heart attack,” alerting the subject to see immediate medical attention.

Medical nanotechnology for fertility

One of the main drivers of infertility is healthy sperm that do not swim well. To assist with infertility, women can generally turn to several forms of assisted insemination, from artificial insemination to in vitro fertilization. But all that may be set to change — Germany-based Oliver Schmidt and his team at IFW are working on a new type of nanotechnology that aims to increase sperm mobility: the spermbot.

Source: American Chemical Society

The technology involves building tiny metal helices large enough to fit around the tail of the sperm. Using a rotating magnetic field, the sperm can be directed to an egg for potential fertilization, and then released. Though more research needs to be done before the technique is ready for clinical tests,Nanowerk states that the team’s initial demonstration shows a lot of promise.

Medical nanotechnology for cancer

Treating cancer is difficult because until recently, there was no treatment that could target individual cancerous cells without destroying the surrounding healthy cells. Now, however, researchers at Israel’s Bar-Ilan University have confirmed that nanobots capable of fighting cancerous cells have become a reality. The nanobots, which measure between 25 and 35 nanometers, can barely be seen by the naked eye.

The nanobots are made from DNA, “specifically a single strand of DNA folded into a desired shape,” 3Tags notes, adding that the nanobots have been programmed to turn “on” and “off” so that they can either bypass healthy cells without causing damage or target cancerous cells.

The first human trial later is expected to move forward later this year. Though the patient, a person with late-stage leukemia, is expected to die, Professor Ido Bachelet believes that “based on previous animal trials, the nanobots can remove the cancer in the span of a month.” Bachelet said, “[i]f the trial goes well, we could see nanotechnology hit the public in one-to-five years.”

Nanotechnology sector expected to grow

Based on the information above, it’s clear that nanotechnology plays a big role in the life sciences sector. In fact, a report from BCC Research highlights that in 2014, the nanomedicine market was valued at $248.3 billion, with a projected compound annual growth rate of 16.3 percent through to 2019. That means by 2019 the nanomedicine market may be valued in the range of $528 billion.

Until then, investors should expect to see more advancements in research for medical nanotechnology.

The innovators: nanoscale devices making big strides in surgery


Nanoscale Devices for Surgery 3000An Imperial College London team is pioneering nanoscale robotic surgical instruments which can, among other uses, better target cancer cells with chemotherapy drugs.

When Chinese president Xi Jinping visited Britain last October, one of the more unusual gifts he received was one he couldn’t actually see – a model of the Great Wall of China which was the same width as a human hair.

Researchers at Imperial College had used advanced 3D printing techniques to make the model. But the more practical use of the technology is for the development of advanced surgical instruments. The detail of these precision surgery instruments cannot be seen by the human eye, but they are expected to replace the large robotic instruments used in operating theatres at present.

At the cutting edge of work being carried out at the Hamlyn Centre in Imperial College, a lab which develops technologies for use in healthcare, is a clasping hand which is little more than half the breadth of a hair. As well as being used in surgery, the device could be applied to the more efficient delivery of cancer drugs.

According to the centre’s director, Prof Guang-Zhong Yang, the new smart surgical instruments, effectively handheld robots, will improve efficiency and cut costs. At present, robots in operating theatres are large imposing machines which can be operated by surgeons, be they present or remote. The new smaller handheld instruments allow a surgeon more room to work. Yang explains that instead of having a large robot towering over the patient, surgeons instead use handheld robotic instruments allowing them to operate as normal.

In the Hamlyn Centre on the Kensington campus of Imperial College lies a room which Yang refers to as “the museum”. Inside there are past and present generations of robots used for general surgery and procedures used in urology and gynaecology.

The robot’s arms make incisions and relay camera images to the surgeon who controls them. There are about 3,000 such machines in use around the world, each with a multimillion-pound price tag.

Across the corridor from “the museum” sits the lab where Yang’s team is developing the new handheld devices, the polar opposite of the large machines utilised at present. Using 3D printing at nanoscale, they have developed a clasping hand that fits on top of a minute piece of fibre which can be used for precise drug delivery and surgery.

the nanoscale surgical tool
 
Micro-grasper grips a hair follicle. Photograph: Hamlyn Centre, Imperial College

The device measures just 60 microns across – a human hair is 100 microns wide, a red blood cell about 10 microns. It is produced by using a technique called two photon polymerisation, where a controlled point of pulsed laser is used to join together molecules to solidify a light-sensitive material.

This tiny device enables surgeons to carry out procedures at human cell level, says Yang. “At the very tip of the fibre we are able to put very small manipulators,” he says. “At the moment, for surgical procedures we still need to make incisions for the instruments but in the future we will probably just use a small needle.”

Other uses include the better targeted delivery of drugs for cancer care, says Yang. Chemotherapy drugs can affect cells in the body other than the cancer cells – causing tiredness and sickness – but the new implements will be able to carry tiny “payloads” of drugs for more precise delivery.

“Surgery is a different game altogether in the future. [It is] not about manipulating and stitching up tissue,” he says. “Our aim is … to do things with bare hands that you cannot do, to do things that are more accurate and more informative and then you do things that the other alternative techniques cannot do.”

Prof Yang demonstrates nanotechnology
 
Prof Yang shows staff the nanoscale clasping hand used for pinpoint surgery Photograph: Imperial Image

Yang says he expects this new generation of surgical instruments to be in general use within a decade. Fibres with the manipulative hands on top will likely come in sterile packaging and be disposed of after one use. It is hoped the implements will be made available to a whole new group of surgeons, because they will be far cheaper than the multimillion-pound robots used today.

Yang makes it clear that the new smart instruments are not intended to replace surgeons but to let them continue to do what they do well and improve upon what they can’t.

Rather than having a very small minority of super-surgeons, there will be more doctors able to carry out procedures. Says Yang: “You improve the consistency, you improve the safety, you have more people able to do complex procedures and therefore the healthcare provision for everyone will be better.”

A 3D PRINTED FUTURE

It was more than 30 years ago when a method of manufacturing called stereolithography, now known as 3D printing, was discovered.

Chuck Hull, who was back then working for a company which used UV light to put thin layers of plastic veneers on tabletops and furniture, was frustrated that the production of small plastic parts for prototyping new product designs could take up to two months.

He developed a system in which light was shone into a vat of photopolymer – a material which changes from liquid to a plastic-like solid when light shines upon it – and traces the shape of one level of the object. Subsequent layers are then printed until it is complete. The technology used at Imperial College works in a similar manner, whereby a structure is built layer upon layer but at a minute scale.

You can read our archive of The Innovators columns here or on the Big Innovation Centre website, where you will find more information on how the centre supports innovative enterprise in Britain and globally.

Making Cheaper (Perovskite) Solar Cells with 20.2 Percent Efficiency


Perovskite New Materials 20 plus id42356EPFL scientists have developed a solar-panel material that can cut down on photovoltaic costs while achieving competitive power-conversion efficiency of 20.2%.
Some of the most promising solar cells today use light-harvesting films made from perovskites – a group of materials that share a characteristic molecular structure. However, perovskite-based solar cells use expensive “hole-transporting” materials, whose function is to move the positive charges that are generated when light hits the perovskite film. Publishing in Nature Energy (“A molecularly engineered hole-transporting material for e cient perovskite solar cells”), EPFL scientists have now engineered a considerably cheaper hole-transporting material that costs only a fifth of existing ones while keeping the efficiency of the solar cell above 20%.
FDT on a Perovskite Surface
This is a 3-D illustration of FDT molecules on a surface of perovskite crystals. (Image: Sven M. Hein / EPFL)
 

As the quality of perovskite films increases, researchers are seeking other ways of improving the overall performance of solar cells. Inadvertently, this search targets the other key element of a solar panel, the hole-transporting layer, and specifically, the materials that make them up. There are currently only two hole-transporting materials available for perovskite-based solar cells. Both types are quite costly to synthesize, adding to the overall expense of the solar cell.

To address this problem, a team of researchers led by Mohammad Nazeeruddin at EPFL developed a molecularly engineered hole-transporting material, called FDT, that can bring costs down while keeping efficiency up to competitive levels. Tests showed that the efficiency of FDT rose to 20.2% – higher than the other two, more expensive alternatives. And because FDT can be easily modified, it acts as a blueprint for an entire generation of new low-cost hole-transporting materials.
“The best performing perovskite solar cells use hole transporting materials, which are difficult to make and purify, and are prohibitively expensive, costing over €300 per gram preventing market penetration,” says Nazeeruddin. “By comparison, FDT is easy to synthesize and purify, and its cost is estimated to be a fifth of that for existing materials – while matching, and even surpassing their performance.”
Source: Ecole Polytechnique Fédérale de Lausanne