Rutgers University – Alzheimer’s may be linked to defective brain cells spreading disease

Rutgers scientists say neurodegenerative diseases like Alzheimer’s and Parkinson’s may be linked to defective brain cells disposing toxic proteins that make neighboring cells sick

In a study published in Nature, Monica Driscoll, distinguished professor of molecular biology and biochemistry, School of Arts and Sciences, and her team, found that while healthy neurons should be able to sort out and and rid brain cells of toxic proteins and damaged cell structures without causing problems, laboratory findings indicate that it does not always occur.

These findings, Driscoll said, could have major implications for neurological disease in humans and possibly be the way that disease can spread in the brain.

“Normally the process of throwing out this trash would be a good thing,” said Driscoll. “But we think with neurodegenerative diseases like Alzheimer’s and Parkinson’s there might be a mismanagement of this very important process that is supposed to protect neurons but, instead, is doing harm to neighbor cells.”

Driscoll said scientists have understood how the process of eliminating toxic cellular substances works internally within the cell, comparing it to a garbage disposal getting rid of waste, but they did not know how cells released the garbage externally.

“What we found out could be compared to a person collecting trash and putting it outside for garbage day,” said Driscoll. “They actively select and sort the trash from the good stuff, but if it’s not picked up, the garbage can cause real problems.”

Working with the transparent roundworm, known as the C. elegans, which are similar in molecular form, function and genetics to those of humans, Driscoll and her team discovered that the worms — which have a lifespan of about three weeks — had an external garbage removal mechanism and were disposing these toxic proteins outside the cell as well.

Ilija Melentijevic, a graduate student in Driscoll’s laboratory and the lead author of the study, realized what was occurring when he observed a small cloud-like, bright blob forming outside of the cell in some of the worms. Over two years, he counted and monitored their production and degradation in single still images until finally he caught one in mid-formation.

“They were very dynamic,” said Melentijevic, an undergraduate student at the time who spent three nights in the lab taking photos of the process viewed through a microscope every 15 minutes. “You couldn’t see them often, and when they did occur, they were gone the next day.”

Research using roundworms has provided scientists with important information on aging, which would be difficult to conduct in people and other organisms that have long life spans.

In the newly published study, the Rutgers team found that roundworms engineered to produce human disease proteins associated with Huntington’s disease and Alzheimer’s, threw out more trash consisting of these neurodegenerative toxic materials.

While neighboring cells degraded some of the material, more distant cells scavenged other portions of the diseased proteins.

“These finding are significant,” said Driscoll. The work in the little worm may open the door to much needed approaches to addressing neurodegeneration and diseases like Alzheimer’s and Parkinson’s.”

Story Source:

Materials provided by Rutgers University. Original written by Robin Lally. Note: Content may be edited for style and length.

Journal Reference:

  1. Ilija Melentijevic, Marton L. Toth, Meghan L. Arnold, Ryan J. Guasp, Girish Harinath, Ken C. Nguyen, Daniel Taub, J. Alex Parker, Christian Neri, Christopher V. Gabel, David H. Hall, Monica Driscoll. C. elegans neurons jettison protein aggregates and mitochondria under neurotoxic stress. Nature, 2017; DOI: 10.1038/nature21362

Cite This Page:

Rutgers University. “Alzheimer’s may be linked to defective brain cells spreading disease: Study finds toxic proteins doing harm to neighboring neurons.” ScienceDaily. ScienceDaily, 10 February 2017. <>.

Cornell University: Pore size influences nature of complex nanostructures – Materials for energy storage, biochemical sensors and electronics

The mere presence of void or empty spaces in porous two-dimensional molecules and materials leads to markedly different van der Waals interactions across a range of distances. Credit: Yan Yang and Robert DiStasio

Building at the nanoscale is not like building a house. Scientists often start with two-dimensional molecular layers and combine them to form complex three-dimensional architectures.

And instead of nails and screws, these structures are joined together by the attractive van der Waals forces that exist between objects at the nanoscale.

Van der Waals forces are critical in constructing  for energy storage, biochemical sensors and electronics, although they are weak when compared to chemical bonds. They also play a crucial role in , determining which drugs bind to the active sites in proteins.

In new research that could help inform development of new materials, Cornell chemists have found that the empty space (“pores”) present in two-dimensional molecular building blocks fundamentally changes the strength of these van der Waals forces, and can potentially alter the assembly of sophisticated nanostructures.

The findings represent an unexplored avenue toward governing the self-assembly of complex nanostructures from porous two-dimensional building blocks.

“We hope that a more complete understanding of these forces will aid in the discovery and development of novel materials with diverse functionalities, targeted properties, and potentially novel applications,” said Robert A. DiStasio Jr., assistant professor of chemistry in the College of Arts and Sciences.

In a paper titled “Influence of Pore Size on the van der Waals Interaction in Two-Dimensional Molecules and Materials,” published Jan. 14 in Physical Review Letters, DiStasio, graduate student Yan Yang and postdoctoral associate Ka Un Lao describe a series of mathematical models that address the question of how void space fundamentally affects the attractive physical forces which occur over nanoscale distances.

In three prototypical model systems, the researchers found that particular pore sizes lead to unexpected behavior in the  that govern van der Waals forces.

Further, they write, this behavior “can be tuned by varying the relative size and shape of these void spaces … [providing] new insight into the self-assembly and design of complex nanostructures.”

While strong covalent bonds are responsible for the formation of two-dimensional molecular layers, van der Waals interactions provide the main attractive  between the layers. As such, van der Waals forces are largely responsible for the self-assembly of the complex three-dimensional nanostructures that make up many of the advanced materials in use today.

The researchers demonstrated their findings with numerous two-dimensional systems, including covalent organic frameworks, which are endowed with adjustable and potentially very large pores.

“I am surprised that the complicated relationship between void space and van der Waals forces could be rationalized through such simple models,” said Yang. “In the same breath, I am really excited about our findings, as even  in the van der Waals forces can markedly impact the properties of molecules and materials.”

Explore further: Researchers refute textbook knowledge in molecular interactions

More information: Yan Yang et al, Influence of Pore Size on the van der Waals Interaction in Two-Dimensional Molecules and Materials, Physical Review Letters (2019).  DOI: 10.1103/PhysRevLett.122.026001 

Boosting lithium ion batteries capacity 10X with Tiny Silicon Particles – University of Alberta

li_battery_principle (1)
U of Alberta chemists Jillian Buriak, Jonathan Veinot and their team found that nano-sized silicon particles overcome a limitation of using silicon in lithium ion batteries. The discovery could lead to a new generation of batteries …more

University of Alberta chemists have taken a critical step toward creating a new generation of silicon-based lithium ion batteries with 10 times the charge capacity of current cells.

“We wanted to test how different sizes of  nanoparticles could affect fracturing inside these batteries,” said Jillian Buriak, a U of A chemist and Canada Research Chair in Nanomaterials for Energy. ua buriak tinysiliconp

Silicon shows promise for building much higher-capacity batteries because it’s abundant and can absorb much more lithium than the graphite used in current lithium ion batteries. The problem is that silicon is prone to fracturing and breaking after numerous charge-and-discharge cycles, because it expands and contracts as it absorbs and releases lithium ions.

Existing research shows that shaping silicon into nano-scale particles, wires or tubes helps prevent it from breaking. What Buriak, fellow U of A chemist Jonathan Veinot and their team wanted to know was what size these structures needed to be to maximize the benefits of silicon while minimizing the drawbacks.

The researchers examined silicon nanoparticles of four different sizes, evenly dispersed within highly conductive graphene aerogels, made of carbon with nanoscopic pores, to compensate for silicon’s low conductivity. They found that the smallest particles—just three billionths of a metre in diameter—showed the best long-term stability after many charging and discharging cycles.

“As the particles get smaller, we found they are better able to manage the strain that occurs as the silicon ‘breathes’ upon alloying and dealloying with , upon cycling,” explained Buriak.

u of alberta imagesThe research has potential applications in “anything that relies upon  using a battery,” said Veinot, who is the director of the ATUMS graduate student training program that partially supported the research.

“Imagine a car having the same size battery as a Tesla that could travel 10 times farther or you charge 10 times less frequently, or the battery is 10 times lighter.”

Veinot said the next steps are to develop a faster, less expensive way to create  to make them more accessible for industry and technology developers.

The study, “Size and Surface Effects of Silicon Nanocrystals in Graphene Aerogel Composite Anodes for Lithium Ion Batteries,” was published in Chemistry of Materials.

 Explore further: Toward cost-effective solutions for next-generation consumer electronics, electric vehicles and power grids

More information: Maryam Aghajamali et al. Size and Surface Effects of Silicon Nanocrystals in Graphene Aerogel Composite Anodes for Lithium Ion Batteries, Chemistry of Materials (2018). DOI: 10.1021/acs.chemmater.8b03198

Watch a YouTube Video about an Energy Storage Company Tenka Energy, Inc., that has developed and prototyped the NextGen of silicon-lithium-ion batteries for EV’s, Drones, Medical Sensors ….

Tenka Energy, Inc. Building Ultra-Thin Energy Dense SuperCaps and NexGen Nano-Enabled Pouch & Cylindrical Batteries – Energy Storage Made Small and POWERFUL!

via @Genesisnanotech #greatthingsfromsmallthings #energystorage

Brookhaven National Laboratory – Searching for More Cost Efficient Catalysts for Hydrogen Fuel Cells – Illuminating Nanoparticle Growth With X-Rays

brookhaven fuel cell research 189306_web
Brookhaven Lab scientists Mingyuan Ge, Iradwikanari Waluyo, and Adrian Hunt are pictured left to right at the IOS beamline, where they studied the growth pathway of an efficient catalyst for hydrogen fuel cells. Credit: Brookhaven National Laboratory

Hydrogen fuel cells are a promising technology for producing clean and renewable energy, but the cost and activity of their cathode materials is a major challenge for commercialization. Many fuel cells require expensive platinum-based catalysts–substances that initiate and speed up chemical reactions–to help convert renewable fuels into electrical energy. To make hydrogen fuel cells commercially viable, scientists are searching for more affordable catalysts that provide the same efficiency as pure platinum.

“Like a battery, hydrogen fuel cells convert stored chemical energy into electricity. The difference is that you’re using a replenishable fuel so, in principle, that ‘battery’ would last forever,” said Adrian Hunt, a scientist at the National Synchrotron Light Source II(NSLS-II), a U.S. Department of Energy (DOE) Office of Science User Facility at DOE’s Brookhaven National Laboratory. “Finding a cheap and effective catalyst for hydrogen fuel cells is basically the holy grail for making this technology more feasible.”

Taking part in this worldwide search for fuel cell cathode materials, researchers at the University of Akron developed a new method of synthesizing catalysts from a combination of metals–platinum and nickel–that form octahedral (eight-sided) shaped nanoparticles. While scientists have identified this catalyst as one of the most efficient replacements for pure platinum, they have not fully understood why it grows in an octahedral shape. To better understand the growth process, the researchers at the University of Akron collaborated with multiple institutions, including Brookhaven and its NSLS-II.

brookhaven fc 6-scientistsbo

Schematic diagram of the oxygen reduction reaction (reduction of O2 into H2O) on the Pt(110) surface of the PtPb/Pt nanoplates, with purple representing Pt atoms and orange representing Pb atoms. Credit: Brookhaven National Laboratory

“Understanding how the faceted catalyst is formed plays a key role in establishing its structure-property correlation and designing a better catalyst,” said Zhenmeng Peng, principal investigator of the catalysis lab at the University of Akron. “The growth process case for the platinum-nickel system is quite sophisticated, so we collaborated with several experienced groups to address the challenges. The cutting-edge techniques at Brookhaven National Lab were of great help to study this research topic.”

Using the ultrabright x-rays at NSLS-II and the advanced capabilities of NSLS-II’s In situ and Operando Soft X-ray Spectroscopy (IOS) beamline, the researchers revealed the chemical characterization of the catalyst’s growth pathway in real time. Their findings are published in Nature Communications.

“We used a research technique called ambient-pressure x-ray photoelectron spectroscopy (AP-XPS) to study the surface composition and chemical state of the metals in the nanoparticles during the growth reaction,” said Iradwikanari Waluyo, lead scientist at IOS and a co-corresponding author of the research paper. “In this technique, we direct x-rays at a sample, which causes electrons to be released. By analyzing the energy of these electrons, we are able to distinguish the chemical elements in the sample, as well as their chemical and oxidation states.”

Hunt, who is also an author on the paper, added, “It is similar to the way sunlight interacts with our clothing. Sunlight is roughly yellow, but once it hits a person’s shirt, you can tell whether the shirt is blue, red, or green.”

Rather than colors, the scientists were identifying chemical information on the surface of the catalyst and comparing it to its interior. They discovered that, during the growth reaction, metallic platinum forms first and becomes the core of the nanoparticles. Then, when the reaction reaches a slightly higher temperature, platinum helps form metallic nickel, which later segregates to the surface of the nanoparticle. In the final stages of growth, the surface becomes roughly an equal mixture of the two metals. This interesting synergistic effect between platinum and nickel plays a significant role in the development of the nanoparticle’s octahedral shape, as well as its reactivity.

“The nice thing about these findings is that nickel is a cheap material, whereas platinum is expensive,” Hunt said. “So, if the nickel on the surface of the nanoparticle is catalyzing the reaction, and these nanoparticles are still more active than platinum by itself, then hopefully, with more research, we can figure out the minimum amount of platinum to add and still get the high activity, creating a more cost-effective catalyst.”

The findings depended on the advanced capabilities of IOS, where the researchers were able to run the experiments at gas pressures higher than what is usually possible in conventional XPS experiments.

“At IOS, we were able to follow changes in the composition and chemical state of the nanoparticles in real time during the real growth conditions,” said Waluyo.

Additional x-ray and electron imaging studies completed at the Advanced Photon Source (APS) at DOE’s Argonne National Laboratory–another DOE Office of Science User Facility–and University of California-Irvine, respectively, complemented the work at NSLS-II.

“This fundamental work highlights the significant role of segregated nickel in forming the octahedral-shaped catalyst. We have achieved more insight into shape control of catalyst nanoparticles,” Peng said. “Our next step is to study catalytic properties of the faceted nanoparticles to understand the structure-property correlation.”

Atomic-scale capillaries block smallest ions thanks to Graphene – Structures are ideal in Desalination and Filtration Technologies

graphene atomicscalec de sal                                       Credit: University of Manchester


** See More About Graphene (YouTube Video) and Desalination at the end of this article **

Researchers at The University of Manchester’s National Graphene Institute in the UK have succeeded in making artificial channels just one atom in size for the first time. The new capillaries, which are very much like natural protein channels such as aquaporins, are small enough to block the flow of smallest ions like Na+ and Cl- but allow water to flow through freely. As well as improving our fundamental understanding of molecular transport at the atomic scale, and especially in biological systems, the structures could be ideal in desalination and filtration technologies.

“Obviously, it is impossible to make capillaries smaller than one atom in size,” explains team leader Sir Andre Geim. “Our feat seemed nigh on impossible, even in hindsight, and it was difficult to imagine such tiny capillaries just a couple of years ago.”

Naturally occurring protein channels, such as aquaporins, allow water to quickly permeate through them but block hydrated ions larger than around 7 A in size thanks to mechanisms like steric (size) exclusion and electrostatic repulsion. Researchers have been trying to make artificial capillaries that work just like their natural counterparts, but despite much progress in creating nanoscale pores and nanotubes, all such structures to date have still been much bigger than biological channels.

Geim and colleagues have now fabricated channels that are around just 3.4 A in height. This is about half the size of the smallest hydrated ions, such as K+ and Cl-, which have a diameter of 6.6 A. These channels behave just like protein channels in that they are small enough to block these ions but are sufficiently big to allow water molecules (with a diameter of around 2.8 A) to freely flow through.

The structures could, importantly, help in the development of cost-effective, high-flux filters for water desalination and related technologies – a holy grail for researchers in the field.

Credit: University of Manchester

Atomic-scale Lego

Publishing their findings in Science the researchers made their structures using a van der Waals assembly technique, also known as “atomic-scale Lego”, which was invented thanks to research on graphene. “We cleave atomically flat nanocrystals just 50 and 200 nanometre in thickness from bulk graphite and then place strips of monolayer graphene onto the surface of these nanocrystals,” explains Dr. Radha Boya, a co-author of the research paper. “These strips serve as spacers between the two crystals when a similar atomically-flat crystal is subsequently placed on top. The resulting trilayer assembly can be viewed as a pair of edge dislocations connected with a flat void in between. This space can accommodate only one atomic layer of water.”

Using the  monolayers as spacers is a first and this is what makes the new channels different from any previous structures, she says.

The Manchester scientists designed their 2-D capillaries to be 130 nm wide and several microns in length. They assembled them atop a silicon nitride membrane that separated two isolated containers to ensure that the channels were the only pathway through which water and ions could flow.

Until now, researchers had only been able to measure water flowing though capillaries that had much thicker spacers (around 6.7 A high). And while some of their  indicated that smaller 2-D cavities should collapse because of van der Waals attraction between the opposite walls, other calculations pointed to the fact that  inside the slits could actually act as a support and prevent even one-atom-high slits (just 3.4 A tall) from falling down. This is indeed what the Manchester team has now found in its experiments.

Measuring water and ion flow

“We measured water permeation through our channels using a technique known as gravimetry,” says Radha. “Here, we allow water in a small sealed container to evaporate exclusively through the capillaries and we then accurately measure (to microgram precision) how much weight the container loses over a period of several hours.”

To do this, the researchers say they built a large number of channels (over a hundred) in parallel to increase the sensitivity of their measurements. They also used thicker top crystals to prevent sagging, and clipped the top opening of the capillaries (using plasma etching) to remove any potential blockages by thin edges present here.

To measure ion flow, they forced ions to move through the capillaries by applying an electric field and then measured the resulting currents. “If our capillaries were two atoms high, we found that small ions can move freely though them, just like what happens in bulk water,” says Radha. “In contrast, no ions could pass through our ultimately-small one-atom-high channels.

“The exception was protons, which are known to move through water as true subatomic particles, rather than ions dressed up in relatively large hydration shells several angstroms in diameter. Our channels thus block all hydrated ions but allow protons to pass.”

Since these  behave in the same way as protein channels, they will be important for better understanding how water and ions behave on the molecular scale – as in angstrom-scale biological filters. “Our work (both present and previous) shows that atomically-confined water has very different properties from those of bulk ,” explains Geim. “For example, it becomes strongly layered, has a different structure, and exhibits radically dissimilar dielectric properties.”

 Explore further: Devices made from 2-D materials separate salts in seawater

More information: Dorri Halbertal et al. Imaging resonant dissipation from individual atomic defects in graphene, Science (2017). DOI: 10.1126/science.aan0877 ,

Want to Read More About Cutting Edge Desalination, Energy Storage and Carbon Nanotubes?

opt-cnts-for-water-wang-mutha-nanotubes_0MIT: Optimizing carbon nanotube electrodes for energy storage and water desalination applications




Graphene for Water Desalination


Water, one of the world’s most abundant and highly demanded resources for sustaining life, agriculture, and industry, is being contaminated globally or is unsafe for drinking, creating a need for new and better desalination methods. Current desalination methods have high financial, energy, construction, and operating costs, resulting in them contributing to less than 1% of the world’s reserve water supplies. Advances in nanoscale science and engineering suggest that more cost effective and environmentally friendly desalination process using graphene is possible …

Argonne National Laboratory – A New Membrane Discovery Makes Hydrogen Fuel from Water and Sunlight

hydrogen membrane discoveryada
Two membrane-bound protein complexes that work together with a synthetic catalyst to produce hydrogen from water. Credit: Olivia Johnson and Lisa Utschig

A chemical reaction pathway central to plant biology have been adapted to form the backbone of a new process that converts water into hydrogen fuel using energy from the sun.

argonne nlIn a recent study from the U.S. Department of Energy’s (DOE) Argonne National Laboratory, scientists have combined two -bound protein complexes to perform a complete conversion of water molecules to  and oxygen.

The work builds on an earlier study that examined one of these protein complexes, called Photosystem I, a membrane protein that can use energy from light to feed electrons to an inorganic  that makes hydrogen. This part of the reaction, however, represents only half of the overall process needed for hydrogen generation.

By using a second  that uses energy from light to split water and take electrons from it, called Photosystem II, Argonne chemist Lisa Utschig and her colleagues were able to take electrons from water and feed them to Photosystem I.

“The beauty of this design is in its simplicity—you can self-assemble the catalyst with the natural membrane to do the chemistry you want”—Lisa Utschig, Argonne chemist

In an earlier experiment, the researchers provided Photosystem I with electrons from a sacrificial electron donor. “The trick was how to get two electrons to the catalyst in fast succession,” Utschig said.

The two protein complexes are embedded in , like those found inside the oxygen-creating chloroplasts in higher plants. “The membrane, which we have taken directly from nature, is essential for pairing the two photosystems,” Utschig said. “It structurally supports both of them simultaneously and provides a direct pathway for inter- electron transfer, but doesn’t impede catalyst binding to Photosystem I.”

According to Utschig, the Z-scheme—which is the technical name for the light-triggered electron transport chain of natural photosynthesis that occurs in the thylakoid membrane—and the synthetic catalyst come together quite elegantly. “The beauty of this design is in its simplicity—you can self-assemble the catalyst with the natural membrane to do the chemistry you want,” she said.

One additional improvement involved the substitution of cobalt or nickel-containing catalysts for the expensive platinum catalyst that had been used in the earlier study. The new cobalt or nickel catalysts could dramatically reduce potential costs.

The next step for the research, according to Utschig, involves incorporating the membrane-bound Z-scheme into a living system. “Once we have an in vivo system—one in which the process is happening in a living organism—we will really be able to see the rubber hitting the road in terms of hydrogen production,” she said.

 Explore further: New research sheds light on photosynthesis and creation of solar fuel

More information: Lisa M. Utschig et al, Z-scheme solar water splitting via self-assembly of photosystem I-catalyst hybrids in thylakoid membranes, Chemical Science (2018). DOI: 10.1039/c8sc02841a


Los Alamos National Laboratory – Stable light from ‘squashed’ Quantum Dots provide viable alternative to presently employed nanoscale light sources used in the Commercialization of quantum-dot displays, TV’s and more …

Novel colloidal quantum dots are formed of an emitting cadmium/selenium (Cd/Se) core enclosed into a compositionally graded CdxZn1-xSe shell wherein the fraction of zinc versus cadmium increases towards the dot’s periphery. Due to a …more


” The new colloidal processing techniques allow for preparation of virtually ideal quantum-dot emitters with nearly 100 percent emission quantum yields shown for a wide range of visible, infrared and ultraviolet wavelengths. These advances have been exploited in a variety of light-emission technologies, resulting in successful commercialization of quantum-dot displays and TV sets … “

Intentionally “squashing” colloidal quantum dots during chemical synthesis creates dots capable of stable, “blink-free” light emission that is fully comparable with the light produced by dots made with more complex processes. The squashed dots emit spectrally narrow light with a highly stable intensity and a non-fluctuating emission energy. New research at Los Alamos National Laboratory suggests that the strained colloidal quantum dots represent a viable alternative to presently employed nanoscale light sources, and they deserve exploration as single-particle, nanoscale light sources for optical “quantum” circuits, ultrasensitive sensors, and medical diagnostics.

squashed quantum dot morestableli

“In addition to exhibiting greatly improved performance over traditional produced , these new strained dots could offer unprecedented flexibility in manipulating their emission color, in combination with the unusually narrow, ‘subthermal’ linewidth,” said Victor Klimov, lead Los Alamos researcher on the project. “The squashed dots also show compatibility with virtually any substrate or embedding medium as well as various chemical and biological environments.”

The new colloidal processing techniques allow for preparation of virtually ideal quantum-dot emitters with nearly 100 percent emission quantum yields shown for a wide range of visible, infrared and ultraviolet wavelengths. These advances have been exploited in a variety of light-emission technologies, resulting in successful commercialization of quantum-dot displays and TV sets.

The next frontier is exploration of  as single-particle, nanoscale light sources. Such future “single-dot” technologies would require particles with highly stable, nonfluctuating spectral characteristics. Recently, there has been considerable progress in eliminating random variations in emission intensity by protecting a small emitting core with an especially thick outer layer. However, these thick-shell structures still exhibit strong fluctuations in emission spectra.

los alamos xlosalamoslogo.png.pagespeed.ic.w4zn0ixzm6In a new publication in the journal Nature Materials, Los Alamos researchers demonstrated that spectral fluctuations in single-dot emission can be nearly completely suppressed by applying a new method of “strain engineering.” The key in this approach is to combine in a core/shell motif two semiconductors with directionally asymmetric lattice mismatch, which results in anisotropic compression of the emitting core.

This modifies the structures of electronic states of a  dot and thereby its  emitting properties. One implication of these changes is the realization of the regime of local charge neutrality of the emitting “exciton” state, which greatly reduces its coupling to lattice vibrations and fluctuating electrostatic environment, key to suppressing fluctuations in the emitted spectrum. An additional benefit of the modified electronic structures is dramatic narrowing of the  linewidth, which becomes smaller than the room-temperature thermal energy.

 Explore further: Sandwich structure of nanocrystals as quantum light source

More information: Young-Shin Park et al, Asymmetrically strained quantum dots with non-fluctuating single-dot emission spectra and subthermal room-temperature linewidths, Nature Materials (2018). DOI: 10.1038/s41563-018-0254-7


Washington State U – Bio-inspired nanoscale Research – Nano-Flowers may lead lead to more effective drug delivery and diagnostics for cancer and other illnesses

bio inspired drug delivery 190110141800_1_540x360
Schematic representation of the movement of the flower-like particle as it makes its way through a cellular trap to deliver therapeutic genes.
Credit: WSU

Washington State University researchers have developed a novel way to deliver drugs and therapies into cells at the nanoscale without causing toxic effects that have stymied other such efforts.

The work could someday lead to more effective therapies and diagnostics for cancer and other illnesses.

Led by Yuehe Lin, professor in WSU’s School of Mechanical and Materials Engineering, and Chunlong Chen, senior scientist at the Department of Energy’s Pacific Northwest National Laboratory (PNNL), the research team developed biologically inspired materials at the nanoscale that were able to effectively deliver model therapeutic genes into tumor cells. They published their results in the journal, Small.

Researchers have been working to develop nanomaterials that can effectively carry therapeutic genes directly into the cells for the treatment of diseases such as cancer. The key issues for gene delivery using nanomaterials are their low delivery efficiency of medicine and potential toxicity.

“To develop nanotechnology for medical purposes, the first thing to consider is toxicity — That is the first concern for doctors,” said Lin.

The flower-like particle the WSU and PNNL team developed is about 150 nanometers in size, or about one thousand times smaller than the width of a piece of paper. It is made of sheets of peptoids, which are similar to natural peptides that make up proteins. The peptoids make for a good drug delivery particle because they’re fairly easy to synthesize and, because they’re similar to natural biological materials, work well in biological systems.

The researchers added fluorescent probes in their peptoid nanoflowers, so they could trace them as they made their way through cells, and they added the element fluorine, which helped the nanoflowers more easily escape from tricky cellular traps that often impede drug delivery.

The flower-like particles loaded with therapeutic genes were able to make their way smoothly out of the predicted cellular trap, enter the heart of the cell, and release their drug there.

“The nanoflowers successfully and rapidly escaped (the cell trap) and exhibited minimal cytotoxicity,” said Lin.

After their initial testing with model drug molecules, the researchers hope to conduct further studies using real medicines.

“This paves a new way for us to develop nanocargoes that can efficiently deliver drug molecules into the cell and offers new opportunities for targeted gene therapies,” he said.

The WSU and PNNL team have filed a patent application for the new technology, and they are seeking industrial partners for further development.

Story Source:

Materials provided by Washington State UniversityNote: Content may be edited for style and length.

Journal Reference:

  1. Yang Song, Mingming Wang, Suiqiong Li, Haibao Jin, Xiaoli Cai, Dan Du, He Li, Chun-Long Chen, Yuehe Lin. Efficient Cytosolic Delivery Using Crystalline Nanoflowers Assembled from Fluorinated PeptoidsSmall, 2018; 14 (52): 1803544 DOI: 10.1002/smll.201803544

University of Michigan: Synthetic Nano-Cartilage could be key to safe ‘structural batteries’ – Extending Battery Capability

battery stuctural 190110141653_1_540x360
Your knees and your smartphone battery have some surprisingly similar needs, a University of Michigan professor has discovered, and that new insight has led to a ‘structural battery’ prototype that incorporates a cartilage-like material to make the batteries highly durable and easy to shape. Credit: Evan Doughtry

Your knees and your smartphone battery have some surprisingly similar needs, a University of Michigan professor has discovered, and that new insight has led to a “structural battery” prototype that incorporates a cartilage-like material to make the batteries highly durable and easy to shape.

The idea behind structural batteries is to store energy in structural components — the wing of a drone or the bumper of an electric vehicle, for example. They’ve been a long-term goal for researchers and industry because they could reduce weight and extend range. But structural batteries have so far been heavy, short-lived or unsafe.

In a study published in ACS Nano, the researchers describe how they made a damage-resistant rechargeable zinc battery with a cartilage-like solid electrolyte. They showed that the batteries can replace the top casings of several commercial drones. The prototype cells can run for more than 100 cycles at 90 percent capacity, and withstand hard impacts and even stabbing without losing voltage or starting a fire.Military drone images

“A battery that is also a structural component has to be light, strong, safe and have high capacity. Unfortunately, these requirements are often mutually exclusive,” said Nicholas Kotov, the Joseph B. and Florence V. Cejka Professor of Engineering, who led the research.

Harnessing the properties of cartilage

To sidestep these trade-offs, the researchers used zinc — a legitimate structural material — and branched nanofibers that resemble the collagen fibers of cartilage.

“Nature does not have zinc batteries, but it had to solve a similar problem,” Kotov said. “Cartilage turned out to be a perfect prototype for an ion-transporting material in batteries. It has amazing mechanics, and it serves us for a very long time compared to how thin it is. The same qualities are needed from solid electrolytes separating cathodes and anodes in batteries.”

In our bodies, cartilage combines mechanical strength and durability with the ability to let water, nutrients and other materials move through it. These qualities are nearly identical to those of a good solid electrolyte, which has to resist damage from dendrites while also letting ions flow from one electrode to the other.

batteries of any shape 5beececb7a979

Read More: A Way to Make Batteries in Almost Any Shape (Form)

Dendrites are tendrils of metal that pierce the separator between the electrodes and create a fast lane for electrons, shorting the circuit and potentially causing a fire. Zinc has previously been overlooked for rechargeable batteries because it tends to short out after just a few charge/discharge cycles.

Not only can the membranes made by Kotov’s team ferry zinc ions between the electrodes, they can also stop zinc’s piercing dendrites. Like cartilage, the membranes are composed of ultrastrong nanofibers interwoven with a softer ion-friendly material.

In the batteries, aramid nanofibers — the stuff in bulletproof vests — stand in for collagen, with polyethylene oxide (a chain-like, carbon-based molecule) and a zinc salt replacing soft components of cartilage.

Demonstrating safety and utility

To make working cells, the team paired the zinc electrodes with manganese oxide — the combination found in standard alkaline batteries. But in the rechargeable batteries, the cartilage-like membrane replaces the standard separator and alkaline electrolyte. As secondary batteries on drones, the zinc cells can extend the flight time by 5 to 25 percent — depending on the battery size, mass of the drone and flight conditions.

Safety is critical to structural batteries, so the team deliberately damaged their cells by stabbing them with a knife. In spite of multiple “wounds,” the battery continued to discharge close to its design voltage. This is possible because there is no liquid to leak out.

For now, the zinc batteries are best as secondary power sources because they can’t charge and discharge as quickly as their lithium ion brethren. But Kotov’s team intends to explore whether there is a better partner electrode that could improve the speed and longevity of zinc rechargeable batteries.

The research was supported by the Air Force Office of Scientific Research and National Science Foundation. Kotov teaches in the Department of Chemical Engineering. He is also a professor of materials science and engineering, and macromolecular science and engineering.

Story Source:

Materials provided by University of MichiganNote: Content may be edited for style and length.

Journal Reference:

  1. Mingqiang Wang, Ahmet Emre, Siu On Tung, Alycia Gerber, Dandan Wang, Yudong Huang, Volkan Cecen, Nicholas A. Kotov. Biomimetic Solid-State Zn2 Electrolyte for Corrugated Structural BatteriesACS Nano, 2019; DOI: 10.1021/acsnano.8b05068

Chinese Company Unveils ‘World’s Cheapest Electric Car’ for Under $9,000

china cheap ev 9k ddd-1024x555


Elon Musk’s Tesla Inc. arguably has one of the most affordable lines of electric vehicle, but that all could change as a Chinese company just unveiled what is now dubbed as the “World’s Cheapest Electric Car.”

Great Wall Motors, an automotive company based in Baoding, China, pulled the veil on its cheapest electric vehicle called the ORA R1, which is being marketed with a price of $8,680 according to the company, Express reported.

As a new market entrant, ORA R1 delivers an unprecedented experience to drivers,” general manager of the Ora line and vice president of Great Wall Motors, Ning Shuyong, said in a statement.

“ORA replaces the traditional sales, service, spare parts and surveys (4S) dealership-centered model that is common in China with a network consisting of ORA Home, experience centers and smart outlets in the central business districts of Chinese cities.”

“In addition, the big data cloud that is created as the result of the information collected from the ORA app, the ORA shopping site and the Tmall e-shop opens the way to the development of multiple scenarios for offline sales and services as well as new transportation services for both drivers and passengers.”

Waking up the vehicle is as easy as a simple greeting of “Hello, ORA” thanks to its artificial intelligence system, Mashable said. Its body is also said to be made out of 60% high-strength steel.

The car will come with a three-year or 120,000 kilometer (74,564 mile) guarantee for the entire vehicle while its components have an eight-year (93,205 miles) guarantee. So far Great Wall Motor is only selling the ORA R1 in China, but they’ve shown interest in bringing the cheapest electric car to other countries as well, Electrek reported.

Images screenshot via YouTube / MOTOTREND