“And Now for Something Completely Different” – Australian Physicists Have Proved That Time Travel is Possible


Scientists from the University of Queensland have used photons (single particles of light) to simulate quantum particles travelling through time. The research is cutting edge and the results could be dramatic!

Their research, entitled “Experimental simulation of closed timelike curves “, is published in the latest issue of NatureCommunications.

The grandfather paradox states that if a time traveler were to go back in time, he could accidentally prevent his grandparents from meeting, and thus prevent his own birth. However, if he had never been born, he could never have traveled back in time, in the first place. The paradoxes are largely caused by Einstein’s theory of relativity, and the solution to it, the Gödel metric.

How relativity works

Einstein’s theory of relativity is made up of two parts – general relativity and special relativity. Special relativity posits that space and time are aspects of the same thing, known as the space-time continuum, and that time can slow down or speed up, depending on how fast you are moving, relative to something else.

Gravity can also bend time, and Einstein’s theory of general relativity suggests that it would be possible to travel backwards in time by following a space-time path, i.e. a closed timeline curve that returns to the starting point in space, but arrives at an earlier time.

It was predicted in 1991 that quantum mechanics could avoid some of the paradoxes caused by Einstein’s theory of relativity, as quantum particles behave almost outside the realm of physics.

Read More: Parallel Worlds Exist And Interact With Our World, Say Physicists

“The question of time travel features at the interface between two of our most successful yet incompatible physical theories – Einstein’s general relativity and quantum mechanics. Einstein’s theory describes the world at the very large scale of stars and galaxies, while quantum mechanics is an excellent description of the world at the very small scale of atoms and molecules.” said Martin Ringbauer, a PhD student at UQ’s School of Mathematics and Physics and a lead author of the paper.

Simulating time travel

The scientists simulated the behavior of two photons interacting with each other in two different cases. In the first case, one photon passed through a wormhole and then interacted with its older self. In the second case, when a photon travels through normal space-time and interacts with another photon trapped inside a closed timeline curve forever.

“The properties of quantum particles are ‘fuzzy’ or uncertain to start with, so this gives them enough wiggle room to avoid inconsistent time travel situations,” said co-author Professor Timothy Ralph.

“Our study provides insights into where and how nature might behave differently from what our theories predict.”

Although it has been possible to simulate time travel with tiny quantum particles, the same might not be possible for larger particles or atoms, which are groups of particles.

Advertisements

America’s National Laboratories – 75 Breakthroughs We’ve Made that You May Not have Read About


Oak Ridge NL DWKcxYZXkAEY9NV

America’s National Laboratories have been changing and improving the lives of millions of people for more than 75 years. Born at a time when the world faced a dire threat, the laboratories came together to advance science, safeguard the nation and protect our freedoms for generations to come. This network of Department of Energy Laboratories has grown into 17 facilities, working together as engines of prosperity and invention. As this list of breakthroughs attests, Laboratory discoveries have spawned industries, saved lives, generated new products, fired the imagination and helped to reveal the secrets of the universe. Rooted in the need to serve the public good and support the global community, the National Laboratories have put an American stamp on the last century of science. With equal ingenuity and tenacity, they are now engaged in innovating the future.

National Labs Map downloadDownload and read 75 Breakthroughs by America’s National Laboratories.

75 Breakthroughs

At America’s National Laboratories, we’ve …

Advanced supercomputing

The National Labs operate some of the most significant high performance computing resources available, including 32 of the 500 fastest supercomputers in the world. These systems, working at quadrillions of operations per second, model and simulate complex, dynamic systems – such as the nuclear deterrent – that would be too expensive, impractical or impossible to physically demonstrate. Supercomputers are changing the way scientists explore the evolution of our universe, climate change, biological systems, weather forecasting and even renewable energy.

Decoded DNA 

In 1990, the National Labs joined with the National Institutes of Health and other laboratories to kick off the Human Genome Project, an international collaboration to identify and map all of the genes of the human genome.

Brought the web to the United States 

National Lab scientists, seeking to share particle physics information, were first to install a web server in North America, kick-starting the development of the worldwide web as we know it.

Put eyes in the sky 

Vela satellites, first launched in 1963 to detect potential nuclear detonations, transformed the nascent U.S. space program. The satellites featured optical sensors and data processing, logic and power subsystems designed and created by National Labs.

Revolutionized medical diagnostics and treatment 

Researchers at the National Labs helped to develop the field of nuclear medicine, producing radioisotopes to diagnose and treat disease, designing imaging technology to detect cancer and developing software to target tumors while sparing healthy tissue.

Powered NASA spacecraft 

The National Labs built the enclosure for the radioisotope thermoelectric generators that fuel crafts such as Cassini and have begun producing plutonium-238 for future NASA missions.

Harnessed the power of the atom 

National Lab scientists and engineers have led the world in developing safe, efficient and emissions-free nuclear power. Starting with the first nuclear reactor to generate electricity, National Labs have been the innovation engine behind the peaceful use of nuclear energy. Today’s labs are supporting the next generation of nuclear power that will be available for the nation and world.

Brought safe water to millions 

Removing arsenic from drinking water is a global priority. A long-lasting particle engineered at a National Lab can now do exactly that, making contaminated water safe to drink. Another technology developed at a National Lab uses ultraviolet light to kill water-borne bacteria that cause dysentery, thus reducing child mortality in the developing world.

Filled the Protein Data Bank 

National Lab X-ray facilities have contributed a large portion of more than 100,000 protein structures in the Protein Data Bank. A protein’s structure reveals how it functions, helping scientists understand how living things work and develop treatments for disease. Almost all new medications that hit the market start with these data bank structures.

Invented new materials 

National Labs provide the theory, tools and techniques that offer industry revolutionary materials such as strong, lighter-weight metals and alloys that save fuel and maintenance costs and enable cleaner, more efficient engines.

Found life’s mystery messenger 

National Lab scientists discovered how genetic instructions are carried to the cell’s protein manufacturing center, where all of life’s processes begin. Subsequent light source research on the genetic courier, called messenger RNA, has revealed how the information is transcribed and how mistakes can cause cancer and birth defects.

Mapped the universe — and the dark side of the moon

Credit for producing 3D maps of the sky — and 400 million celestial objects — goes to National Lab scientists, who also developed a camera that mapped the entire surface of the moon.

Shed light on photosynthesis 

Ever wonder how plants turn sunlight into energy? National Lab scientists determined the path of carbon through photosynthesis, and today use X-ray laser technology to reveal how each step in the process is triggered by a single particle of light. This work helps scientists explore new ways to get sustainable energy from the sun.

Solved cultural mysteries 

The works of ancient mathematician Archimedes — written over by medieval monks and lost for millennia — were revealed to modern eyes thanks to the X-ray vision and light-source technology at National Labs. These studies also have revealed secrets of masterpiece paintings, ancient Greek vases and other priceless cultural artifacts.

Revolutionized accelerators 

A National Lab built and operated the first large-scale accelerator based on superconducting radio frequency technology. This more efficient technology now powers research machines for exploring the heart of matter, examining the properties of materials and providing unique information about the building blocks of life.

Los Alamos 1200px-Los_Alamos_aerial_viewRevealed the secrets of matter 

Protons and neutrons were once thought to be indivisible. National Lab scientists discovered that protons and neutrons were made of even smaller parts, called quarks. Over time, experimenters identified six kinds of quarks, three types of neutrinos and the Higgs particle, changing our view of how the material world works.

Confirmed the Big Bang and discovered dark energy

National Lab detectors aboard a NASA satellite revealed the birth of galaxies in the echoes of the Big Bang. Dark energy — the mysterious something that makes up three-quarters of the universe and causes it to expand at an accelerating rate — also was discovered by National Lab cosmologists.

Discovered 22 elements 

The periodic table would be smaller without the National Labs. To date the National Labs have discovered: technetium, promethium, astatine, neptunium, plutonium, americium, curium, berkelium, californium, einsteinium, fermium, mendelevium, nobelium, lawrencium, rutherfordium, dubnium, seaborgium, flerovium, moscovium, livermorium, tennessine and oganesson.

Made refrigerators cool 

Next-generation refrigerators will likely put the freeze on harmful chemical coolants in favor of an environmentally friendly alloy, thanks to National Lab scientists.

Got the lead out 

Removing hazardous lead-based solders from the environment is a reality thanks to a lead-free alloy of tin-silver-copper developed at a National Lab. The lead-free solder has been licensed by more than 60 companies worldwide.

Invented a magic sponge to clean up oil spills

National Lab scientists used a nano technique to invent a new sponge that can absorb 90 times its own weight in oil from water. It can be wrung out to collect the oil and reused hundreds of times — and it can collect oil that has sunk below the surface, something previous technology couldn’t do.

Added the punch to additive manufacturing 

High-pressure gas atomization processing pioneered at a National Lab made possible the production of titanium and other metal-alloy powders used in additive manufacturing and powder metallurgy.

 

Created inexpensive catalysts 

Low-cost catalysts are key to efficient biomass refining. National Lab scientists created catalysts that are inexpensive and stable for biomass conversion. ANL_H_White

Created high-tech coatings to reduce friction 

National Lab scientists created ways to reduce wear and tear in machines from table fans to car engines all the way up to giant wind turbines, such as a diamond-like film that rebuilds itself as soon as it begins to break down — so that engines last longer and need fewer oil additives.

Put the jolt in the Volt 

Chevy’s Volt would not be able to cruise on battery power were it not for the advanced cathode technology that emerged from a National Lab. The same technology is sparking a revival of America’s battery manufacturing industry.

Cemented a new material 

National Lab scientists have developed a novel and versatile material that blends properties of ceramic and concrete to form a non-porous product that can do everything from seal oil w ells to insulate walls with extra fire protection. It even sets in cold weather.

Pioneered efficient power lines 

New kinds of power lines made from superconductors can carry electric current with no energy loss. Now deployed by National Lab scientists, these prototypes could usher in a new era of ultra-efficient power transmission.

Made early universe quark soup 

National Lab scientists used a particle collider to recreate the primordial soup of subatomic building blocks that last existed shortly after the Big Bang. The research is expanding scientists’ understanding of matter at extreme temperatures and densities.

Oak Ridge NL DWKcxYZXkAEY9NVLevitated trains with magnets 

Say goodbye to traffic jams. National Lab scientists developed a technology that uses the attractive and repulsive forces of magnets to levitate and propel trains. Maglev trains now ferry commuters in Japan and China and will be operational in other countries soon.

Developed efficient burners 

National Lab researchers developed cleaner-combusting oil burners, saving consumers more than $25 billion in fuel costs and keeping more than 160 megatons of carbon dioxide out of Earth’s atmosphere.

Improved automotive steel

A company with National Lab roots is pioneering a metal that weighs significantly less than regular steel, retains steel’s strength and malleability and can be fabricated without major modifications to the automotive manufacturing infrastructure.

Looked inside weapons

National Lab researchers created a device that could identify the contents of suspicious chemical and explosive munitions and containers, while minimizing risk to the people involved. The technology, which quickly identifies the chemical makeup of weapons, has been used to verify treaties around the world.

Pioneered nuclear safety modeling 

National Lab scientists began developing the Reactor Excursion and Leak Analysis Program (RELAP) to model nuclear reactor coolant and core behavior. Today, RELAP is used throughout the world and has been licensed for both nuclear and non-nuclear applications, including modeling of jet aircraft engines and fossil-fuel power plant components.

Identified good and bad cholesterol 

The battle against heart disease received a boost in the 1960s when National Lab research unveiled the good and bad sides of cholesterol. Today, diagnostic tests that detect both types of cholesterol save lives.

Unmasked a dinosaur killer 

Natural history’s greatest whodunit was solved in 1980 when a team of National Lab scientists pinned the dinosaurs’ abrupt extinction on an asteroid collision with Earth. Case closed.

Pitted cool roofs against carbon dioxide 

National Lab researchers and policy experts led the way in analyzing and implementing cool roofing materials, which reflect sunlight, lower surface temperature and slash cooling costs.

Squeezed fuel from microbes 

In a milestone that brings advanced biofuels one step closer to America’s gas tanks, National Lab scientists helped develop a microbe that can produce fuel directly from biomass.

Tamed hydrogen with nanoparticles 

To replace gasoline, hydrogen must be safely stored and easy to use, which has proven elusive. National Lab researchers have now designed a new pliable material using nanoparticles that can rapidly absorb and release hydrogen without ill effects, a major step in making fuel-cell powered cars a commercial reality.

Exposed the risk 

You can sleep easier thanks to National Lab research that quantified the health risk posed by radon gas in parts of the country. Subsequent EPA standards, coupled with radon detection and mitigation measures pioneered by a National Lab research team, prevent the naturally occurring gas from seeping into basements, saving thousands of lives every year.

Created a pocket-sized DNA sampler 

A tool that identifies the microbes in air, water and soil samples is fast becoming a workhorse in public health, medical and environmental cleanup projects. Developed by National Lab scientists, the credit-card-sized device pinpoints diseases that kill coral reefs and catalogs airborne bacteria over U.S. cities. It also was used to quickly categorize the oil-eating bacteria in the plumes of the Deepwater Horizon spill.

Fabricated the smallest machines

The world’s smallest synthetic motors — as well as radios, scales and switches that are 100,000 times finer than a human hair — were engineered at a National Lab. These and other forays into nanotechnology could lead to life-saving pharmaceuticals and more powerful computers.

Preserved the sounds of yesteryear 

National Lab scientists engineered a high-tech way to digitally reconstruct aging

sound recordings that are too fragile to play, such as Edison wax cylinders from the late 1800s. Archivists estimate that many of the millions of recordings in the world’s sound archives, including the U.S. Library of Congress, could benefit from the technology.

Exposed explosives 

A credit-card sized detector developed by National Lab scientists can screen for more than 30 kinds of explosives in just minutes. The detector, called ELITE, requires no po wer and is widely used by the military, law enforcement and security personnel.

Toughened airplanes 

A National Lab and industry technique for strengthening metal by bombarding it with laser pulses has saved the aircraft industry hundreds of millions of dollars in engine and aircraft maintenance expenses.

Simulated reality 

Trains, planes and automobiles — and thousands of other objects — are safer, stronger and better-designed thanks to computer simulation software, DYNA 3D, developed by National Lab researchers.

Detected the neutrino 

Starting with the Nobel-Prize winning discovery of the neutrino in 1956 by Fred Reines and Clyde Cowan Jr., National Lab researchers have made numerous contributions to neutrino physics and astrophysics.

Discovered gamma ray bursts

Sensors developed at the National Labs and placed aboard Vela satellites were used in the discovery of gamma-ray bursts (GRBs) in 1973. GRBs are extremely energetic explosions from distant galaxies. Scientists believe that most of these bursts consist of a narrow beam of intense radiation released when a rapidly rotating, high-mass star collapses to form a neutron star, a quark star or a black hole.

Created the first 100-Tesla magnetic field 

National Lab scientists achieved a 100.75-Tesla magnetic pulse in March 2012, setting a world record. The pulse was nearly 2 million times more powerful than Earth’s magnetic field. The 100-Tesla multi-shot magnet can be used over and over again without being destroyed by the force of the field it creates, and produces the most powerful non-destructive magnetic field in the world.

Froze smoke for hot uses 

National Labs researchers perfected aerogels, known as frozen smoke. They are one of the lightest solids ever made and have the highest heat resistance of any material tested. They also are fireproof and extraordinarily strong — able to support more than a thousand times their own weight. As a result of their heat resistance, aerogels are outstanding candidates for insulation in buildings, vehicles, filters and appliances.

Invented the cell sorter 

During the 1960s, a National Lab physicist invented a “cell sorter” — a novel device that works much like an ink jet printer, guiding a tiny flow of cell-containing droplets so cells of interest can be deflected for counting and study. Cell sorters are a vital tool for studying the biochemistry behind many diseases, including cancer and AIDS.

Ushered a domestic energy renaissance 

National Lab research jump-started the shale gas revolution by pointing the way to key technologies and methodologies for cost efficient extraction. An estimated $220 million in research and development expenditures on unconventional gas R&D from 1976 to 1992 have resulted in an estimated $100 billion in annual economic activity from shale gas production alone.

Enabled space exploration 

National Labs invented Laser-Induced Breakdown Spectroscopy (LIBS), the backbone of the device that allowed the Curiosity Rover to analyze material from Mars. Lab researchers also found the right combination of materials to make high-efficiency solar cells for spacecraft.

Sharply curtailed power plant air emissions 

National Lab scientists introduced some 20 innovative technologies — such as low nitrogen oxide (NOx) burners, flue gas desulfurization (scrubbers) and fluidized bed combustion — through the Clean Coal Technology Development Program that have deeply penetrated the marketplace, substantially controlled harmful power plant emissions and benefited energy production and air quality.

Made wind power mainstream 

Increasing wind turbine efficiency with high efficiency airfoils has reduced the cost of wind power by more than 80 percent over the last 30 years. Now deployed in wind farms nationwide, these turbines owe their existence to National Lab research.

Engineered smart windows 

National Lab scientists have created highly insulated windows that change color to modulate interior temperatures and lighting. If broadly installed, they could save about 5 percent of the nation’s total energy budget.

Delivered troops safely 

National Lab researchers have developed computer models that effectively manage the complex logistical tasks of deploying troops and equipment to distant destinations.

Channeled chips and hips 

Integrated circuits and artificial hips owe their success to a National Lab discovery that revealed how to change a material by injecting it with charged atoms, called ions. Ion channeling is now standard practice in industry and science.

Made 3D printing bigger and better 

A large-scale additive manufacturing platform developed by a National Lab and an industry partner printed 3D components 10 times larger and 200 times faster than previous processes. So far, the system has produced a 3D-printed sports car, SUV, house, excavator and aviation components.

Purified vaccines

National Lab researchers adapted nuclear separations technology to develop a zonal centrifuge used to purify vaccines, which reduces or eliminates unwanted side effects. Commercial centrifuges based on the invention produce vaccines for millions of people.

Built a better building 

A National Lab has built one of the world’s most energy efficient office buildings. The facility, operating as a living laboratory at a lab site, uses 50 percent less energy than required by commercial codes and only consumes energy produced by renewable power on or near the building.

Improved airport security 

Weapons, explosives, plastic devices and other concealed tools of terrorists are easier to detect thanks to technology developed at a National Lab and now installed in airports worldwide.

Improved grid resiliency 

A National Lab created an advanced battery that can store large amounts of energy from intermittent renewable sources — such as wind and solar — onto the power grid, while also smoothing over temporary disruptions to the grid. Several companies have licensed the technology and offer it as a commercial product.

Solved a diesel dilemma 

A National Lab insight into how catalysts behave paved the way for a new, “lean-burn” diesel engine that met emissions standards and improved fuel efficiency by 25 percent over conventional engines.

Harvested energy from air 

A miniature device — commercialized by private industry after a National Lab breakthrough — generates enough power from small temperature changes to power wireless sensors or radio frequency transmitters at remote sites, such as dams, bridges and pipelines.

Gone grid friendly 

Regulating the energy use of household appliances — especially at peak times — could slash energy demand and avoid blackouts. A National Lab appliance-control device senses grid stress and responds instantly to turn off machines and reduce end-use demand, balancing the system so that the power stays on.

Put the digital in DVDs 

The optical digital recording technology behind music, video and data storage originated at a National Lab nearly 40 years ago.

Locked nuclear waste in glass 

Disposal of U.S. Cold War waste is safer thanks to National Lab scientists who developed and deployed a process to lock it into glass to keep it from leaching into the environment.

Cleaned up anthrax 

Scientists at a National Lab developed a non-toxic foam that neutralizes chemical and biological agents. This foam was used to clean up congressional office buildings and mail rooms exposed to anthrax in 2001.

Removed radiation from Fukushima seawater 

After a tsunami damaged the Fukushima Daiichi nuclear power plant in 2011, massive amounts of seawater cooled the reactor. A molecular sieve engineered by National Lab scientists was used to extract radioactive cesium from tens of millions of gallons of seawater.11

Sped up Ebola detection 

In 2014, researchers from a National Lab modeled the Liberian blood sample transport system and made recommendations to diagnose patients quicker. This minimized the amount of time people were waiting together, reducing the spread of Ebola.

Prevented unauthorized use of a nuclear weapon 

In 1960, National Lab scientists invented coded electromechanical locks for all U.S. nuclear weapons. The switch blocks the arming signal until it receives the proper presidential authorization code.

Launched the LED lighting revolution 

In the 1990s, scientists at a National Lab saw the need for energy-efficient solid-state lighting and worked with industry to develop white LEDs. Today, white LEDs are about 30 percent efficient, with the potential to reach 70 percent to 80 percent efficiency. Fluorescent lighting is about 20 percent efficient and incandescent bulbs are 5 percent.

Mastered the art of artificial photosynthesis 

National Lab scientists engineered and synthesized multi-layer semiconductor structures in devices that directly convert sunlight to chemical energy in hydrogen by splitting water at efficiencies greater than 15 percent. This direct conversion of sunlight to fuels paves the way for use of solar energy in applications beyond the electrical grid.

Advanced fusion technology

From the first fusion test reactor to briefly produce power at the megawatt scale, and the world’s largest and most energetic laser creating extreme conditions mimicking the Big Bang, the interiors of planets and stars and thermonuclear weapons, to the international experiment to generate industrial levels of fusion energy from burning plasmas, fusion science and applications are advancing because of the National Labs.

Made the first molecular movie 

National Lab scientists have used ultrafast X-rays to capture the first molecular movies in quadrillionths-of-a-second frames. These movies detail the intricate structural dances of molecules as they undergo chemical reactions.

DOE imagesThe National Laboratory System: Protecting America Through Science and Technology

For more than 75 years, the Department of Energy’s National Laboratories have solved important problems in science, energy and national security. This expertise keeps our nation at the forefront of science and technology in a rapidly changing world. Partnering with industry and academia, the laboratories also drive innovation to advance economic competitiveness and     ensure our nation’s future prosperity.

ANTIBACTERIAL APPLICATIONS OF GRAPHENE OXIDES


Bacterial infections are among the greatest threats to human health. However, due to the increasing spread of multidrug-resistant bacteria, the current antibiotic supply appears to be insufficient, thereby necessitating the exploration of novel antibacterial agents.

Nano-antibacterial agents represent a new strategy for bacterial treatment. Compared with antibiotics, nano-antibacterial agents have two advantages: (1) broad-spectrum bactericidal effects against Gram-positive and Gram-negative bacteria and (2) long-lasting bactericidal effects due to their extraordinary stability.

Significant differences exist in the antibacterial mechanisms between antibiotics and nano-antibacterial agents. Antibiotics can prevent bacterial growth by inhibiting the synthesis of target biomolecules in bacteria, including the cell wall, DNA and proteins.

Nano-antibacterial agents kill bacteria through membrane destruction, oxidative stress response, and interactions with cytosolic molecules (lipids, proteins, DNA, etc.).

Graphene oxide (GO) has antibacterial applications. A review titled “Antibacterial Applications of Graphene Oxides: Structure-Activity Relationships, Molecular Initiating Events and Biosafety,” published in Science Bulletin, primarily discusses the structure-activity relationships (SARs) involved in GO-induced antibacterial action, the molecular initiating events (MIEs), and the biosafety of antibacterial applications.

GO possesses a unique two-dimensional (2-D) honeycombed hydrophobic plane structure and hydrophilic groups, including carboxylic (-COOH) and hydroxyl (-OH) groups on its edge, which determine its excellent antibacterial activity. Among these antibacterial mechanisms, this review summarizes the interactions between GO and the bacterial membrane, especially the significant role of MIEs, including redox reactions with biomolecules, mechanical destruction of membranes, and catalysis of extracellular metabolites.

The review also discusses in detail the physicochemical effect of GO on the bacterial membrane, such as phospholipid peroxidation, insertion, wrapping and the trapping effect, lipid extraction, and free radicals induced by GO.

The full article is available below.

Source: Phys Org

Stanford University: Lithium/graphene “foil” makes for a great battery electrode – 2X current Energy Density


Graphene handles the issues that come with an electrode’s lithium moving elsewhere.

Lithium ion batteries, as the name implies, work by shuffling lithium atoms between a battery’s two electrodes. So, increasing a battery’s capacity is largely about finding ways to put more lithium into those electrodes. These efforts, however, have run into significant problems.

If lithium is a large fraction of your electrode material, then moving it out can cause the electrode to shrink. Moving it back in can lead to lithium deposits in the wrong places, shorting out the battery.

Now, a research team from Stanford has figured out how to wrap lots of lithium in graphene. The resulting structure holds a place open for lithium when it leaves, allowing it to flow back to where it started.

Tests of the resulting material, which they call a lithium-graphene foil, show it could enable batteries with close to twice the energy density of existing lithium batteries.

Lithium behaving badly

One obvious solution to increasing the amount of lithium in an electrode is simply to use lithium metal itself. But that’s not the easiest thing to do. Lithium metal is less reactive than the other members of its column of the periodic table (I’m looking at you, sodium and potassium), but it still reacts with air, water, and many electrolyte materials.

In addition, when lithium leaves the electrode and returns, there’s no way to control where it re-forms metal. After a few charge/discharge cycles, the lithium electrode starts to form sharp spikes that can ultimately grow large enough to short out the battery.

To have better control over how lithium behaves at the electrode, the Stanford group has looked into the use of some lithium-rich alloys. Lithium, for example, forms a complex with silicon where there are typically over four lithium atoms for each atom of silicon. When the lithium leaves the electrode, the silicon stays behind, providing a structure to incorporate the lithium when it returns on the other half of the charge/discharge cycle.

While this solves the problems with lithium metal, it creates a new one: volume changes. The silicon left behind when the lithium runs to the other electrode simply doesn’t take up as much volume as it does when the same electrode is filled with the lithium-silicon mix.

As a result, the electrode expands and contracts dramatically during a charge-discharge cycle, putting the battery under physical stress. (Mind you, a lithium metal electrode disappears entirely, possibly causing an even larger mechanical stress.)

And that would seem to leave us stuck. Limiting the expansion/contraction of the electrode material would seem to require limiting the amount of lithium that moves into and out of it. Which would, of course, mean limiting the energy density of the battery.

Between the sheets

In the new work, the researchers take their earlier lithium-silicon work and combine it with graphene. Graphene is a single-atom-thick sheet of carbon atoms linked together, and it has a number of properties that make it good for batteries. It conducts electricity well, making it easy to shift charges to and from the lithium when the battery charges and discharges. It’s also extremely thin, which means that packing a lot of graphene molecules into the electrode doesn’t take up much space. And critically for this work, graphene is mechanically tough.

To make their electrode material, the team made nanoparticles of the lithium-silicon material. These were then mixed in with graphene sheets in an eight-to-one ratio. A small amount of a plastic precursor was added, and the whole mixture was spread across a plastic block. Once spread, the polymer precursor created a thin film of polymer on top of the graphene-nanoparticle mix. This could be peeled off, and then the graphene-nanoparticle mix could be peeled off the block as a sheet.

The resulting material, which they call a foil, contains large clusters of the nanoparticles typically surrounded by three to five layers of graphene. Depending on how thick you make the foil, there can be several layers of nanoparticle clusters, each separated by graphene.

The graphene sheets make the material pretty robust, as you can fold and unfold it and then still use it as a battery electrode. They also help keep the air from reacting with the lithium inside. Even after two weeks of being exposed to the air, the foil retained about 95 percent of its capacity as an electrode. Lower the fraction of graphene used in the starting mix and air becomes a problem, with the electrode losing nearly half of its capacity in the same two weeks.

And it worked pretty well as an electrode. When the lithium left, the nanoparticles did shrink, but the graphene sheets held the structure together and kept it from shrinking. And it retained 98 percent of its original capacity even after 400 charge-discharge cycles. Perhaps most importantly, when paired with a vanadium oxide cathode, the energy density was just over 500 Watt-hours per kilogram. Current lithium-ion batteries top out at about half that.

Normally, work like this can take a while to get out of an academic lab and have a company start looking into it. In this case, however, the head of the research group Yi Cui already has a startup company with batteries on the market. So, this could take somewhat less time for a thorough commercial evaluation. The biggest sticking point may be the cost of the graphene. A quick search suggests that graphene is still thousands of dollars per kilogram, although it has come down, and lots of people are looking for ways to make it even less expensive.

If they succeed, then the rest of the components of this electrode are pretty cheap. And the process for making it seems pretty simple.

Nature Nanotechnology, 2017. DOI: 10.1038/NNANO.2017.129  (About DOIs).

Graphene girders extend the life of lithium-ion batteries


Nanoscale reinforcement with graphene girders boosts performance of silicon anodes, Warwick team discovers

When you want to make a structure stronger, put a girder across it. It’s a simple principle that every civil engineer knows well. But a team at Warwick Manufacturing Group has found that it applies just as well on very small scales as in megastructures. Melanie Loveridge and colleagues are studying methods for improving lithium-ion batteries, and have found that minute girders could provide an answer to a problem that has been plaguing the field.

Ever since their first introduction in the early 1990s, the anode of lithium batteries has been made of graphite. It has long been apparent that silicon would be a better material, as it can hold ten times more charge per gramme than carbon. But the mechanics of lithium ion batteries, where lithium ions are absorbed into the anode, create problems.

When silicon is lithiated, it expands. But it is an inelastic material, and repeated expansion and contraction — as happens during charge-discharge cycles — can lead to cracking and crumbling, which makes the capacity of the battery fade over time. Graphene has been tried as a reinforcing material for nanostructured silicon, but this has led to other problems.

Loveridge’s team is looking at a material known as FLG (few-layer graphene). As the name implies, this is composed of a few connected layers of single-atom-thick graphene sheets, which can be manipulated together.

In a paper in Nature Scientific Reports, the WMG team describes how FLG can improve the performance of anodes containing micron-sized particles of silicon. The team started with a mixture of 60 per cent micro-silicon, 16 per cent FLG, 14 per cent sodium/polyacrylic acid and 10 per cent carbon additives, and put these anodes through 100 charge-discharge cycles.

“The flakes of FLG were mixed throughout the anode and acted like a set of strong, but relatively elastic, girders. These flakes of FLG increased the resilience and tensile properties of the material greatly reducing the damage caused by the physical expansion of the silicon during lithiation. The graphene enhances the long range electrical conductivity of the anode and maintains a low resistance in a structurally stable composite,” Loveridge said.

Moreover, she added, the graphene girders keep the silicon particles apart. In their absence, the particles tend to ‘weld’ together, restricting lithium diffusion through the anode and reducing the surface area available for lithiation.

“The presence of FLG in the mixture tested by the WMG University of Warwick led researchers to hypothesise that this phenomenon is highly effective in mitigating electrochemical silicon fusion,” Loveridge stated.

The team is now working on scaling up their graphene girders discovery to produce pouch cells based on their reinforced anodes, as part of a two-year graphene flagship project along with Varta Micro-innovations, Cambridge University, CIC, Lithops and IIT (Italian Institute of Technology).

Source

Graphene Research and the World’s 5 Biggest Problems: From Clean Water and Healthcare to Energy and Infastructure – Solutions based in Graphene may Hold the Key


In September 2015, world leaders gathered at a historic UN summit to adopt the Sustainable Development Goals (SDGs). These are 17 ambitious targets and indicators that help guide and coordinate governments and international organizations to alleviate global problems. For example, SDG 3 is to “ensure healthy lives and promote well-being for all at all ages.” Others include access to clean water, reducing the effects of climate change, and affordable healthcare.

If you think these goals might be difficult to meet, you’re right. Reports show progress is lacking in many of the 17 categories, implying they may not be met by the target date of 2030. However, paired with progress in social and political arenas, advances in science and technology could be a key accelerant to progress too.

Just one example? Graphene, a futuristic material with a growing set of potential applications.

Graphene is comprised of tightly-knit carbon atoms arranged into a sheet only one atom thick. This makes it the thinnest substance ever made, yet it is 200 times stronger than steel, flexible, stretchable, self-healing, transparent, more conductive than copper, and even superconductive. A square meter of graphene weighing a mere 0.0077 grams can support four kilograms. It is a truly remarkable material—but this isn’t news to science and tech geeks.

Headlines touting graphene as the next wonder material have been a regular occurrence in the last decade, and the trip from promise to practicality has felt a bit lengthy.

But that’s not unexpected; it can take time for new materials to go mainstream. Meanwhile, the years researching graphene have yielded a long list of reasons to keep at it.

Since first isolated in 2004 at the University of Manchester—work that led to a Nobel Prize in 2010— researchers all over the world have been developing radical ways to use and, importantly, make graphene. Indeed, one of the primary factors holding back widespread adoption has been how to produce graphene at scale on the cheap, limiting it to the lab and a handful of commercial applications. Fortunately, there have been advances toward mass production.

Last year, for example, a team from Kansas State University used explosions to synthesize large quantities of graphene. Their method is simple: Fill a chamber with acetylene or ethylene gas and oxygen. Use a vehicle spark plug to create a contained detonation. Collect the graphene that forms afterward. Acetylene and ethylene are composed of carbon and hydrogen, and when the hydrogen is consumed in the explosion, the carbon is free to bond with itself, forming graphene. This method is efficient because all it takes is a single spark.

Whether this technique will usher in the graphene revolution, as some have claimed, remains to be seen. What’s more certain is there will be no shortage of problems solved when said revolution arrives. Here’s a look at the ways today’s research suggests graphene may help the UN meet its ambitious development goals.

Clean Water

SDG 6 is to “ensure availability and sustainable management of water and sanitation for all.” As of now, the UN estimates that “water scarcity affects more than 40 percent of the global population and is projected to rise.”

Graphene-based filters could very well be the solution. Jiro Abraham from the University of Manchester helped develop scalable graphene oxide sieves to filter seawater. He claims, “The developed membranes are not only useful for desalination, but the atomic scale tunability of the pore size also opens new opportunity to fabricate membranes with on-demand filtration capable of filtering out ions according to their sizes.”

Furthermore, researchers from Monash University and the University of Kentucky have developed graphene filters that can filter out anything larger than one nanometer. They say their filters “could be used to filter chemicals, viruses, or bacteria from a range of liquids. It could be used to purify water, dairy products or wine, or in the production of pharmaceuticals.”

Carbon Emissions

SDG 13 focuses on taking “urgent action to combat climate change and its impacts.”

Of course, one of the main culprits behind climate change is the excessive amount of carbon dioxide being emitted into the atmosphere. Graphene membranes have been developed that can capture these emissions.

Researchers at the University of South Carolina and Hanyang University in South Korea independently developed graphene-based filters that can be used to separate unwanted gases from industrial, commercial, and residential emissions. Henry Foley at the University of Missouri has claimed these discoveries are “something of a holy grail.”

With these, the world might be able to stem the rise of CO2 in the atmosphere, especially now that we have crossed the important 400 parts per million threshold.

Healthcare

Many around the world do not have access to adequate healthcare, but graphene may have an impact here as well.

First of all, graphene’s high mechanical strength makes it a perfect material for replacing body parts like bones, and because of its conductivity it can replace body parts that require electrical current, like organs and nerves. In fact, researchers at the Michigan Technological University are working on using 3D printers to print graphene-based nerves, and this team is developing biocompatible materials using graphene to conduct electricity.

Graphene can also be used to make biomedical sensors for detecting diseases, viruses, and other toxins. Because every atom of graphene is exposed, due to it being only one atom thick, sensors can be far more sensitive. Graphene oxide sensors, for example, could detect toxins at levels 10 times less than today’s sensors. These sensors could be placed on or under the skin and provide doctors and researchers with vast amounts of information.

Chinese scientists have even created a sensor that can detect a single cancerous cell. Further, scientists at the University of Manchester report graphene oxide can hunt and neutralize cancer stem cells.

Infrastructure

SDG 9 is to “build resilient infrastructure, promote inclusive and sustainable industrialization and foster innovation.” Graphene-enhanced composites and other building materials could bring us closer to meeting this goal.

Recent research shows that the more graphene is added, the better the composite becomes. This means graphene can be added to building materials like concrete, aluminum, etc., which will allow for stronger and lighter materials.

Resins are also getting better thanks to the addition of graphene. Research by Graphene Flagship, the EU’s billion-euro project to further graphene research, and their partner Avanzare suggests “graphene enhances the functionality of the resin, combining graphene’s electrical conductivity and mechanical strength with excellent corrosion resistance.” Some uses for this are making pipes and storage tanks corrosion-resistant, and making stronger adhesives.

Energy

SDG 7 is to “ensure access to affordable, reliable, sustainable and modern energy for all.” Because of its light weight, conductivity, and tensile strength, graphene may make sustainable energy cheaper and more efficient.

For example, graphene composites can be used to create more versatile solar panels. Researchers at MIT say, “The ability to use graphene…is making possible truly flexible, low-cost, transparent solar cells that can turn virtually any surface into a source of electric power.”

We’ll also be able to build bigger and lighter wind turbines thanks to graphene composites.

Further, graphene is already being used to enhance traditional lithium-ion batteries, which are the batteries commonly found in consumer electronics. Research is also being done into graphene aerogels for energy storage and supercapacitors. All of these will be essential for large-scale storage of renewable energy.

Over the next decade, graphene is likely to find more and more uses out in the real world, not only helping the UN and member states meet the SDGs, but enhancing everything from touch screens to MRI machines and from transistors to unknown uses as a superconductor.

New research is being published and new patents being filed regularly, so keep an eye out for this amazing material.

Graphene-powered motors may lead to new source of green energy


Physics professor Paul Thibado NTS Innovations (also known as Nanotube Solutions LLC), a nanotechnology company headquartered in East Peoria, Illinois, has licensed this patent-pending technology from the university and plans to use it to fabricate devices and systems that produce energy without consuming fuel or creating pollution.

The research of Paul Thibado, professor of physics at the University of Arkansas, has shown that the motion of two-dimensional materials may be used as a source of clean, limitless energy.

Thibado and his colleague, assistant professor Pradeep Kumar, discovered the potential of two-dimensional materials while observing the motion of graphene, a two-dimensional form of carbon, mounted on a copper grid. Using a high-powered microscope, they observed that the freestanding graphene has a rippled structure, with each ripple flipping up and down in response to the ambient temperature.

Thibado used this concept to design a device he calls a Vibration Energy Harvester. The harvester is a negatively charged sheet of graphene suspended between two metal electrodes. When the graphene flips up, it induces a positive charge in the top electrode, and when it flips down, it positively charges the bottom one, creating an alternating current.

The samples of graphene in Thibado’s lab measure about 10 microns across, so tiny that more than 20,000 of them could fit on the head of a pin. Each ripple in the graphene measures only 10 nanometers by 10 nanometers, yet may yield as much as 10 picowatts of power. As a result, each of these micro-sized membranes has potential to produce enough energy to power a wristwatch. Because they get their energy from ambient heat, they never need charging.

Paul Thibado discovered that under the right circumstances, temperature changes caused by ambient heat makes graphene ripple and buckle. Now he’s using this idea to create an energy breakthrough: a device that harnesses the heat all around us to create electricity.

Charles Woodson, director of research and technology at NTS Innovations, immediately recognized the potential in Thibado’s discovery. “This is by far the most exciting project I’ve seen,” said Woodson, who has worked in the energy and nanotechnology fields for more than five decades.

NTS Innovations focuses on the commercialization of nanotechnology and environmentally sustainable heating, water filtration and purification, as well as the production of green energy, all via 2-D materials. Woodson envisions many applications for Thibado’s discovery. For example, it could be used to create sustainable, decentralized energy systems throughout the world, especially in places where the energy grid system is underdeveloped or nonexistent. It may also prove beneficial in biomedical devices, enhanced solar and wind production, capturing waste heat and remote sensing devices.

With the support of NTS Innovations, Thibado plans to produce a proof of concept — a device capable of charging a capacitor using only ambient heat and the motion of graphene — within a year.

Source: University of Arkansas

Shaping Stem Cell Research with Nanotechnology – Hope for Treating Parkinson’s; Heart Disease and ???


Nanoscientists have developed a technique that allows them to transform stem cells into bone cells on command. But could the process be used to treat deadly conditions such as heart disease and Parkinson’s?

Anyone who knows a thing or two about biology knows that stem cells have tremendous potential in medicine: anything from repairing and replenishing heart cells after an attack to replacing nerve cells that are progressively lost in the brain of a person with Parkinson’s.

One of the big challenges of using stem cells as a therapy is coaxing them to grow into the specific type of tissue that is required. In the body this happens thanks to precise chemical and physical signals, not all of which are yet understood or characterised.

Using chemicals to direct the fate of stem cells has worked in laboratories, but the outcomes are not always safe or predictable.

Now, a team from Northwestern University in the US thinks it has a solution. They say that they can direct the developmental fate of stem cells using only physical cues, by adapting a well-known technique that traces three-dimensional microscopic shapes and reconstructs them on flat surfaces.

The process is called scanning probe lithography.

By placing the stem cells on the nanopatterned surface, and without adding any kind of chemicals, the scientists found that they could induce the stem cells to develop into bone cells.

Extend this technique, they say, and it might be possible to turn stem cells into any type of cell on command.

When the body needs a repair to be carried out, a special type of stem cell – called mesenchymal stem cells or MSCs – can enter the blood circulation system. These cells travel around the body and actually home in on where they are needed.

MSCs have the potential to develop into a whole range of different tissue types – in other words, they are pluripotent.

The developmental decision that they make depends, in part, on the molecular structures in the matrix surrounding the cells that make up the tissue.

The structure of the matrix affects the softness of the tissue – so the brain is a soft, mushy tissue, while stiffer tissues include muscle, and rigid tissues include bone.

The US team has mimicked this real-life situation. Using the molecular structures in the matrix that surround a cell as a pattern, and with an array of pyramid-like points that are a hundred-thousand times smaller than the tip of a pencil and incredibly sharp, molecule by molecule they have built up a kind of nano-landscape with sculptures ranging in size from the nano- to the microscale, on a small piece of glass. The technique is called polymer pen lithography.

The researchers grew MSCs on one type of nanoscopic sculpture, and were able to direct their developmental fate.

“Starting with millions of possibilities, we quickly zeroed in on the pattern of features that best directed the stem cells into osteocytes [bone cells],” says Chad A Mirkin, who led the work.

Mirkin is professor of chemistry in the Weinberg College of Arts and Sciences and is also the director of Northwestern’s International Institute for Nanotechnology.

The potential of this tool is to be able to take pluripotent stem cells from a patient, run them over a selected three-dimensional matrix in order to convert them rapidly into a particular cell type of choice, and then return them to the patient for repair and replenishment of damaged tissues.

“With further development, researchers might be able to use this approach to prepare cells of any lineage on command,” Mirkin says.

“The three-dimensional aspect is very interesting, and mimics aspects of the environment in a highly stylized way,” says Fiona Watt, professor and director of the Centre for Stem Cells and Regenerative Medicine at Kings College London.

“Several reports argue that the topology imposed on a stem cell – how a stem cell is contained in 3D – affects its behaviour. When you consider your bones and cartilage, this makes perfect sense,” Watt adds.

One important aspect of this work according to Marilyn Monk, emeritus professor of molecular embryology at University College London’s Institute of Child Health, is that it provides evidence that stem-cell fate can solely be informed by the local three-dimensional molecular structure.

“But that’s not to say that this is the only way to direct stem-cell fate,” Monk says. “We know that regulation of development involves multiple mechanisms that operate independently and inter-dependently to bring about a final specific cell function.”

Nonetheless he believes the technique is a real advance. “It would be neat to see if they can take a stem cell, already committed in one developmental direction, and back it up so that it might become another type of cell again, using only their patterning technique,” he says.

“That would be the Nobel prize.”

Ultra-bright Ultra-fast light emission ‘Nano-crystals’ (Quantum Dots) Applications the for Displays and Super-Computers


Extremely bright and fast light emission Nano-Crystals

An international team of researchers from ETH Zurich, IBM Research Zurich, Empa and four American research institutions have found the explanation for why a class of nanocrystals that has been intensively studied in recent years shines in such incredibly bright colours.

The nanocrystals contain caesium lead halide compounds that are arranged in a perovskite lattice structure.

Three years ago, Maksym Kovalenko, a professor at ETH Zurich and Empa, succeeded in creating nanocrystals – or quantum dots, as they are also known – from this semiconductor material. “These tiny crystals have proved to be extremely bright and fast emitting light sources, brighter and faster than any other type of quantum dot studied so far,” says Kovalenko.

By varying the composition of the chemical elements and the size of the nanoparticles, he also succeeded in producing a variety of nanocrystals that light up in the colours of the whole visible spectrum. These quantum dots are thus also being treated as components for future light-emitting diodes and displays.

A caesium lead bromide nanocrystal under the electron microscope (crystal width: 14 nanometres). Individual atoms are visible as points. (Image: ETH Zurich / Empa / Maksym Kovalenko)

In a study published in the most recent edition of the scientific journal Nature (“Bright triplet excitons in caesium lead halide perovskites”), the international research team examined these nanocrystals individually and in great detail. The scientists were able to confirm that the nanocrystals emit light extremely quickly.

Previously-studied quantum dots typically emit light around 20 nanoseconds after being excited when at room temperature, which is already very quick. “However, caesium lead halide quantum dots emit light at room temperature after just one nanosecond,” explains Michael Becker, first author of the study. He is a doctoral student at ETH Zurich and is carrying out his doctoral project at IBM Research.

Electron-hole pair in an excited energy state

Understanding why caesium lead halide quantum dots are not only fast but also very bright entails diving into the world of individual atoms, light particles (photons) and electrons. “You can use a photon to excite semiconductor nanocrystals so that an electron leaves its original place in the crystal lattice, leaving behind a hole,” explains David Norris, Professor of Materials Engineering at ETH Zurich.

The result is an electron-hole pair in an excited energy state. If the electron-hole pair reverts to its energy ground state, light is emitted.

Under certain conditions, different excited energy states are possible; in many materials, the most likely of these states is called a dark one. “In such a dark state, the electron hole pair cannot revert to its energy ground state immediately and therefore the light emission is suppressed and occurs delayed. This limits the brightness”, says Rainer Mahrt, a scientist at IBM Research.

A sample with several green glowing perovskite quantum dots excited by a blue laser. (Image: IBM Research / Thilo Stöferle)

No dark state

The researchers were able to show that the caesium lead halide quantum dots differ from other quantum dots: their most likely excited energy state is not a dark state. Excited electron-hole pairs are much more likely to find themselves in a state in which they can emit light immediately. “This is the reason that they shine so brightly,” says Norris.

The researchers came to this conclusion using their new experimental data and with the help of theoretical work led by Alexander Efros, a theoretical physicist at the Naval Research Laboratory in Washington. He is a pioneer in quantum dot research and, 35 years ago, was among the first scientists to explain how traditional semiconductor quantum dots function.

Great news for data transmission

As the examined caesium lead halide quantum dots are not only bright but also inexpensive to produce they could be applied in television displays, with efforts being undertaken by several companies, in Switzerland and world-wide. “Also, as these quantum dots can rapidly emit photons, they are of particular interest for use in optical communication within data centres and supercomputers, where fast, small and efficient components are central,” says Mahrt.

Another future application could be the optical simulation of quantum systems which is of great importance to fundamental research and materials science.

ETH professor Norris is also interested in using the new knowledge for the development of new materials. “As we now understand why these quantum dots are so bright, we can also think about engineering other materials with similar or even better properties,” he says.

Source: By Fabio Bergamin, ETH Zurich

The Knowledge Entrepreneur: A New Paradigm For Preparing Tomorrow’s Engineers And Scientists


Knowledge Entrpreneur Engineering-Researchers.Jan18-1200x801
Photo courtesy of UVA EngineeringWorking in the Link Lab for cyber-physical systems, engineering students at the University of Virginia are designing the next generation of intelligent devices for smart buildings and homes.  *** Special Re-Post from Forbes Leadership – by Bernie Carlson

The Knowledge Entrepreneur: A New Paradigm For Preparing Tomorrow’s Engineers And Scientists

It is tempting to apply the old saying, “East is East, West is West, but the twain shall never meet,” to science and entrepreneurship.  In the popular imagination, scientists discover new knowledge while entrepreneurs build companies to launch new products.

Most people assume that scientists are motivated by the high ideal of advancing human progress while entrepreneurs are driven by the base motives of ego and greed.  Like oil and water, science and entrepreneurship, it would seem, don’t mix.

Yet to solve the major problems confronting humanity—disease, hunger, global warming and terrorism—science and entrepreneurship need to mix. The world needs STEM specialists who possess not only a deep understanding of scientific theory and laboratory practice but also the skills needed to move ideas from the laboratory to the wider world.

At the University of Virginia’s School of Engineering and Applied Science, we call these new experts Knowledge Entrepreneurs.

By Knowledge Entrepreneur, we don’t mean all our STEM students will launch a new startup business [though we hope that some do] but rather that they possess the habits which will allow them to be agents of change, to intentionally shape their research programs and careers in ways that address major challenges.

We share with KEEN [the Kern Entrepreneurial Engineering Network] the vision that engineering students can transform the world by developing an entrepreneurial mindset.

Douglas E. Melton, Ph.D, shares why the entrepreneurial mindset is the key to success for engineering undergraduate students.

An entrepreneurial mindset is particularly important for students pursuing advanced masters and doctoral degrees.  Generally speaking, undergraduate students in engineering and science are passive consumers who master the material in textbooks, lectures, and laboratory exercises.

However, when they move up to graduate studies, we need to teach students how to be active producers of knowledge, to have the skills to not only generate new ideas and designs but also to be able to implement these solutions in society.

To become active producers of knowledge, graduate students should acquire five habits of effective entrepreneurs:

First, as Knowledge Entrepreneurs, students must identify a problem out there in the world and frame it as a question that can be investigated using available scientific techniques. 

While Thomas Edison is often criticized for tinkering and trying random solutions, he always began work on an invention by defining a specific problem that he could solve.

With his electric lighting system in the late 1870s, for instance, Edison decided early on that he wanted an electric lamp which could be substituted for the gas lamps people were already using.  This electric-to-gas analogy led him to experimenting with incandescent lamps and to concentrating on finding the right material for a high-resistance filament.brain-quantum-2-b2b_wsf

Problem definition means engaging multiple stakeholders; for Edison, this meant studying the economics of the gas-lighting industry, talking to potential customers and consulting with leading scientists.

For contemporary STEM graduate students, problem definition requires talking with funding agencies, fellow professionals and end users in order to understand each group’s needs.

In our course on Knowledge Entrepreneurship in UVa’s Engineering School, we borrow customer discovery techniques from the I-Corps program of the National Science Foundation, teaching our Ph.D. students how to ask people from different backgrounds open-ended questions about their problems and wishes.  Depending on their project, we encourage students to reach out to researchers, manufacturers, patients and end-users.

Thomas Edison talking about the invention of the light bulb, late 1920s. Newsreel clip from the Motion Picture Division of the U.S. National Archives.

Second, once they have defined a problem, Knowledge Entrepreneurs mobilize a network of people and resources needed to convert that problem into an opportunity.

To develop his electric lighting system, Edison assembled at Menlo Park a first-class team of technicians and scientists and provided them with laboratory instruments and machine tools as well as technical journals and books.

As Edison’s team zeroed in on a vegetable-based carbon filament, his network became global and he dispatched agents to collect plant samples from around the world; eventually, Edison found that Japanese bamboo made the best lamp filaments.

Drawing on the entrepreneurial effectuation principles of our Darden Business School colleague, Saras Sarasvathy, we show our students how to build a social network that includes faculty advisors, lab support personnel, equipment and space, and data.

One of the most popular lectures in our Knowledge Entrepreneurship course is titled “The Care and Feeding of Dissertation Advisors,” during which we help students to understand how to manage relationships with their mentors.  Emulating Edison, we encourage our students to recognize that science and engineering are complex enterprises and they need to collaborate not only across disciplines but across cultures, seeking opportunities to work with and learn from experts around the world.

Third, Knowledge Entrepreneurs recognize that innovation involves not just the development of a single idea in the laboratory but also the strategic positioning of ideas in the larger world. 

Tesla Elec Semi I 4w2a6750A clear example of this can be seen if we shift from Edison to his rival Nikola Tesla.  Along with perfecting his alternating current motor, Tesla vigorously promoted this invention by securing strong patents, writing papers for engineering journals, giving newspaper interviews and doing spectacular public demonstrations.

By doing so, Tesla secured a lucrative licensing deal with Westinghouse and established himself as a great electrical wizard.

Principles of Effectuation

This Video gives the summary of “Principles of Effectuation”. The original author is Prof. Saras Sarasvathy, Darden University.

While we don’t expect our graduate students to market themselves as wizards, we do work with them to create a strategy for promoting their work through a variety of channels—papers in key journals, presentations at conferences, elevator pitches, popular articles, blogs and websites—which ensure their ideas and designs are accessible to multiple audiences.

In particular, we push our graduate students to view the popularization of their research as not “dumbing it down” but rather as an opportunity to focus and clarify what are the essential elements of their work.  We remind them that every paper and every talk has to answer the question “So what?” in a way which is meaningful to the audience.

Fourth, Knowledge Entrepreneurs understand that innovation requires fostering a positive environment for learning and creativity. 

In developing the first stealth fighter jet at Lockheed in the late seventies, engineer-entrepreneur Ben Rich devoted significant energy to shaping the culture of the Skunk Works, the company’s famous R&D lab.  As Rich recalled, “We encouraged our people to work imaginatively, to improvise and try unconventional approaches to problem-solving, and then get out of their way.”

In doing so, Rich and his team “saved tremendous amounts of time and money, while operating in an atmosphere of trust and cooperation with our Government customers and between our white-collar and blue-collar employees.”

For Ph.D. students in STEM, the critical environment that they will shape will be the classroom.  In the course of their careers as researchers and teachers, they will mentor the next generation of scientists and citizens.

Teaching, however, cannot simply be the transmission of scientific facts and data; as Knowledge Entrepreneurs, our students need to master the latest pedagogical techniques—such as flipped classrooms and maker spaces—so that science is accessible and useful not only for future experts but also ordinary citizens who need to understand the underpinning of modern technology.

Along with doing breakthrough research on electricity, the British scientist Michael Faraday initiated in 1825 the Royal Institution’s Christmas lectures on science, seeking to ensure that Victorians of all social classes had the chance to learn about the wonders of the natural and technological worlds.

60 Minutes feature on author and aeronautical designer and engineer Ben Rich with Ed Bradley. Rich talks about his work in designing the F-117 Stealth Fighter and other spy plane projects while Director of Lockheed Martin’s Skunk Works. Aired on CBS in 1994.

Fifth and finally, Knowledge Entrepreneurs are ethical and compassionate, mindful of the principles of conducting responsible science as well as being aware of how their research can help people.

Complementing our course on Knowledge Entrepreneurship, our Ph.D. students can also take a course on the “Responsible Conduct of Research,” which introduces ethical theory as well as the practical research guidelines mandated by the National Institutes of Health.

Our Ph.D. students are inspired by contemporary entrepreneurs such as Marc Benioff, the CEO of Salesforce, whose motto is “The business of business is improving the state of the world.”  Benioff is leading a movement where he invites other high-tech leaders to join him in committing 1% of product, time, profits or resources to addressing major world problems.

UVA maxresdefault (2)But compassion isn’t just about philanthropy; we invite our students to consider how compassion is integral to innovation.

One story we tell them concerns a Japanese basket-maker and a fisherman.  One day, a fisherman asked the basket-maker to fashion a basket for him so he could carry fish home from his boat.  While the basket-maker pointed out the fisherman’s design would not work very well, the fisherman insisted that he weave it for him.  A week later, the fisherman returned and found that the basket-maker had made him two baskets.  “One basket is the one you asked for,” the basket-maker explained, “and the other is the one that you will find works better.”  The basket-maker only charged the fisherman for one basket and the fisherman went away happy.

The best entrepreneurs know that innovation should be about delighting people and enriching their lives.

As STEM graduate students acquire these entrepreneurial habits, they will possess the skills needed to set themselves on career paths which will allow them to thrive in a variety of settings—in academia, industry or government.

Indeed, an entrepreneurial mindset will help them become leaders in whatever setting our graduates find themselves.  But most importantly, they will have the tools they need to apply their scientific training to the major challenges facing the world.

As Louis Pasteur advised young scientists, “Live in the serene peace of laboratories and libraries.  Say to yourselves first: ‘What have I done for my instruction?’ and, as you gradually advance, ‘What have I done for my country?’”  The Knowledge Entrepreneur understands how to move ideas from the serene laboratory to the bustling, needy world.

Bernie Carlson is professor and chair of the Engineering & Society Department at the University of Virginia. His most recent book is Tesla: Inventor of the Electrical Age (Princeton, 2013).

For More information about Genesis Nanotechnology Go To/ Follow Our Blog:

GNT New Thumbnail LARGE 2016Great Things from Small Things”

Watch a YouTube Video on Our Latest Project: