A New Electric Turbine could Revolutionize the Future of Electric Cars


Conceptual futuristic sports car - design is generic and custom made.

        A Look Into the Future of Electric Turbine Cars

In the past two years, companies have promised electric motors producing far more torque density, measured in kilowatts per kilogram. Avid said its Evo Axial Flux motor makes “one of the highest usable power and torque densities of any electric vehicle motor available on the market today.” Equipmake says its motors develop “class leading power densities.” Yasa claims its “electric motors … provide the highest power/torque density available in their category.”

Enter Linear Labs, which says it has a motor to beat all. The company declares its Hunstable Electric Turbine (HET), perhaps with unintentional shades of Ayn Rand, “The Motor of the World.”

Watch The Video

 

The company told Autoblog, “The defining characteristic of this motor [is that] at very low RPMs … [for] the same size, same weight, same volume, and the same amount of input energy into the motor, we will always produce – at a minimum, sometimes more, but at a minimum – two to three times the torque output of any electric motor in the world, and it does this at high efficiency throughout the torque and speed range.”

“Hunstable” comes from the two principals: Fred Hunstable, an engineer who spent years designing the electrical infrastructure for nuclear power plants in the United States; and Brad Hunstable, Fred’s son and an ex-tech entrepreneur who helped found the streaming service Ustream, sold to IBM in 2016 for $150 million.

Linear Labs began as a father-son project to create a linear generator surrounding the shaft of an old-fashioned windmill that would provide reliable power (as well as clean water) to impoverished communities. The challenge was designing a generator able to produce sufficient power from the shaft’s low-speed, high-torque reciprocating movement. Brad said his father cracked the code about four years ago, resulting in “a linear generator that produced massive amounts of electricity from a slow-moving windmill.” What’s more, the breakthrough was modular, leading to a family of motors that has been issued 25 patents so far.

E Engine 7 download

What is the Hunstable Electric Turbine?

Electric motors are well into their second century, having barely changed since Nikola Tesla patented his innovations with the modern three-phase, four-pole induction motor between 1886 and 1889. While all motors consist of similar fundamental components – copper wire coils known as windings, and magnets – the way in which those components interact is slightly different. In a radial flux motor, one component spins within the other – imagine a small can spinning inside a larger stationary one. In an axial flux design, the components spin next to each other, like two flywheels sandwiching a central, stationary plate.

Typically, the way to create more torque is to send more current into a motor or build a larger motor. Linear Labs has found another way: by combining axial and radial flux designs in a single motor.

E Engine 2 download

Images: Stators and Rotors

E Engine 3 download

Copper Windings Inside the Huntstable Electric Turbine: Illustrations by Linear Labs

The HET is four rotors surrounding a stator. A central rotor spins inside a stator, creating one source of flux. A second rotor spins outside the stator, creating a second source of flux. Two additional rotors lie at the left and right ends of the stator, essentially forming an AF motor. That’s two more sources of flux, making four in total. It’s essentially two concentric radial motors bookended by two axial ones.

Linear Labs says all the HET generates all torque in the direction of rotor motion. In a promotional video, Fred Hunstable said, “We call it circumferential flux, sort of like a torque tunnel.”

Generating more torque in a given volume, and having all of that torque move in the direction of rotor motion, is how the Hunstables claim, “two to three times the torque for that size envelope compared to any other motor out there. It doesn’t matter what kind [of motor] it is, we will always out-produce it.”

Furthermore, by using discrete rectangular coils inset into the stator poles, the HET needs 30% less copper than a motor of similar size. The design also eliminates end windings – lengths of copper that lie outside the stator in a typical motor, generating wasted magnetic field and heat.

 

E Engine 4 download

Illustration by Linear Labs

What the HET could mean for future electric cars

So far, Linear Labs has inked deals with a scooter maker, with Swedish electric drive system firm Abtery, and with an unnamed firm designing a hypercar to be released within two years, utilizing four HETs. However, Brad Hunstable thinks the HET could have applications in the electric vehicle space, since the HET’s torque comes at RPMs that match the end use. Current EV motors spin much faster than the wheels, so most EVs use a reduction gear to connect a motor spinning at several thousand RPM with wheels spinning at anywhere from one to perhaps 1,800 RPM. If the HET generates the necessary torque at RPMs that match wheel speed, a carmaker could theoretically discard the reduction gear, reducing weight and improving powertrain efficiency.

Brad said testing has shown the HET in direct-drive configuration works in applications normally served by a 6:1 reduction gearbox, and it’s possible that the ratio is even higher. The downstream effects could be significant, according to Hunstable. That weight savings – the lower operating speed of the HET means fewer and lighter electronics, the company says – and efficiency gain could be used to reduce the size of the battery and thus the weight of the vehicle, saving cash and letting the manufacturer use lighter-duty components – perhaps enough to make a significant difference to the bottom line, Hunstable thinks.

The HET can also take over the role of a component known as a DC/DC boost converter, used in some EVs in situations in which the vehicle needs to trade torque for horsepower, such as during hard acceleration at highway speeds. By doing so, they use additional energy that can’t be put towards range. In general terms, EVs that emphasize performance use a boost converter, like the Tesla Model S, while ones that emphasize efficiency don’t, like the Hyundai Ioniq EV. (It should be noted that some hybrids, such as Toyota and Lexus hybrids, utilize boost converters to goose acceleration.)

Linear Labs says the HET does the job of the DC/DC boost converter on its own by changing the relative position of one or more of its four rotors, analogous to the variable cam system on an ICE, altering position depending on load needs. Combining the extra torque, reduced weight and complexity possible without a gearbox or boost converter, and lighter ancillaries, Linear Labs claims the HET could increase range by 10%.

EE Engine 5 f4ce5aa5ea15a6534bba0f190319a14d

A carmaker says …

No automaker will address claims by a company it has never heard of about a component it has never used. Still, we wanted to get OEM commentary to compare to Linear Labs’ statements. We contacted ChevroletTesla, and Hyundai. Only Hyundai agreed to a Q&A, connecting us with Jerome Gregeois, a senior manager at a Hyundai Group powertrain facility, and Ryan Miller, the manager for Hyundai’s electrified powertrain development team.

Gregeois said OEMs invest so much in batteries because they’re “so much more expensive than any of the [other] components,” and there’s so much more efficiency to be extracted from battery chemistry. Therefore, “The only way to reach competitive pricing compared to internal combustion engines or hybrids is really to get battery costs lower and lower.”

Concerning motors, Miller said, “Our focus and the industry’s focus on motors has been transitioning to silicon-carbide-based motor inverters.” The motor inverter converts the battery pack’s direct current (DC) into the alternating current (AC) used to power the electric motors that provide drive to the vehicle. Under regenerative braking, the motor inverter does the opposite – turning AC from the motors back into DC to recharge the battery. Silicon carbide technology, which the IEEE called “Smaller, faster, tougher,” is seen as enabling something like a 50% reduction in inverter volume.

E Engine 5

View photos Illustration courtesy Hyundai

Miller told us the permanent magnet motor in the Hyundai Ioniq is about 50 kilograms, or 110 pounds. The gearbox, which contains a final drive and a differential, is about 70 pounds. “It’s not light,” he said, “because gears are generally steel.” As for volume, the gearbox occupies about 70% of the volume of the motor.

We asked Gregeois and Miller if a direct-drive motor that allowed elimination of the gearbox would make an enormous difference in cost or complexity of the powertrain. Said Gregeois, “We think cost-wise that gearbox is going to be cheaper than two motors.” Miller added, “Steel and aluminum is very cheap.”

One automaker example doesn’t negate the benefits of the Hunstable Electric Turbine, and Brad Hunstable believes the savings are there. “Every drivetrain can be designed and engineered multiple ways,” he said. “But if you have two motors that produce twice the torque in half the size as one conventional motor that must utilize a gearbox, then there is no comparison. HET wins. Of course, for the short-term mass-market vehicle, one motor driving directly into the differential is the most likely scenario, still eliminating the standard … gearbox.”

And automakers are throwing money at improving their motors. Honda improved the electric motor in the Accord Hybrid by using square copper wires for the stator windings, and three magnets instead of two on the rotor. The changes are said to have added 6 pound-feet of torque and 14 horsepower.

E Engine 9A

View photos Illustration by Linear Labs

The First Inning

We asked Brad how long he thought it would be before we’d see an HET in a car like the Chevrolet Bolt. “Three or four, some say five years out … There are longer lead cycles to get into production for big companies, [but] we are in joint development agreements, we are testing with [automakers].”

There have been so many charlatans in the EV space that many of the stories we’ve read about the HET end in commenters attacking it like hyenas disemboweling a wildebeest.

“There’s a lot of smoke and mirrors in the motor space,” Brad acknowledged. “The difference in this one: We’ve built them. At the end of the day you can’t argue with something that’s built right in front of you.”

“We’re literally in the first inning of this technology,” he continued, “so there’s more things that we’ll continue to do that that’ll make this even better. But the first motors that we’re producing in the market are literally a quantum leap on everything that’s out there.”

The question, then, is whether that quantum leap makes sense from a cost and packaging perspective for the spectrum of EV manufacturers, or does it make sense primarily for luxury EV makers who can justify the HET’s cost. Can this one more efficient-yet-expensive component be countered and justified by removing a not-especially expensive thing (the gearbox) and removing some of these pretty expensive and heavy things (batteries)? Hyundai’s representatives weren’t so sure, but if this really is just the first inning for HET, perhaps more development and actual access by major manufacturers will provide the answer as the game goes on.

 

 

 

Super Secret Perovskite Solar Cell Company Bursts Out Of Stealth Mode


HPT has collaborated with NREL on perovskite ink for solar cells, like this one developed by NREL researcher David Moore (Photo by Dennis Schroeder, NREL).

For the past six years, a major US oil and gas holding company has been collaborating with the National Renewable Energy Lab on new breakthrough perovskite solar cell research. What a twist!

The effort has been conducted through a relatively new division of the firm and it hasn’t attracted much attention, except that earlier this month they finally let something slip on the newswires and now the cat’s out of the bag.

Oil Company Hearts Perovskite Solar Cells

The holding company in question is Hunt Consolidated, Inc., parent of the 80-year-old privately held global oil and gas leader Hunt Oil and of a somewhat lesser known entity called Hunt Perovskite Technologies.

So, why has a major fossil fuel company been collaborating with NREL on cutting edge research leading to the next generation of low cost solar cells?

After all, other global oil and gas stakeholders are venturing into renewable energy. However, they are mainly focused on market-proven technologies that don’t disrupt their fossil fuel business, at least not for the time being.

Hunt’s new perovskite research is a whole ‘nother kettle of fish. It could have a profound, widespread impact on the energy marketplace and accelerate the transition from fossil fuels to renewables.

That’s because perovskite technology can push down solar costs far below today’s costs. Perovskite solar cells are also lighter and more flexible, which means they have a greater range of application.

For a bonus, perovskite solar cells can be “printed” with a relatively conventional high-volume manufacturing process.

Perovskite solar cells are only just beginning to edge out of the laboratory, now that researchers have finally worked out the kinks. Once they hit the shelves, they will kick the global solar market into a whole new level of activity.

As for why Hunt, last week Forbestook a crack at the mystery and noted that the current head of the family business, Hunter L. Hunt, spent the past 10 years creating and then spinning off a new high voltage power line company.

That venture, along with the company’s investment arm Hunt Energy Enterprises, indicates that Hunt Oil is looking more holistically at new high tech opportunities in the energy market aside from just digging up stuff out of the ground.

More & Better Perovskite Solar Cells

The main challenge with perovskite as a solar cell material is durability, and researchers have been trying various formulas to improve durability without sacrificing too much solar conversion efficiency.

Hunt Perovskite Technologies launched in 2013 with a focus on the perovskite durability problem, as a corporate partner of NREL.

The work came to fruit late last year, when Hunt was able to demonstrate an ink-based manufacturing process for its new solar cell, to the satisfaction of the International Electrotechnical Commission. According to Hunt, the new solar cell exceeds IEC standards for temperature, humidity, white light and ultraviolet stress while achieving a fairly impressive solar conversion efficiency of 18%.

Legacy companies like Hunt are not going to shed their fossil fuel interests willy-nilly, but in a press statement Hunter Hunt indicated that his family business is prepping for change.

“We strategically chose to develop perovskite solar several years ago; we envisioned its strategic importance as an innovative new energy technology in addressing the world’s energy needs for the future, as well playing a part in combating climate change,” he said.  “As part of the global energy transition that is occurring, our solar team is hoping to make a meaningful contribution.”

UCF Researchers Develop Device That Mimics Brain Cells Used for Human Vision – AI for Autonomous Rescue Drones? Robotics?


The UCF-developed device is an important step in the fields of AI and robotics.

University of Central Florida researchers are helping to close the gap separating human and machine minds.

In a study featured as the cover article appearing today in the journal Science Advances, a UCF research team showed that by combining two promising nanomaterials into a new superstructure, they could create a nanoscale device that mimics the neural pathways of brain cells used for human vision.

“This is a baby step toward developing neuromorphic computers, which are computer processors that can simultaneously process and memorize information,” said Jayan Thomas, an associate professor in UCF’s NanoScience Technology Center and Department of Materials Science and Engineering. “This can reduce the processing time as well as the energy required for processing. At some time in the future, this invention may help to make robots that can think like humans.”

Thomas led the research in collaboration with Tania Roy, an assistant professor in UCF’s NanoScience Technology Center, and others at UCF’s NanoScience Technology Center and the Department of Materials Science and Engineering.

Roy said a potential use for the technology is for drone-assisted rescues.

“Imagine a drone that can fly without guidance to remote mountain sites and locate stranded mountaineers,” Roy said. “Today it is difficult since these drones need connectivity to remote servers to identify what they scan with their camera eye. Our device makes this drone truly autonomous because it can see just like a human.”

“Earlier research created a camera which captured the image and sent it to a server to be recognized, but our group created a single device that mimics the eye and the brain function together,” she said. “Our device can observe the image and recognize it on the spot.”

The trick to the innovation was growing nanoscale, light-sensitive perovskite quantum dots on the two-dimensional, atomic thick nanomaterial graphene. This combination allows the photoactive particles to capture light, convert it to electric charges and then have the charges directly transferred to the graphene, all in one step. The entire process takes place on an extremely thin film, about one-ten thousandths of the thickness of a human hair.

Basudev Pradhan, who was a Bhaskara Advanced Solar Energy fellow in Thomas’ lab and is currently an assistant professor in the Department of Energy Engineering at the Central University of Jharkhand in India, and Sonali Das, a postdoctoral fellow in Roy’s lab, are shared first authors of the study.

“Because of the nature of the superstructure, it shows a light-assisted memory effect,” Pradhan said. “This is similar to humans’ vision-related brain cells. The optoelectronic synapses we developed are highly relevant for brain-inspired, neuromorphic computing. This kind of superstructure will definitely lead to new directions in development of ultrathin optoelectronic devices.”

Das said there are also potential defense applications.

“Such features can also be used for aiding the vision of soldiers on the battlefield,” she said. “Further, our device can sense, detect and reconstruct an image along with extremely low power consumption, which makes it capable for long-term deployment in field applications.”

Neuromorphic computing is a long-standing goal of scientists in which computers can simultaneously process and store information, like the human brain does, for example, to allow vision. Currently, computers store and process information in separate places, which ultimately limits their performance.

To test their device’s ability to see objects through neuromorphic computing, the researchers used it in facial recognition experiments, Thomas said.

“The facial recognition experiment was a preliminary test to check our optoelectronic neuromorphic computing,” Thomas said. “Since our device mimics vision-related brain cells, facial recognition is one of the most important tests for our neuromorphic building block.”

They found that their device was able to successfully recognize the portraits of four different people.

The researchers said they plan to continue their collaboration to refine the device, including using it to develop a circuit-level system.

Study co-authors were Jinxin Li, Farzana Chowdhury, Jayesh Cherusseri, Deepak Pandey, Durjoy Dev, Adithi Krishnaprasad, Elizabeth Barrios, Andrew Towers, Andre Gesquiere, and Laurene Tetard.

Thomas joined UCF in 2011 and is a part of the NanoScience Technology Center with a joint appointment in the College of Optics and Photonics and the Department of Materials Science and Engineering in the College of Engineering. Previously, Thomas was at the University of Arizona in its College of Optical Sciences. He has several degrees including a doctorate in chemistry/materials science from Cochin University of Science and Technology in India.

Roy joined UCF in 2016 and is a part of the NanoScience Technology Center with a joint appointment in the Department of Materials Science and Engineering, the Department of Electrical and Computer Engineering and the Department of Physics. Her recent National Science Foundation CAREER award focuses on the development of devices for artificial intelligence applications. Roy was a postdoctoral scholar at the University of California, Berkeley prior to joining UCF. She received her doctorate in electrical engineering from Vanderbilt University.

Study finds Salt Nanoparticles (Sodium Chloride or SCNP’s) are Toxic to Cancer Cells – University of Georgia


A new study at the University of Georgia has found a way to attack cancer cells that is potentially less harmful to the patient.

Sodium chloride nanoparticles—more commonly known as salt—are toxic to cancer cells and offer the potential for therapies that have fewer negative side effects than current treatments.

Led by Jin Xie, associate professor of chemistry, the study found that SCNPs can be used as a Trojan horse to deliver ions into cells and disrupt their internal environment, leading to cell death. SCNPs become salt when they degrade, so they’re not harmful to the body.

“This technology is well suited for localized destruction of cancer cells,” said Xie, a faculty member in the Franklin College of Arts and Sciences. “We expect it to find wide applications in treatment of bladder, prostate, liver, and head and neck cancer.”

Nanoparticles are the key to delivering SCNPs into cells, according to Xie and the team of researchers. Cell membranes maintain a gradient that keeps relatively low sodium concentrations inside cells and relatively high sodium concentrations outside cells.

The plasma membrane prevents sodium from entering a cell, but SCNPs are able to pass through because the cell doesn’t recognize them as sodium ions.

Once inside a cell, SCNPs dissolve into millions of sodium and chloride ions that are trapped inside by the gradient and overwhelm protective mechanisms, inducing rupture of the plasma membrane and cell death. When the plasma membrane ruptures, the molecules that leak out signal the immune system that there’s tissue damage, inducing an inflammatory response that helps the body fight pathogens.

“This mechanism is actually more toxic to cancer cells than normal cells, because cancer cells have relatively high sodium concentrations to start with,” Xie said.

Using a mouse model, Xie and the team tested SCNPs as a potential cancer therapeutic, injecting SCNPs into tumors. They found that SCNP treatment suppressed tumor growth by 66 percent compared to the control group, with no drop in body weight and no sign of toxicity to major organs.

They also performed a vaccination study, inoculating mice with cancer cells that had been killed via SCNPs or freeze thaw. These mice showed much greater resistance to a subsequent live cancer cell challenge, with all animals remaining tumor free for more than two weeks.

The researchers also explored anti-cancer immunity in a tumor model. After injecting primary tumors with SCNPs and leaving secondary tumors untreated, they found that the secondary tumors grew at a much lower speed than the control, showing a tumor inhibition rate of 53 percent.

Collectively, the results suggest that SCNPs killed cancer cells and converted the dying cancer cells to an in situ vaccine.

SCNPs are unique in the world of inorganic particles because they are made of a benign material, and their toxicity is based on the nanoparticle form, according to Xie.

“With a relatively short half-life in aqueous solutions, SCNPs are best suited for localized rather than systemic therapy. The treatment will cause immediate and immunogenic cancer cell death,” he said. “After the treatment, the nanoparticles are reduced to salts, which are merged with the body’s fluid system and cause no systematic or accumulative toxicity. No sign of systematic toxicity was observed with SCNPs injected at high doses.”

The study was published in Advanced Materials.

Scientists develop novel nano-vaccine for melanoma


Melanoma in skin biopsy with H&E stain — this case may represent superficial spreading melanoma. Credit: Wikipedia/CC BY-SA 3.0

Researchers at Tel Aviv University have developed a novel nano-vaccine for melanoma, the most aggressive type of skin cancer. Their innovative approach has so far proven effective in preventing the development of melanoma in mouse models and in treating primary tumors and metastases that result from melanoma.

The focus of the research is on a nanoparticle that serves as the basis for the new vaccine. The study was led by Prof. Ronit Satchi-Fainaro, chair of the Department of Physiology and Pharmacology and head of the Laboratory for Cancer Research and Nanomedicine at TAU’s Sackler Faculty of Medicine, and Prof. Helena Florindo of the University of Lisbon while on sabbatical at the Satchi-Fainaro lab at TAU; it was conducted by Dr. Anna Scomparin of Prof. Satchi-Fainaro’s TAU lab, and postdoctoral fellow Dr. João Conniot. The results were published on August 5 in Nature Nanotechnology.

Melanoma develops in the skin cells that produce melanin or skin pigment. “The war against cancer in general, and melanoma in particular, has advanced over the years through a variety of treatment modalities, such as chemotherapy, radiation therapy and immunotherapy; but the vaccine approach, which has proven so effective against various viral diseases, has not materialized yet against cancer,” says Prof. Satchi-Fainaro. “In our study, we have shown for the first time that it is possible to produce an effective nano-vaccine against melanoma and to sensitize the  to immunotherapies.”

The researchers harnessed tiny particles, about 170 nanometers in size, made of a biodegradable polymer. Within each particle, they “packed” two peptides—short chains of amino acids, which are expressed in melanoma cells. They then injected the nanoparticles (or “nano-vaccines”) into a  bearing melanoma.

“The nanoparticles acted just like known vaccines for viral-borne diseases,” Prof. Satchi-Fainaro explains. “They stimulated the immune system of the mice, and the immune cells learned to identify and attack cells containing the two peptides—that is, the melanoma cells. This meant that, from now on, the immune system of the immunized mice will attack melanoma cells if and when they appear in the body.”

The researchers then examined the effectiveness of the vaccine under three different conditions.

First, the vaccine proved to have prophylactic effects. The vaccine was injected into healthy mice, and an injection of melanoma  followed. “The result was that the mice did not get sick, meaning that the vaccine prevented the disease,” says Prof. Satchi-Fainaro.

Second, the nanoparticle was used to treat a primary tumor: A combination of the innovative vaccine and immunotherapy treatments was tested on melanoma model mice. The synergistic treatment significantly delayed the progression of the disease and greatly extended the lives of all treated mice.

Finally, the researchers validated their approach on tissues taken from patients with melanoma brain metastases. This suggested that the nano- can be used to treat brain metastases as well. Mouse models with late-stage melanoma brain metastases had already been established following excision of the primary melanoma lesion, mimicking the clinical setting. Research on image-guided surgery of primary melanoma using smart probes was published last year by Prof. Satchi-Fainaro’s lab.

“Our research opens the door to a completely new approach—the —for effective treatment of , even in the most advanced stages of the disease,” concludes Prof. Satchi-Fainaro. “We believe that our platform may also be suitable for other types of cancer and that our work is a solid foundation for the development of other cancer nano-vaccines.”

More information: Immunization with mannosylated nanovaccines and inhibition of the immune-suppressing microenvironment sensitizes melanoma to immune checkpoint modulators, Nature Nanotechnology(2019). DOI: 10.1038/s41565-019-0512-0 , https://nature.com/articles/s41565-019-0512-0

Journal information: Nature Nanotechnology

Provided by Tel Aviv University

Researchers at Oregon State University reach Milestone in use of Nanoparticles to kill Cancer with Heat


Abstract:
Researchers at Oregon State University have developed an improved technique for using magnetic nanoclusters to kill hard-to-reach tumors.

 

Magnetic nanoparticles – tiny pieces of matter as small as one-billionth of a meter – have shown anti-cancer promise for tumors easily accessible by syringe, allowing the particles to be injected directly into the cancerous growth.

Once injected into the tumor, the nanoparticles are exposed to an alternating magnetic field, or AMF. This field causes the nanoparticles to reach temperatures in excess of 100 degrees Fahrenheit, which causes the cancer cells to die.

But for some cancer types such as prostate cancer, or the ovarian cancer used in the Oregon State study, direct injection is difficult. In those types of cases, a “systemic” delivery method – intravenous injection, or injection into the abdominal cavity – would be easier and more effective.

The challenge for researchers has been finding the right kind of nanoparticles – ones that, when administered systemically in clinically appropriate doses, accumulate in the tumor well enough to allow the AMF to heat cancer cells to death.

Olena Taratula and Oleh Taratula of the OSU College of Pharmacy tackled the problem by developing nanoclusters, multiatom collections of nanoparticles, with enhanced heating efficiency. The nanoclusters are hexagon-shaped iron oxide nanoparticles doped with cobalt and manganese and loaded into biodegradable nanocarriers.

Findings were published in ACS Nano.

“There had been many attempts to develop nanoparticles that could be administered systemically in safe doses and still allow for hot enough temperatures inside the tumor,” said Olena Taratula, associate professor of pharmaceutical sciences. “Our new nanoplatform is a milestone for treating difficult-to-access tumors with magnetic hyperthermia. This is a proof of concept, and the nanoclusters could potentially be optimized for even greater heating efficiency.”

The nanoclusters’ ability to reach therapeutically relevant temperatures in tumors following a single, low-dose IV injection opens the door to exploiting the full potential of magnetic hyperthermia in treating cancer, either by itself or with other therapies, she added.

“It’s already been shown that magnetic hyperthermia at moderate temperatures increases the susceptibility of cancer cells to chemotherapy, radiation and immunotherapy,” Taratula said.

The mouse model in this research involved animals receiving IV nanocluster injections after ovarian tumors had been grafted underneath their skin.

“To advance this technology, future studies need to use orthotopic animal models – models where deep-seated tumors are studied in the location they would actually occur in the body,” she said. “In addition, to minimize the heating of healthy tissue, current AMF systems need to be optimized, or new ones developed.”

The National Institutes of Health, the OSU College of Pharmacy and Najran University of Saudi Arabia supported this research.

Also collaborating were OSU electrical engineering professor Pallavi Dhagat, postdoctoral scholars Xiaoning Li and Canan Schumann of the College of Pharmacy, pharmacy graduate students Hassan Albarqi, Fahad Sabei and Abraham Moses, engineering graduate student Mikkel Hansen, and pre-pharmacy undergrads Tetiana Korzun and Leon Wong.

Copyright © Oregon State University

Army research may be used to treat cancer, Heal combat wounds


RESEARCH TRIANGLE PARK, N.C. — Army research is the first to develop computational models using a microbiology procedure that may be used to improve novel cancer treatments and treat combat wounds.

Using the technique, known as electroporation, an electrical field is applied to cells in order to increase the permeability of the cell membrane, allowing chemicals, drugs, or DNA to be introduced into the cell.

For example, electro-chemotherapy is a cutting-edge cancer treatment that uses electroporation as a means to deliver chemotherapy into cancerous cells.

The research, funded by the U.S. Army and conducted by researchers at University of California, Santa Barbara and Université de Bordeaux, France, has developed a computational approach for parallel simulations that models the complex bioelectrical interaction at the tissue scale.

Previously, most research has been conducted on individual cells, and each cell behaves according to certain rules.

“When you consider a large number of them together, the aggregate exhibits novel coherent behaviors,” said Pouria Mistani, a researcher at UCSB. “It is this emergent phenomenon that is crucial for developing effective theories at the tissue-scale — novel behaviors that emerge from the coupling of many individual elements.”

This new research, published in the Journal of Computational Physics, is funded by the U.S. Combat Capabilities Development Command’s Army Research Lab, the Army’s corporate research laboratory known as ARL, through its Army Research Office.

“Mathematical research enables us to study the bioelectric effects of cells in order to develop new anti-cancer strategies,” said Dr. Joseph Myers, Army Research Office mathematical sciences division chief.

“This new research will enable more accurate and capable virtual experiments of the evolution and treatment of cells, cancerous or healthy, in response to a variety of candidate drugs.”

Researchers said a crucial element in making this possible is the development of advanced computational algorithms.

“There is quite a lot of mathematics that goes into the design of algorithms that can consider tens of thousands well-resolved cells,” said Frederic Gibou, a faculty member in the Department of Mechanical Engineering and Computer Science at UCSB.

Another potential application is accelerating combat wound healing using electric pulsation.

“It’s an exciting, but mainly unexplored area that stems from a deeper discussion at the frontier of developmental biology, namely how electricity influences morphogenesis,” — or the biological process that causes an organism to develop its shape — Gibou said. “In wound healing, the goal is to externally manipulate electric cues to guide cells to grow faster in the wounded region and accelerate the healing process.”

The common factor among these applications is their bioelectric physical nature. In recent years, it has been established that the bioelectric nature of living organisms plays a pivotal role in the development of their form and growth.

To understand bioelectric phenomena, Gibou’s group considered computer experiments on multicellular spheroids in 3-D. Spheroids are aggregates of a few tens of thousands of cells that are used in biology because of their structural and functional similarity with tumors.

“We started from the phenomenological cell-scale model that was developed in the research group of our colleague, Clair Poignard, at the Université de Bordeaux, France, with whom we have collaborated for several years,” Gibou said.

This model, which describes the evolution of transmembrane potential on an isolated cell, has been compared and validated with the response of a single cell in experiments.

“From there, we developed the first computational framework that is able to consider a cell aggregate of tens of thousands of cells and to simulate their interactions,” he said. “The end goal is to develop an effective tissue-scale theory for electroporation.”

One of the main reasons for the absence of an effective theory at the tissue scale is the lack of data, according to Gibou and Mistani. Specifically, the missing data in the case of electroporation is the time evolution of the transmembrane potential of each individual cell in a tissue environment. Experiments are not able to make those measurements, they said.

“Currently, experimental limitations prevent the development of an effective tissue-level electroporation theory,” Mistani said. “Our work has developed a computational approach that can simulate the response of individual cells in a spheroid to an electric field as well as their mutual interactions.”

Each cell behaves according to certain rules. 

“But when you consider a large number of them together, the aggregate exhibits novel coherent behaviors,” Mistani said. “It is this emergent phenomenon that is crucial for developing effective theories at the tissue-scale — novel behaviors that emerge from the coupling of many individual elements.”

The effects of electroporation used in cancer treatment, for example, depend on many factors, such as the strength of the electric field, its pulse and frequency.

“This work could bring an effective theory that helps understand the tissue response to these parameters and thus optimize such treatments,” Mistani said. “Before our work, the largest existing simulations of cell aggregate electroporation only considered about one hundred cells in 3-D, or were limited to 2-D simulations. Those simulations either ignored the real 3-D nature of spheroids or considered too few cells for tissue-scale emergent behaviors to manifest.”

The researchers are currently mining this unique dataset to develop an effective tissue-scale theory of cell aggregate electroporation.

_______________________________________

The CCDC Army Research Laboratory (ARL) is an element of the U.S. Army Combat Capabilities Development Command. As the Army’s corporate research laboratory, ARL discovers, innovates and transitions science and technology to ensure dominant strategic land power. Through collaboration across the command’s core technical competencies, CCDC leads in the discovery, development and delivery of the technology-based capabilities required to make Soldiers more effective to win our Nation’s wars and come home safely. CCDC is a major subordinate command of the U.S. Army Futures Command.

____________________________

Plastic Gets a Do-Over: Breakthrough Discovery Recycles Plastic From the Inside Out


A 2015 investigation that estimates there are between 4.8 trillion and 12.7 trillion pieces of plastic entering the ocean every year.

Scientists from Berkeley Lab have made a next-generation plastic that can be recycled again and again into new materials of any color, shape, or form.

Plastic pollution in the world’s oceans may have a $2.5 trillion impact, negatively affecting “almost all marine ecosystem services,” including areas such as fisheries, recreation and heritage. But a breakthrough from scientists at Berkeley Lab could be the solution the planet needs for this eye-opening problem – recyclable plastics.

The study, published in Nature Chemistry, details how the researchers were able to discover a new way to assemble the plastics and reuse them “into new materials of any color, shape, or form.”

Most plastics were never made to be recycled,” said lead author Peter Christensen, a postdoctoral researcher at Berkeley Lab’s Molecular Foundry, in the statement. “But we have discovered a new way to assemble plastics that takes recycling into consideration from a molecular perspective.”

Known as poly(diketoenamine), or PDK, the new type of plastic material could help stem the tide of plastics piling up at recycling plants, as the bonds PDK forms are able to be reversed via a simple acid bath, the researchers believe.

Poly(diketoenamine)s ‘click’ together from a wide variety of triketones and aromatic or aliphatic amines, yielding only water as a by-product,” the study’s abstract reads.

“Recovered monomers can be re-manufactured into the same polymer formulation, without loss of performance, as well as other polymer formulations with differentiated properties. The ease with which poly(diketoenamine)s can be manufactured, used, recycled and re-used—without losing value—points to new directions in designing sustainable polymers with minimal environmental impact.”

Unlike conventional plastics, the monomers of PDK plastic could be recovered and freed from any compounded additives simply by dunking the material in a highly acidic solution. (Credit: Peter Christensen et al./Berkeley Lab)

A byproduct of petroleum, plastic is inherently made up of molecules known as polymers that are composed of carbon-containing compounds known as monomers. Once chemicals are added to the plastic for use and consumption, the monomers bind with the chemicals and make it difficult to be processed at recycling plants, the researchers said.

Circular plastics and plastics upcycling are grand challenges,” said Brett Helms, a staff scientist in Berkeley Lab’s Molecular Foundry, in the statement. “We’ve already seen the impact of plastic waste leaking into our aquatic ecosystems, and this trend is likely to be exacerbated by the increasing amounts of plastics being manufactured and the downstream pressure it places on our municipal recycling infrastructure.”

Though PDK only exists in the lab currently (meaning products won’t be available for purchase for some time), the researchers are nonetheless excited by what they’ve discovered and the potential positive impact it could have.

“With PDKs, the immutable bonds of conventional plastics are replaced with reversible bonds that allow the plastic to be recycled more effectively,” Helms added. “We’re interested in the chemistry that redirects plastic lifecycles from linear to circular. We see an opportunity to make a difference for where there are no recycling options.”

Plastic recycling figures are trending down, making breakthroughs in recyclable plastic all the more important. According to the latest publicly available data, only 9.1 percent of the plastic created in the U.S. in 2015 was recycled, down from 9.5 percent in 2014, according to the EPA.

Last month, a separate study estimated that the pollution caused by plastics in the world’s oceans amounted to a $2.5 trillion problem that every country in the world has to deal with. The estimate did not take into account the impact on sectors of the global economy such as tourism, transport, fisheries and human health, the researchers wrote.

An ecosystem impact analysis demonstrates that there is global evidence of impact with medium to high frequency on all subjects, with a medium to high degree of irreversibility,” the study’s abstract reads, with the researchers adding that they looked at nearly 1,200 data points to come up with their conclusions.

Despite several efforts of countries around the world to reduce or stop the use of plastic altogether, the amount of plastic in the world’s oceans is increasing, and spreading across the planet.

A separate study, published in Nature on April 16, is the first study “to confirm a significant increase in open ocean plastics in recent decades,” going back nearly 60 years. Researchers found a plastic bag that had been snared on Ireland’s coast since 1965 and is possibly the first piece of plastic pollution ever found, according to the BBC.

Article Re-Posted from Chris Ciaccia of Fox Science News

China made an artificial star that’s 6 times (6X) as hot as our sun … And it could be the future of energy


  • China built a fusion reactor that reaches temperatures of 100 million degrees Celsius — that’s six times as hot as the sun.

  • While it was a milestone for EAST, we’re still a long way from generating sustainableenergy on Earth.

Imagine if we could replace fossil fuels with our very own stars. And no, we’re not talking about solar power: We’re talking nuclear fusion. And recent research is helping us get there.

Meet the Experimental Advanced Superconducting Tokamak, or EAST. 

EAST is a fusion reactor based in Hefei, China. And it can now reach temperatures more than six times as hot as the sun. Let’s take a look at what’s happening inside. Fusion occurs when two lightweight atoms combine into a single, larger one, releasing energy in the process.

It sounds simple enough, but it’s not easy to pull off. Because those two atoms share a positive charge. And just like two opposing magnets, those positive atoms repel each other. 

Stars, like our sun, have a great way of overcoming this repulsion … their massive size, which creates a tremendous amount of pressure in their cores … So the atoms are forced closer together making them more likely to collide.

There’s just one problem: We don’t have the technology to recreate that kind of pressure on Earth. 

But luckily, there’s another way. You can also generate fusion with extreme temperatures. And that’s exactly what devices like EAST do. The higher the temperature, the faster the atoms move around and the more likely they are to collide. 

But it quickly becomes a balancing act. If the temperature is too hot, the atoms move too fastand zip passed each other. If it’s too cold, the atoms won’t move fast enough. So, the ideal temperature to generate fusion is around 100 million degrees Celsius. That’s more than 6 times as hot as our sun’s core. 

Only a few fusion experiments in the world have surpassed this milestone. And the latest one was EAST. It sustained nuclear fusion for about 10 seconds before shutting down. And while it was a breakthrough for EAST, it’s a long way from generating sustainable energy for the people of Earth. 

And that’s actually on purpose. EAST is a tiny reactor. At only a few meters across, it’s not meant to be a full-fledged power plant. It’s an experiment. And right now, its job is to help us design more effective fusion technology that could, one day, power entire cities. 

Like ITER, short for International Thermonuclear Experimental Reactor, it’s the world’s biggest fusion project to date. Thirty-five countries have poured billions of dollars into its construction. And it is designed to be the first fusion reactor to ever produce more fusion power than the power used to heat it up. 

You see, you need to pour a lot of energy into these machines to get them to work. This recent EAST test, for example, guzzled over 10 Megawatts of power. Enough to power 1,640 American homes for a year. And it didn’t yield even half that amount. Since the entire point of a power plant is to, well, produce power, it’s a pretty important issue to work out. 

But it’s worth the effort. Why? Well for one thing, fusion reactors would produce practically no radioactive waste compared to the kind of reaction we see in today’s nuclear fission power plants. But even better. Fusion reactors can run on seawater— a renewable, sustainable resource. 

For perspective, the amount of water just on the top inch of Lake Erie is enough to produce more power than all the fossil fuels left on the planet. And unlike other energy sources, it doesn’t need the sun to shine or the wind to blow. 

In a time of dwindling resources and worsening climate change, we could sure use it.

South Korea and Sweden are the most innovative countries in the world – Israel Becoming ‘Tech Titan’


” … These are the most innovative countries in the world, South Korea, Sweden and Singapore top the list … “Image: REUTERS/Carlo Allegri

South Korea and Sweden are the most innovative countries in the world, according to a league table covering everything from the concentration of tech companies to the number of science and engineering graduates.

The index on innovative countries highlights South Korea’s position as the economy whose companies filed the most patents in 2017. 

Bloomberg, which compiles the index based on data from sources including the World Bank, IMF and OECD, credits South Korea’s top ranking to Samsung. 

The electronics giant is South Korea’s most valuable company and has received more US patents than any company other than IBM since the start of the millennium. This innovation trickles down the supply chain and throughout South Korea’s economy.

Sweden in second place is fast gaining a reputation as Europe’s tech start-up capital.

The Scandinavian country is home to Europe’s largest tech companies and its capital is second only to Silicon Valley when it comes to the number of “unicorns” – billion-dollar tech companies – that it produces per capita.

Education hinders the US

The US dropped out of the top 10 in the 2018 Bloomberg Innovation Index, for the first time in the six years the gauge has been compiled. 

Bloomberg attributed its fall to 11th place from ninth last year largely to an eight-spot slump in the rating of its tertiary education, which includes an assessment of the share of new science and engineering graduates in the labour force.

The US is now ranked 43 out of 50 nations for “tertiary efficiency”. Singapore and Iran take the top two spots.

The US’ ranking marks another setback for its higher education sector’s global standing in recent months: in September it was revealed neither of the world’s top two universities were considered to be American. Those honours went to the UK’s Oxford and Cambridge universities respectively.

In addition to the US’ education slump in the innovation index, Bloomberg claims the country also lost ground when it came to value-added manufacturing. The country is now ranked in 23rd place, while Ireland and South Korea take the top two spots.

Despite these setbacks, the Bloomberg Innovation Index still ranks the US as number 1 when it comes to its density of tech companies.

The US is also second only to South Korea for patent activity.

These rankings may explain the disparity between Bloomberg’s list of innovative countries and the World Economic Forum’s own list of the 10 most innovative economies.

Image: WEF

Under this ranking, compiled as part of The Global Competitiveness Report 2017-2018, the US is listed as the second most innovative country in the world after Switzerland.

The US’ inclusion in this league table, and South Korea’s exclusion, are the two most notable differences between the different rankings.

Other than these nations, the majority of countries included in the top 10s are the same in both lists.

Tech titan Israel

One nation to feature prominently in both innovation rankings is Israel.

Taking third spot in the Global Competitiveness Report’s innovation league table, Israel is ranked 10th best country in the world for innovation overall by Bloomberg.

However, its index also ranks Israel as number 1 for two categories of innovation: R&D intensity and concentration of researchers.

Israel’s talent for research and development is illustrated by some of the major tech innovations to come out of the country.

These include the USB flash drive, the first Intel PC processor and Google’s Suggest function, to name just three.

Despite being smaller than the US state of New Jersey with fewer people, Israel punches well above its weight on the global tech stage.

It has about 4000 startups, and raises venture capital per capita at two-and-a-half times the rate of the US and 30 times that of Europe.

When it comes to being a world leader at innovation, it may simply be the case that you get out what you put in: according to OECD figures, Israel spends more money on research and development as a proportion of its economy than any other country – 4.3% of GDP against second-placed Korea’s 4.2%. 

Switzerland is in third place spending 3.4% of its GDP on R&D, while Sweden spends 3.3%. The US spends just 2.8%.

%d bloggers like this: