A Conversation with a ‘Nano – Entrepreneur’ – Advanced Materials Company Veelo Technologies: National Nanotechnology Initiative


NNI 1 11752-0309102235-450
*** Genesis Nanotechnology, Inc. is embarking on a series Interviews and Articles featuring ‘Nano Entrepreneurs’ and University Innovators – their journeys and their stories. To that end we thought to first introduce to our readers the Nanotechnology Entrepreneurship Network (NEN) as resource. You can also Follow Us On Twitter for Updates Twitter Icon 042616.jpg

 

NNI (National Nanotechnology Initiative) is pleased to launch a new community of interest to support entrepreneurs interested in commercializing nanotechnologies. The Nanotechnology Entrepreneurship Network (NEN) brings new and seasoned entrepreneurs together with the people and resources available to support them.

This emerging network will create a forum for sharing best practices for advancing nanotechnology commercialization and the lessons learned along the technology development pathway. Activities are likely to include a monthly podcast series, webinars, workshops, and town hall discussions.

To kick things off, the inaugural podcast in this series features a conversation between NNCO Director Lisa Friedersdorf and Joe Sprengard, CEO and Founder of Veelo Technologies. Joe talks about his journey as an entrepreneur and shares the advice he received when he was getting started. Check back here for more information, and contact nen@nnco.nano.gov if you would like to join the conversation!

We hope you enjoy watching the Video Below:

More About Veelo Technologies: General Nano manufactures Veelo™, a new-class of lightweight, conductive, multifunctional materials that improve the Size, Weight and Power (SWaP) of next generation air vehicles, including aircraft, rotorcraft, unmanned aerial vehicles (UAV), satellites, and missiles.

Read The Full Story Here

New Carbon Membrane Generates a Hundred Times More Power – Opens up New Possibilities for Power Generation, Desalination and More Efficient Fuel Cells


Graphene-filter

A new carbon membrane could someday be used in commercial desalination plants

Leiden chemists have created a new ultrathin membrane only one molecule thick. The membrane can produce a hundred times more power from seawater than the best membranes used today. The researchers have published their findings in Nature Nanotechnology.

Thin and porous

When fresh and saltwater meet, an exchange of salt and other particles takes place. A  placed in water is able to harness energy from particles moving from one side to the other. A similar process can also be used to desalinate seawater. Leiden chemists have developed a new membrane that can produce a hundred times more energy than classic membranes and known prototype membranes in scientific literature.

How much power is generated depends on the thickness of the membrane and how porous it is. Researchers were able to create a carbon based membrane that is both porous and thin. That is why it can produce more energy than current membranes, which are either porous or thin, but not both.

newcarbonmem Credit: Xue Liu

To create this new membrane, Xue Liu and Grégory Schneider spread a large number of oily molecules on a water surface. These molecular building blocks then form a thin film on their own. By heating the film, the molecules are locked in place, creating a stable and porous membrane. According to Xue Liu, the membrane can be adapted for specific requirements. Liu: “The membrane we’ve created is only two nanometers thick and permeable to potassium ions. We can change the properties of the membrane by using a different molecular building block. That way we can adapt it to suit any need.”

Graphene

The new carbon membrane is similar to graphene, a large flat membrane made up of only carbon atoms. But according to Grégory Schneider, this new membrane is in a whole different category. Schneider: “When making a membrane, a lot of researchers start out with graphene, which is very thin, but not porous. They then try to punch holes in it to make more permeable. We’ve done the reverse by assembling small molecules and building a larger porous membrane from those . Compared to , it contains imperfections, but that’s what gives it its special properties.”

This new membrane combines the best of both worlds. Schneider: “Much of the research in this field was focused on creating better catalysts, membranes were somewhat of a dead end. This new discovery opens up whole new possibilities for , desalination and for  much more efficient fuel cells.”


Explore further

Water desalination picks up the pace


More information: Xue Liu et al. Power generation by reverse electrodialysis in a single-layer nanoporous membrane made from core–rim polycyclic aromatic hydrocarbons, Nature Nanotechnology (2020). DOI: 10.1038/s41565-020-0641-5

Journal information: Nature Nanotechnology

Scientists create ‘most effective anti-coronavirus spray’


Coronavirus cases continue to climb, with 120,000+ cases and 4,000+ deaths confirmed around the world. Now a revolutionary spray has arrived, guaranteed to completely sanitise home surfaces for five years.

Coronavirus is a hardy virus capable of lingering on surfaces for a week at the very least. But the release of a revolutionary new anti-coronavirus product promises to prevent the spread of the deadly pathogen.

Antimicrobial spray MVX Protex uses the latest nanotechnology to protect homes and hospitals against the growing coronavirus threat. The spray, developed in Japan by nanotechnology company Nanotera Group, has just been licensed in the UK.

Saba Yussouf, Director of NanoTera Group revealed how the patented and proved tech works. She said: “This technology is a spray that coats any hard or soft surface except human skin, and it can kill bacteria fungus and viruses.

“After you spray our solution on a surface and wait an hour to wait for it to dry, any pathogen – any bacteria, virus or fungus – when it touches the surface cannot spread any further and dies. We don’t go into the cell of the bacteria or the virus and kill it, which is far more complicated.”

“What we do is actually destroy their ability to attach to a host cell, which is how viruses, bacteria and fungus spread. “They need a host cell to get inside this membrane, but we don’t allow that to happen.”

The technology, which is being increasingly used by dental practices in London can be used on various surfaces including furniture, digital devices and textiles. Once the EPA-certified nanocoating has been sprayed, there is no need to disinfect it for another five years. The cost is $3,000 per hundred square metres, which when split over five years, is approximately $600 a year.

Ms Yussouf added: “It’s alarming so few locations in the UK are using this spray to sanitise and help prevent life-threatening viruses such as coronavirus.”

Dr Jeremy Ramsden, Professor of Nanotechnology at The University of Buckingham’s Clore Laboratory, said: “The recent outbreaks of Coronavirus with the prospect of a far more serious epidemic, highlights the need to diminish the environmental burden of viruses.

“It is a relief that the UK has joined other countries and licensed this spray but we certainly need to educate people on the ease of being able to keep surfaces continuously sterile without the need for further intervention.”

Ms Yussouf believes this spray should be the first line of defence, should the coronavirus outbreak become a pandemic, as some experts fear.

She said: “The NHS should make this tool available on the NHS considering we’re on the verge of a pandemic. If it’s not contained properly, it could keep going for a long time even when an antiviral shot arrives, because there are many strains and mutations.”

“We should start with making it compulsory in NHS hospitals, I think that’s a good start as there are many very old and young people in these hospitals. It’s recommended staff decontaminate surfaces five times a day and that’s a lot of costs and a lot of labour. So, imagine not needing to do it at all for a fraction of the time and fraction of the cost, which is where we can come in and help.”

A New Electric Turbine could Revolutionize the Future of Electric Cars


Conceptual futuristic sports car - design is generic and custom made.

        A Look Into the Future of Electric Turbine Cars

In the past two years, companies have promised electric motors producing far more torque density, measured in kilowatts per kilogram. Avid said its Evo Axial Flux motor makes “one of the highest usable power and torque densities of any electric vehicle motor available on the market today.” Equipmake says its motors develop “class leading power densities.” Yasa claims its “electric motors … provide the highest power/torque density available in their category.”

Enter Linear Labs, which says it has a motor to beat all. The company declares its Hunstable Electric Turbine (HET), perhaps with unintentional shades of Ayn Rand, “The Motor of the World.”

Watch The Video

 

The company told Autoblog, “The defining characteristic of this motor [is that] at very low RPMs … [for] the same size, same weight, same volume, and the same amount of input energy into the motor, we will always produce – at a minimum, sometimes more, but at a minimum – two to three times the torque output of any electric motor in the world, and it does this at high efficiency throughout the torque and speed range.”

“Hunstable” comes from the two principals: Fred Hunstable, an engineer who spent years designing the electrical infrastructure for nuclear power plants in the United States; and Brad Hunstable, Fred’s son and an ex-tech entrepreneur who helped found the streaming service Ustream, sold to IBM in 2016 for $150 million.

Linear Labs began as a father-son project to create a linear generator surrounding the shaft of an old-fashioned windmill that would provide reliable power (as well as clean water) to impoverished communities. The challenge was designing a generator able to produce sufficient power from the shaft’s low-speed, high-torque reciprocating movement. Brad said his father cracked the code about four years ago, resulting in “a linear generator that produced massive amounts of electricity from a slow-moving windmill.” What’s more, the breakthrough was modular, leading to a family of motors that has been issued 25 patents so far.

E Engine 7 download

What is the Hunstable Electric Turbine?

Electric motors are well into their second century, having barely changed since Nikola Tesla patented his innovations with the modern three-phase, four-pole induction motor between 1886 and 1889. While all motors consist of similar fundamental components – copper wire coils known as windings, and magnets – the way in which those components interact is slightly different. In a radial flux motor, one component spins within the other – imagine a small can spinning inside a larger stationary one. In an axial flux design, the components spin next to each other, like two flywheels sandwiching a central, stationary plate.

Typically, the way to create more torque is to send more current into a motor or build a larger motor. Linear Labs has found another way: by combining axial and radial flux designs in a single motor.

E Engine 2 download

Images: Stators and Rotors

E Engine 3 download

Copper Windings Inside the Huntstable Electric Turbine: Illustrations by Linear Labs

The HET is four rotors surrounding a stator. A central rotor spins inside a stator, creating one source of flux. A second rotor spins outside the stator, creating a second source of flux. Two additional rotors lie at the left and right ends of the stator, essentially forming an AF motor. That’s two more sources of flux, making four in total. It’s essentially two concentric radial motors bookended by two axial ones.

Linear Labs says all the HET generates all torque in the direction of rotor motion. In a promotional video, Fred Hunstable said, “We call it circumferential flux, sort of like a torque tunnel.”

Generating more torque in a given volume, and having all of that torque move in the direction of rotor motion, is how the Hunstables claim, “two to three times the torque for that size envelope compared to any other motor out there. It doesn’t matter what kind [of motor] it is, we will always out-produce it.”

Furthermore, by using discrete rectangular coils inset into the stator poles, the HET needs 30% less copper than a motor of similar size. The design also eliminates end windings – lengths of copper that lie outside the stator in a typical motor, generating wasted magnetic field and heat.

 

E Engine 4 download

Illustration by Linear Labs

What the HET could mean for future electric cars

So far, Linear Labs has inked deals with a scooter maker, with Swedish electric drive system firm Abtery, and with an unnamed firm designing a hypercar to be released within two years, utilizing four HETs. However, Brad Hunstable thinks the HET could have applications in the electric vehicle space, since the HET’s torque comes at RPMs that match the end use. Current EV motors spin much faster than the wheels, so most EVs use a reduction gear to connect a motor spinning at several thousand RPM with wheels spinning at anywhere from one to perhaps 1,800 RPM. If the HET generates the necessary torque at RPMs that match wheel speed, a carmaker could theoretically discard the reduction gear, reducing weight and improving powertrain efficiency.

Brad said testing has shown the HET in direct-drive configuration works in applications normally served by a 6:1 reduction gearbox, and it’s possible that the ratio is even higher. The downstream effects could be significant, according to Hunstable. That weight savings – the lower operating speed of the HET means fewer and lighter electronics, the company says – and efficiency gain could be used to reduce the size of the battery and thus the weight of the vehicle, saving cash and letting the manufacturer use lighter-duty components – perhaps enough to make a significant difference to the bottom line, Hunstable thinks.

The HET can also take over the role of a component known as a DC/DC boost converter, used in some EVs in situations in which the vehicle needs to trade torque for horsepower, such as during hard acceleration at highway speeds. By doing so, they use additional energy that can’t be put towards range. In general terms, EVs that emphasize performance use a boost converter, like the Tesla Model S, while ones that emphasize efficiency don’t, like the Hyundai Ioniq EV. (It should be noted that some hybrids, such as Toyota and Lexus hybrids, utilize boost converters to goose acceleration.)

Linear Labs says the HET does the job of the DC/DC boost converter on its own by changing the relative position of one or more of its four rotors, analogous to the variable cam system on an ICE, altering position depending on load needs. Combining the extra torque, reduced weight and complexity possible without a gearbox or boost converter, and lighter ancillaries, Linear Labs claims the HET could increase range by 10%.

EE Engine 5 f4ce5aa5ea15a6534bba0f190319a14d

A carmaker says …

No automaker will address claims by a company it has never heard of about a component it has never used. Still, we wanted to get OEM commentary to compare to Linear Labs’ statements. We contacted ChevroletTesla, and Hyundai. Only Hyundai agreed to a Q&A, connecting us with Jerome Gregeois, a senior manager at a Hyundai Group powertrain facility, and Ryan Miller, the manager for Hyundai’s electrified powertrain development team.

Gregeois said OEMs invest so much in batteries because they’re “so much more expensive than any of the [other] components,” and there’s so much more efficiency to be extracted from battery chemistry. Therefore, “The only way to reach competitive pricing compared to internal combustion engines or hybrids is really to get battery costs lower and lower.”

Concerning motors, Miller said, “Our focus and the industry’s focus on motors has been transitioning to silicon-carbide-based motor inverters.” The motor inverter converts the battery pack’s direct current (DC) into the alternating current (AC) used to power the electric motors that provide drive to the vehicle. Under regenerative braking, the motor inverter does the opposite – turning AC from the motors back into DC to recharge the battery. Silicon carbide technology, which the IEEE called “Smaller, faster, tougher,” is seen as enabling something like a 50% reduction in inverter volume.

E Engine 5

View photos Illustration courtesy Hyundai

Miller told us the permanent magnet motor in the Hyundai Ioniq is about 50 kilograms, or 110 pounds. The gearbox, which contains a final drive and a differential, is about 70 pounds. “It’s not light,” he said, “because gears are generally steel.” As for volume, the gearbox occupies about 70% of the volume of the motor.

We asked Gregeois and Miller if a direct-drive motor that allowed elimination of the gearbox would make an enormous difference in cost or complexity of the powertrain. Said Gregeois, “We think cost-wise that gearbox is going to be cheaper than two motors.” Miller added, “Steel and aluminum is very cheap.”

One automaker example doesn’t negate the benefits of the Hunstable Electric Turbine, and Brad Hunstable believes the savings are there. “Every drivetrain can be designed and engineered multiple ways,” he said. “But if you have two motors that produce twice the torque in half the size as one conventional motor that must utilize a gearbox, then there is no comparison. HET wins. Of course, for the short-term mass-market vehicle, one motor driving directly into the differential is the most likely scenario, still eliminating the standard … gearbox.”

And automakers are throwing money at improving their motors. Honda improved the electric motor in the Accord Hybrid by using square copper wires for the stator windings, and three magnets instead of two on the rotor. The changes are said to have added 6 pound-feet of torque and 14 horsepower.

E Engine 9A

View photos Illustration by Linear Labs

The First Inning

We asked Brad how long he thought it would be before we’d see an HET in a car like the Chevrolet Bolt. “Three or four, some say five years out … There are longer lead cycles to get into production for big companies, [but] we are in joint development agreements, we are testing with [automakers].”

There have been so many charlatans in the EV space that many of the stories we’ve read about the HET end in commenters attacking it like hyenas disemboweling a wildebeest.

“There’s a lot of smoke and mirrors in the motor space,” Brad acknowledged. “The difference in this one: We’ve built them. At the end of the day you can’t argue with something that’s built right in front of you.”

“We’re literally in the first inning of this technology,” he continued, “so there’s more things that we’ll continue to do that that’ll make this even better. But the first motors that we’re producing in the market are literally a quantum leap on everything that’s out there.”

The question, then, is whether that quantum leap makes sense from a cost and packaging perspective for the spectrum of EV manufacturers, or does it make sense primarily for luxury EV makers who can justify the HET’s cost. Can this one more efficient-yet-expensive component be countered and justified by removing a not-especially expensive thing (the gearbox) and removing some of these pretty expensive and heavy things (batteries)? Hyundai’s representatives weren’t so sure, but if this really is just the first inning for HET, perhaps more development and actual access by major manufacturers will provide the answer as the game goes on.

 

 

 

New catalyst material produces abundant Cheap Hydrogen – Using Renewable Energy (Wind, Solar) to Create and Store Cheap Clean Energy on Demand – Queensland University of Technology


new water splittinh 1 news-image New catalyst material produces abundant cheap hydrogen – QUT

QUT chemistry researchers have discovered cheaper and more efficient materials for producing hydrogen for the storage of renewable energy that could replace current water-splitting catalysts.

Professor Anthony O’Mullane said the potential for the chemical storage of renewable energy in the form of hydrogen was being investigated around the world.

“The Australian Government is interested in developing a hydrogen export industry to export our abundant renewable energy,” said Professor O’Mullane from QUT’s Science and Engineering Faculty.

Watch the Video

“In principle, hydrogen offers a way to store clean energy at a scale that is required to make the rollout of large-scale solar and wind farms as well as the export of green energy viable.

“However, current methods that use carbon sources to produce hydrogen emit carbon dioxide, a greenhouse gas that mitigates the benefits of using renewable energy from the sun and wind.

“Electrochemical water splitting driven by electricity sourced from renewable energy technology has been identified as one of the most sustainable methods of producing high-purity hydrogen.”

Professor O’Mullane said the new composite material he and PhD student Ummul Sultana had developed enabled electrochemical water splitting into hydrogen and oxygen using cheap and readily available elements as catalysts.

“Traditionally, catalysts for splitting water involve expensive precious metals such as iridium oxide, ruthenium oxide and platinum,” he said.

“An additional problem has been stability, especially for the oxygen evolution part of the process.

“What we have found is that we can use two earth-abundant cheaper alternatives – cobalt and nickel oxide with only a fraction of gold nanoparticles – to create a stable bi-functional catalyst to split water and produce hydrogen without emissions.

“From an industry point of view, it makes a lot of sense to use one catalyst material instead of two different catalysts to produce hydrogen from water.”

Professor O’Mullane said the stored hydrogen could then be used in fuel cells.

“Fuel cells are a mature technology, already being rolled out in many makes of vehicle. They use hydrogen and oxygen as fuels to generate electricity – essentially the opposite of water splitting.

img_1672

“With a lot of cheaply ‘made’ hydrogen we can feed fuel cell-generated electricity back into the grid when required during peak demand or power our transportation system and the only thing emitted is water.”

“Gold Doping in a Layered Co-Ni Hydroxide System via Galvanic Replacement for Overall Electrochemical” was published in Advanced Functional Materials.

Water Splitting Observed on the Nanometer Scale – Max Plank Institute


At rough areas of a catalyst surface, water is split into hydrogen and oxygen in a more energy efficient way than at smooth areas. Credit: MPI-P, License CC-BY-SA

It is a well-known school experiment: Applying a voltage between two electrodes inserted in water produces molecular hydrogen and oxygen.

Researchers seek to make water splitting as energy-efficient as possible to advance industrial applications. The material of the electrode and its surface quality are crucial aspects that determine splitting efficiency. In particular, rough spots of only few nanometers in size, called reactive centers, determine the electrochemical reactivity of an electrode.

Previous investigation methods were not accurate enough to follow  taking place at such reactive centers on the electrode surface with sufficient spatial resolution under real operating conditions, i.e., in electrolyte solution at room temperature and with an applied voltage.

A team of scientists led by Dr. Katrin Domke at the MPI-P has now developed a method with which the initial steps of electrocatalytic  splitting on a  could be studied for the first time with a spatial resolution of less than 10 nm under operating conditions.

“We were able to show experimentally that surfaces with protrusions in the nanometer range split water in a more energy-efficient way than flat surfaces,” says Katrin Domke. “With our images, we can follow the catalytic activity of the reactive centers during the initial steps of water splitting.”

The researchers combined different techniques: In Raman spectroscopy, molecules are illuminated with light that they scatter. The scattered light spectrum contains information that provides a chemical fingerprint of the molecule, enabling the identification of chemical species. However, Raman spectroscopy typically produces only very weak and spatially averaged signals over hundreds or thousands of .

For this reason, the researchers combined the Raman technique with scanning tunneling microscopy. By scanning a nanometer-thin gold tip illuminated with  over the  under investigation, the Raman signal is amplified by many orders of magnitude directly at the tip apex, which acts like an antenna.

This strong enhancement effect enables the investigation of isolated molecules. Furthermore, the tight focusing of the light by the tip leads to a spatial optical resolution of less than ten nanometers. Notably, the apparatus can be operated under realistic electrocatalytic operating conditions.

“We were able to show that during water splitting at nanometer rough spots—i.e., reactive centers—two different gold oxides are formed that could represent important intermediates in the separation of the oxygen atom from the hydrogen atoms,” says Domke.

The researchers have gained more precise insights into the processes taking place on the nanometer scale on reactive surfaces, which could facilitate the design of more efficient electrocatalysts in the future that require less energy to split water into hydrogen and oxygen.

The scientists have published their results in the journal Nature Communications.

Also Watch a Video on “Water Splitting for Energy Storage”

 

More information: Jonas H. K. Pfisterer et al, Reactivity mapping of nanoscale defect chemistry under electrochemical reaction conditions, Nature Communications (2019).  DOI: 10.1038/s41467-019-13692-3

Journal information: Nature Communications

Provided by Max Planck Society

Will Tesla’s “Battery Day” mean “doomsday” for legacy carmakers playing catch-up?


A peek inside a segment of a Tesla Model 3 battery pack.

Tesla is expected to hold its Battery Day in April as Elon Musk announced during the company’s Q4 earnings call. The chief executive said the company has a “compelling story” to tell about things that can “blow people’s minds.”

These statements do not only pique the interest of the electric vehicle community; they also hint of updates that can spell disaster for legacy car manufacturers trying to catch up with Tesla in the electric vehicle market.

Batteries are key to staying on top of the electric vehicle segment and Tesla is the leader of the pack when it comes to batteries and energy efficiency. This has been validated by organizations such as Consumer Reports and even by competitors who go deep into their pockets and go as far as cutting their workforces to catch Tesla in terms of hardware, software, and battery technology.

Come Tesla Battery Day, the obvious would be made more obvious. Tesla could further widen the gap and set itself apart from the rest, not just as the maker of the Model 3, Model Y, Cybertruck or other vehicles in its lineup but as an energy company.

Mass Production Of Cheaper Batteries

Batteries are among the most expensive components of an electric vehicle. This is true for Tesla and other electric vehicle manufacturers. With pricey batteries, car manufacturers cannot lower prices of their vehicles and therefore cannot encourage the mass adoption of zero-emission cars.

Tesla has reportedly been running its “Roadrunner” secret project that can lead to mass production of battery cells at $100/kWh. According to rumors, Tesla already has a pilot manufacturing line in its Fremont facility that can produce higher-density batteries using technology advancements developed in-house and gained through the Maxwell acquisition.

With a $100/kWh battery, the prices of Tesla’s vehicles can be competitive even without government subsidies.”

Tesla Gigafactory 1, where Model 3 battery cells are produced. (Photo: Tesla)

Aside from the Roadrunner project, Tesla has also been setting itself up to succeed in the battery game and dominate the market with its partnerships. It has a long relationship with Panasonic that helped it manufacture batteries in Giga Nevada, but has also signed battery supply agreements with LG Chem and CATL in China.

Battery prices have been going down significantly in the last decade. According to BloombergNEF, the cost of batteries dropped by 13% last year. From $1,100/kWh in 2010, the price went down to around $156.kWh in 2019. This is predicted to come close to the target $100/kWh by 2023. If Tesla achieves the $100/kWH cost sooner than the rest, it will give the company a massive advantage over its competitors and that will eventually lead to better profit margins.

Aside from cheaper batteries, the increased battery production capacity is also key in bringing products such as the all-electric Cybertruck and Tesla Semi to life.

“The thing we’re going to be really focused on is increasing battery production capacity because that’s very fundamental because if you don’t improve battery production capacity, then you end up just shifting unit volume from one product to another and you haven’t actually produced more electric vehicles… make sure we get a very steep ramp in battery production and continue to improve the cost per kilowatt-hour of the batteries,” Musk said during the Q4 2019 earnings call.

Enhanced Tesla Batteries

Tesla already has good batteries through its years of research, experimentation, and partnerships with battery producers. It has invested a good amount of money and effort to make sure it’s leading the battery game.

This advantage is made very clear on how Tesla was able to produce the most efficient electric SUV today in the form of the soon-to-be-released Model Y crossover with an EPA rating of 315 miles per single charge versus the Porsche Taycan with a range of around 200 miles.

The Tesla Model Y crossover. (Credit: Tesla)

With the acquired technologies from companies such as Maxwell and recently a possible purchase of a lithium-ion battery cell specialist startup in Colorado, Tesla demonstrates it’s not stopping its efforts to perfect its battery technology. Maxwell manufactures battery components and ultracapacitors and it’s just a matter of time before Tesla makes use of these technologies.

When asked about Maxwell’s ultracapacitor technology during the Q4 2019 earnings call, Musk said, “It’s an important piece of the puzzle.”

Musk also referenced the Maxwell acquisition during an extensive interview at the Third Row Podcast. “It’s kind of a big deal. Maxwell has a bunch of technologies that if they are applied in the right way I think can have a very big impact,” Musk said during a Third Row Podcast interview.

There are rumors out of China claimingthat Tesla may come up with a battery that combines the best traits of Maxwell’s supercapacitors and dry electrode technologies. This could mean batteries that could charge faster, pack more energy density, and last longer.

Controlling Battery Supply

Knowing what works and what doesn’t for electric car batteries puts Tesla on top of the game. Of course, add to that what could be the best battery management system that makes Tesla vehicles among the most efficient if not the best in utilizing their batteries. With the advantage on hardware and software fronts, the thought of Tesla becoming a battery supplier is far from being a crazy idea.

Its competitors such as Audi and Jaguar have recently expressed concerns about their battery supplies as they both depend on LG Chem. Tesla– aside from its partnerships with Panasonic, LG Chem, and CATL — pushes the limit to develop its new battery cells in-house and that opens up a lot of possibilities for Tesla as a business.

“It would be consistent with the mission of Tesla to help other car companies with electric vehicles on the battery and powertrain front, possibly on other fronts. So it’s something we’re open to. We’re definitely open to supplying batteries and powertrains and perhaps other things to other car companies,” Musk was quoted as saying.

Recent job postings for a cell development engineer and equipment development engineers suggest that Tesla might actually be considering the idea of introducing a battery line of its own. But of course, the next-generation batteries would be first used for its vehicle lineup. Once it meets that demand and hits economies of scale, one can only imagine how Tesla could play the important role of supplying batteries to other carmakers.

Whether Tesla would announce cheaper batteries, enhanced electric car batteries, or give updates about its efforts, Battery Day in April will most definitely be worth the wait. For other car manufacturers, time would pause during that day as they listen to what Elon Musk and his team will say. And most likely, after the company talk, other car manufacturers will have to go back to their drawing boards once more in an attempt to catch up.

3D-printed ceramics – The Making of Making a Single Hypersonic Weapon


img_1663

Making a single hypersonic weapon or space launch vehicle is one thing. Mass producing them is quite another. The strong, heat-resistant ceramic components they require are extremely difficult to produce. Keith Button spoke to materials scientists who think they have the solution.

As aerospace engineers dream up new hypersonic weapons and space launch vehicles, they will need ceramic parts that can withstand temperatures as high as 2,700 degrees Celsius and drag forces of hundreds of kilograms that are encountered at speeds of Mach 5 and higher, such as on nose cones, wing leading edges and engine inlets.

The problem is: These ceramics are harder than titanium and brittle, making them tricky to work with.

Researchers at the U.S. Naval Research Laboratory are developing a method for making precise ceramic parts for hypersonic missiles and vehicles. These parts could be made by a 3D printer like this one. Credit: Cerambot

To make a ceramic part, a technician typically presses a soft clay-like material into a die to create an approximation of the desired shape, hardens it in a furnace and then grinds it down to the precise shape. This milling process can take months and result in chipped or cracked parts.

Materials engineers and chemists at the U.S. Naval Research Laboratory in Washington, D.C., are developing a 3D-printing method that could produce the precise ceramic part shape with no milling required. Components could be made by any aerospace manufacturer with a particular kind of off-the-shelf commercial 3D printer, a paste of metal and polymer devised by the NRL scientists, and a furnace to cure the parts.

EARLY RESEARCH

The idea of printing ceramic parts sprang from the NRL chemistry group’s development, starting about 12 years ago, of a polymer resin powder that it mixed with various metal powders to make refractory carbides, which are a type of extremely heat-resistant ceramic. The NRL researchers made pellets from the polymer resin mixed with metals like silicon, titanium or tungsten, and then smushed the pellets with a hydraulic press and die into simple shapes. When they heated these pressed shapes in a furnace filled with argon gas at 1,500 degrees Celsius — like firing a clay pot — the polymer resin charred into carbon and reacted with the metals to form a ceramic.

The researchers investigated the 3D-printing idea because they wanted to apply their polymer-metal ceramics chemistry to more complex shapes than the discs, spheres and cones that they were making, explains Boris Dyatkin, a materials research engineer at the NRL. With the die-press method, the size and shape of the ceramic part is dictated by the die, and some shapes aren’t possible with a die press. Also, “if you need to change the dimension of the part, or if you need to change a certain geometry aspect of it, it’s more tricky to do it quickly,” he says.

With 3D printing, “you’re basically getting more customization in terms of what kind of a ceramic you can make,’’ Dyatkin says.

Another commercial off-the-shelf 3D printer compatible with ceramics is made by 3D Potter. Credit: 3D Potter

PRINTER OPTIONS

When the NRL researchers began to work in earnest on the 3D-printing concept, in 2018, they first had to decide which type of 3D printing was best. They considered lots of printer options. One possibility was fused deposition modeling. A printer head mounted on a robotic arm deposits beads of molten polymer that harden, layer upon layer, to form the object. Another candidate was powder-bed 3D printing. A laser melts specks of powder as layers of the powder are added to a box-like bed, and these specks harden together to create a structure. The shape is revealed by removing the loose powder. Or, alternatively, a printer head injects binding material into the powder to create the structure.

The researchers settled on a 3D-printing method called robocasting. They based this decision on the advice of NanoArmor, a California research and development company that pays the NRL to make the ceramics and test them for the Missile Defense Agency’s hypersonic materials development program.

Normally, these robocasting printers make items ranging from pottery with intricate lattice structures to complex-shaped concrete panels for buildings. The printer’s robotic arm moves a printer head that extrudes beads of paste that harden as they dry.

These printers were attractive, because robocasting can print larger structures than other 3D-printing methods, and it’s cheap and simple. With virtually no training, “anybody could essentially print whatever they wanted to,” says Tristan Butler, a materials chemist at the NRL.

Robocasting also opens possibilities for creating new ceramic composites. Manufacturers could add ground-up carbon fibers, in powder form, to the paste to make a carbon-fiber composite ceramic, Dyatkin says. Or, under two concepts the researchers haven’t explored yet: 1. A printer could extrude paste onto woven carbon-fiber mesh. Or, 2. Without a printer, the mesh could be dipped into a less viscous version of the paste or the liquidy paste could be poured into a mold containing the mesh. With both concepts, the combined mesh and paste would be fired in a furnace to create the composite ceramic.

Researchers have 3D-printed hollow cylinders (shown) and tapered and conical discs several centimeters high as they refine their method. Credit: U.S. Naval Research Laboratory

Their big challenge was to make a paste that would be accepted by the printer and harden into parts that would be as dense as those they had made earlier. Generally, denser ceramics are stronger and more heat resistant.

They needed a binder to hold the mix together while dispersing the metal and resin molecules evenly throughout the paste.

The paste had to be liquid enough to flow through the printer head, but once extruded it couldn’t be too damp or too dry. “There’s kind of a delicate balance,” Butler says. “You don’t want it to dry too fast, because it will induce cracking. But you want it to dry quick enough that you can deposit multiple layers to build taller structures. It’s something you have to dial in.”

The key to achieving the right viscosity would be the choice of binder, which is a polymer and plasticizer that’s mixed in powdered form with the powdered resin and metal. Liquid is added to create the paste. Once a part is printed, it’s fired in a furnace to trigger the chemical reaction that turns the hardened paste into a ceramic, after burning off the binder.

The NRL researchers tried 10 to 15 binders common in 3D printing. Some were water-soluble and others alcohol-soluble. The scientists made pastes with each and created test discs. One of the water-soluble versions was chosen, because it proved best at creating a homogeneous mix of the right viscosity.

SpaceLiner is a hypersonic passenger craft concept created by the German Aerospace Center. In this illustration, the SpaceLiner orbiter separates from its reusable booster stage. Credit: German Aerospace Center

LOOKING AHEAD

At the moment, the shapes they’ve made by robocast printing are not as dense as those they’ve made with the die-pressed technique. The NRL researchers continue to search for the optimal heating rate for the furnace, meaning one that burns off the binder completely while fostering the resin and metal chemical bonds that must form to create a suitably dense ceramic. The researchers are also working toward printing objects — hollow cylinders and tapered and conical discs — that are taller and made from smaller beads of extruded paste, known as pixels in the industry. The smaller the pixels, the more precise and finely detailed the 3D-printed object can be. The NRL researchers are printing parts that are several centimeters tall made up of pixels that are just under a millimeter in diameter. They think eventually their printing method could produce parts as large as needed — building-size, in theory — of any shape. They haven’t set a pixel size target yet.

Another goal: Figuring out how to create 3D-printed ceramics that are as close as possible to the density of die-pressed ceramics. To test hardness, they employ a microindentation tester. A small sample of the ceramic is placed on the device’s platform, and a pin head measuring about 100 microns in diameter presses down on the surface to a preset pressure. The larger the microscopic indentation, the softer the material.

To assess how stable and strong the material will be when heated, they examine microscopic crystals in the ceramic with the help of an X-ray diffraction machine. A sample is placed on a pressure plate in the center of the machine; an X-ray tube shoots X-ray beams at the sample while a detector behind the sample rotates through a range of angles to pick up the reflected beams. The machine churns out graphs depicting the angles at which the X-rays are reflected by the crystals in the material and the intensity of the reflected X-rays. The various peaks in the graphs create signature patterns that software analyzes to identify the type and phase of metal or carbon crystals in the material, as well as size and volume of the crystals.

Another issue is that, so far, the 3D-printed ceramics have come out more porous than the pressed discs. In some cases, those microscopic gaps need to be filled to make the material denser and therefore stronger and more heat resistant. One option would be vapor infiltration. A gas in the furnace chemically reacts with the ceramic — either as it is forming or after it has formed — and fills in any pores. Another idea is to paint a solution on the 3D-printed object that would fill in the pores through a chemical reaction at lower temperatures, Butler says.

Even at this stage, the NRL researchers are thinking about how to make the process as easy as possible for aerospace manufacturers to adopt. The researchers sought advice from NanoArmor, whose executives have helped commercialize new materials and electronics technologies for several companies. Parts must be affordably mass produced, which means initial ingredients must be chosen with cost in mind. Efforts must be taken to eliminate any unnecessary steps. “We pushed down requirements about scaling up, about costs, about timing,” says Terrisa Duenas, NanoArmor chief executive. “A lot of times when you make a material, you don’t even think about how to scale it up. And it just seems like: ‘Well, we’ll multiply by three or 10 or whatever you need,’ but a lot of technologies don’t scale like that.”

Super Secret Perovskite Solar Cell Company Bursts Out Of Stealth Mode


HPT has collaborated with NREL on perovskite ink for solar cells, like this one developed by NREL researcher David Moore (Photo by Dennis Schroeder, NREL).

For the past six years, a major US oil and gas holding company has been collaborating with the National Renewable Energy Lab on new breakthrough perovskite solar cell research. What a twist!

The effort has been conducted through a relatively new division of the firm and it hasn’t attracted much attention, except that earlier this month they finally let something slip on the newswires and now the cat’s out of the bag.

Oil Company Hearts Perovskite Solar Cells

The holding company in question is Hunt Consolidated, Inc., parent of the 80-year-old privately held global oil and gas leader Hunt Oil and of a somewhat lesser known entity called Hunt Perovskite Technologies.

So, why has a major fossil fuel company been collaborating with NREL on cutting edge research leading to the next generation of low cost solar cells?

After all, other global oil and gas stakeholders are venturing into renewable energy. However, they are mainly focused on market-proven technologies that don’t disrupt their fossil fuel business, at least not for the time being.

Hunt’s new perovskite research is a whole ‘nother kettle of fish. It could have a profound, widespread impact on the energy marketplace and accelerate the transition from fossil fuels to renewables.

That’s because perovskite technology can push down solar costs far below today’s costs. Perovskite solar cells are also lighter and more flexible, which means they have a greater range of application.

For a bonus, perovskite solar cells can be “printed” with a relatively conventional high-volume manufacturing process.

Perovskite solar cells are only just beginning to edge out of the laboratory, now that researchers have finally worked out the kinks. Once they hit the shelves, they will kick the global solar market into a whole new level of activity.

As for why Hunt, last week Forbestook a crack at the mystery and noted that the current head of the family business, Hunter L. Hunt, spent the past 10 years creating and then spinning off a new high voltage power line company.

That venture, along with the company’s investment arm Hunt Energy Enterprises, indicates that Hunt Oil is looking more holistically at new high tech opportunities in the energy market aside from just digging up stuff out of the ground.

More & Better Perovskite Solar Cells

The main challenge with perovskite as a solar cell material is durability, and researchers have been trying various formulas to improve durability without sacrificing too much solar conversion efficiency.

Hunt Perovskite Technologies launched in 2013 with a focus on the perovskite durability problem, as a corporate partner of NREL.

The work came to fruit late last year, when Hunt was able to demonstrate an ink-based manufacturing process for its new solar cell, to the satisfaction of the International Electrotechnical Commission. According to Hunt, the new solar cell exceeds IEC standards for temperature, humidity, white light and ultraviolet stress while achieving a fairly impressive solar conversion efficiency of 18%.

Legacy companies like Hunt are not going to shed their fossil fuel interests willy-nilly, but in a press statement Hunter Hunt indicated that his family business is prepping for change.

“We strategically chose to develop perovskite solar several years ago; we envisioned its strategic importance as an innovative new energy technology in addressing the world’s energy needs for the future, as well playing a part in combating climate change,” he said.  “As part of the global energy transition that is occurring, our solar team is hoping to make a meaningful contribution.”

Scientists create solar panel by combining protein and quantum dots


2-sunCredit: CC0 Public Domain

Scientists at the National Research Nuclear University MEPhI (Russia) have created a new type of solar panel based on hybrid material consisting of quantum dots (QDs) and photosensitive protein. The creators believe that it has great potential for solar energy and optical computing.

The results of the MEPhI study were published in Biosensors and Bioelectronics.

Archaeal proteins of unicellular organisms, , can convert the energy of light into the energy of chemical bonds (like chlorophyll in plants). This occurs due to the transfer of a positive charge through the . Bacteriorhodopsin acts as a , which makes it a ready-to-use natural element of the solar panel.

A key difference between bacteriorhodopsin and chlorophyll is its ability to operate without oxygen, allowing the archaea to live in very aggressive environments like the depths of the Dead Sea. This ability has evolutionarily led to their high chemical, thermal, and optical stability. At the same time, by pumping protons, bacteriorhodopsin changes color many times in a billionth of a second. This is why it is a promising material for creating holographic processing units.

Scientists of MEPhI have been able to significantly improve the properties of bacteriorhodopsin by binding it to quantum dots (QDs)—semiconductor nanoparticles capable of concentrating  on a scale of just a few nanometers and transmitting it to bacteriorhodopsin without emitting light.

“We have created a highly efficient, operating photosensitive cell that generates electrical current by converting light under very low photon excitation. Under normal conditions, such a cell doesn’t work because photosensitive molecules such as bacteriorhodopsin effectively absorb light only in a very narrow energy range. But quantum dots do this in a very wide range and can even convert two lower-energy photons into one high-energy photon as if stacking them,” a researcher at MEPhI and one of the authors of the study, Viktor Krivenkov said.

According to the researcher, creating conditions for the radiation of high-energy photon, a quantum dot may not radiate it but rather transmit it to bacteriorhodopsin. Thus, MEPhI scientists have engineered a cell capable of operating under the irradiation from the near-infrared to the ultraviolet regions of the optical spectrum.

“We use an interdisciplinary approach at the intersection of chemistry, biology, particle physics and photonics. Quantum dots are produced using chemical synthesis methods, then they are coated with molecules that make their surface simultaneously biocompatible and charged, after which they are bound to the surface of the archean bacteriorhodopsin -containing purple membranes of Halobacterium salinarum. As a result, we have obtained hybrid complexes with very high (about 80%) efficiency of excitation  transfer from  to bacteriorhodopsin,” the leading scientist of the MEPhI Nano-Bioengineering Laboratory, Igor Nabiev said.

According to the researchers, the obtained results show the potential for creating highly effective photosensitive elements based on biostructures. They may be used, not only to provide , but also in optical computing.

The authors emphasized the very high quality of the bio-hybrid nanostructured material and the prospect of surpassing the best commercial samples with a possible increase in efficiency by a substantial margin. The next goal of the research team in this direction is to optimize the structure of the photosensitive cell.


Explore further

Protein changes precede photoisomerization of retinal chromophore


More information: Victor Krivenkov et al. Remarkably enhanced photoelectrical efficiency of bacteriorhodopsin in quantum dot – Purple membrane complexes under two-photon excitation, Biosensors and Bioelectronics (2019). DOI: 10.1016/j.bios.2019.05.009

Journal information: Biosensors and Bioelectronics