NREL Wins Award for Isothermal Battery Calorimeters – Measuring Battery Heat Levels and Energy Efficiency with 98% Accuracy – Video


NREL engineer Matthew Keyser holds a A123 battery module over the calorimeter he designed and built with the help of his staff.

” …. The IBCs can determine heat levels and battery energy efficiency with 98% accuracy and provide precise measurements through complete thermal isolation.”

NREL’s R&D 100 Award-winning Isothermal Battery Calorimeters (IBCs) are the only calorimeters in the world capable of providing the precise thermal measurements needed for safer, longer-lasting, and more cost-effective electric-drive vehicle (EDV) batteries. In order for EDVs hybrids (HEVs), plug-in hybrids (PHEVs), and all-electric vehicles (EVs) to realize ultimate market penetration, their batteries need to operate at maximum efficiency, performing at optimal temperatures in a wide range of driving conditions and climates, and through numerous charging cycles.

ibc_rotator_1Cutaway showing battery in the test chamber, heat flux gauges, isothermal fluid surrounding the test chamber, and outside container with insulation holding the bath fluid and the test chamber. Image: Courtesy of NETZSCH

 

NREL’s IBCs make it possible to accurately measure the heat generated by electric-drive vehicle batteries, analyze the effects of temperature on battery systems, and pinpoint ways to manage temperatures for the best performance and maximum life. Three models, the IBC 284, the Module IBC, and the Large-Volume IBC, make it possible to test energy devices at a full range of scales.

The World’s Most Precise Battery Calorimeters

Development of precisely calibrated battery systems relies on accurate measurements of heat generated by battery modules during the full range of charge/discharge cycles, as well as determination of whether the heat was generated electrochemically or resistively. The IBCs can determine heat levels and battery energy efficiency with 98% accuracy and provide precise measurements through complete thermal isolation. These are the first calorimeters designed to analyze heat loads generated by complete battery systems.

This video describes NREL’s R&D 100 Award-winning Isothermal Battery Calorimeters, the only calorimeters in the world capable of providing the precise thermal measurements needed for safer, longer-lasting, and more cost-effective electric-drive vehicle batteries.

Calorimeter Specifications
Specifications IBC 284 (Cell) Module IBC Large-Volume IBC (Pack)
Maximum Voltage (Volts) 50 500 600
Sustained Maximum Current (Amps) 250 250 450
Excursion Currents (Amps) 300 300 1,000
Volume (liters) 9.4 14.7 96
Maximum Dimensions (cm) 20.3 x 20.3 x 15.2 35 x 21 x 20 60 x 40 x 40
Operating Temperature (C) -30 to 60 -30 to 60 -40 to 100
Maximum Constant Heat Generation (W) 50 150 4,000

Working with Industry to Fine-Tune Energy Storage Designs

The IBCs’ capabilities make it possible for battery developers to predict thermal performance before installing batteries in vehicles. Manufacturers use these metrics to compare battery performance to industry averages, troubleshoot thermal issues, and fine-tune designs.

NREL in partnership with NETSCH Instrument North America and with support from the U.S. Department of Energy is using IBCs to help industry design better thermal management systems for EDV battery cells, modules, and packs. The U.S. Advanced Battery Consortium (USABC) and its partners rely on NREL for precise measurement of energy storage devices’ heat generation and efficiency under different states of charge, power profiles, and temperatures.

Experts Outline Pathway for Generating Up to Ten (10) Terawatts of Power from Sunlight by 2030: NREL – GA SERI


NREL IV energy-resources-renewables-fossil-fuel-uranium

The annual potential of solar energy far exceeds the world’s energy consumption, but the goal of using the sun to provide a significant fraction of global electricity demand is far from being realized.

Scientists from the U.S. Department of Energy’s National Renewable Energy Laboratory (NREL), their counterparts from similar institutes in Japan and Germany, along with researchers at universities and industry, assessed the recent trajectory of photovoltaics and outlined a potential worldwide pathway to produce a significant portion of the world’s electricity from solar power in the new Science paper, Terawatt-Scale Photovoltaics: Trajectories and Challenges.NREL I download

Fifty-seven experts met in Germany in March 2016 for a gathering of the Global Alliance of Solar Energy Research Institutes (GA-SERI), where they discussed what policy initiatives and technology advances are needed to support significant expansion of solar power over the next couple of decades.

“When we came together, there was a consensus that the global PV industry is on a clear trajectory to reach the multi-terawatt scale over the next decade,” said lead author Nancy Haegel, director of NREL’s Materials Science Center. “However, reaching the full potential for PV technology in the global energy economy will require continued advances in science and technology. Bringing the global research community together to solve challenges related to realizing this goal is a key step in that direction.”

NREL III pv global

Photovoltaics (PV) generated about 1 percent of the total electricity produced globally in 2015 but also represented about 20 percent of new installation. The International Solar Alliance has set a target of having at least 3 terawatts – or 3,000 gigawatts (GW) – of additional solar power capacity by 2030, up from the current installed capacity of 71 GW. But even the most optimistic projections have under-represented the actual deployment of PV over the last decade, and the GA-SERI paper discusses a realistic trajectory to install 5-10 terawatts of PV capacity by 2030.

Reaching that figure should be achievable through continued technology improvements and cost decreases, as well as the continuation of incentive programs to defray upfront costs of PV systems, according to the Science paper, which in addition to Haegel was co-authored by David Feldman, Robert Margolis, William Tumas, Gregory Wilson, Michael Woodhouse, and Sarah Kurtz of NREL.

GA-SERI’s experts predict 5-10 terawatts of PV capacity could be in place by 2030 if these challenges can be overcome:

  • A continued reduction in the cost of PV while also improving the performance of solar modules
  • A drop in the cost of and time required to expand manufacturing and installation capacity
  • A move to more flexible grids that can handle high levels of PV through increased load shifting, energy storage, or transmission
  • An increase in demand for electricity by using more for transportation and heating or cooling
  • Continued progress in storage for energy generated by solar power.

The Fraunhofer Institute for Solar Energy (Germany), the National Institute of Advanced Industrial Science and Technology (Japan), and the National Renewable Energy Laboratory (United States) are the member institutes of GA-SERI, which was founded in 2012.

NREL is the U.S. Department of Energy’s primary national laboratory for renewable energy and energy efficiency research and development. NREL is operated for the Energy Department by The Alliance for Sustainable Energy, LLC.

NREL & Colorado School of Mines Researchers Capture Excess Photon Energy to Produce Solar Fuels



Photo shows a lead sulfide quantum dot solar cell. A lead sulfide quantum dot solar cell developed by researchers at NREL. Photo by Dennis Schroeder.




Scientists at the U.S. Department of Energy’s National Renewable Energy Laboratory (NREL) have developed a proof-of-principle photoelectrochemical cell capable of capturing excess photon energy normally lost to generating heat.


Using quantum dots (QD) and a process called Multiple Exciton Generation (MEG), the NREL researchers
were able to push the peak external quantum efficiency for hydrogen generation to 114 percent.


The advancement could significantly boost the production of hydrogen from sunlight by using the cell to split water at a higher efficiency and lower cost than current photoelectrochemical approaches.

Details of the research are outlined in the Nature Energy paper Multiple exciton generation for photoelectrochemical hydrogen evolution reactions with quantum yields exceeding 100%, co-authored by Matthew Beard, Yong Yan, Ryan Crisp, Jing Gu, Boris Chernomordik, Gregory Pach, Ashley Marshall, and John Turner.

All are from NREL; Crisp also is affiliated with the Colorado School of Mines, and Pach and Marshall are affiliated with the University of Colorado, Boulder.




Beard and other NREL scientists in 2011 published a paper in Science that showed for the first time how MEG allowed a solar cell to exceed 100 percent quantum efficiency by producing more electrons in the electrical current than the amount of photons entering the solar cell.




“The major difference here is that we captured that MEG enhancement in a chemical bond rather than just in the electrical current,” Beard said.

“We demonstrated that the same process that produces extra current in a solar cell can also be applied to produce extra chemical reactions or stored energy in chemical bonds.”

The maximum theoretical efficiency of a solar cell is limited by how much photon energy can be converted into usable electrical energy, with photon energy in excess of the semiconductor absorption bandedge lost to heat.

The MEG process takes advantages of the additional photon energy to generate more electrons and thus additional chemical or electrical potential, rather than generating heat. QDs, which are spherical semiconductor nanocrystals (2-10 nm in diameter), enhance the MEG process.




In current report, the multiple electrons, or charge carriers, that are generated through the MEG process within the QDs are captured and stored within the chemical bonds of a H2 molecule.

NREL researchers devised a cell based upon a lead sulfide (PbS) QD photoanode. The photoanode involves a layer of PbS quantum dots deposited on top of a titanium dioxide/fluorine-doped tin oxide dielectric stack.

The chemical reaction driven by the extra electrons demonstrated a new direction in exploring high-efficiency approaches for solar fuels.

Funds for the research came from the Department of Energy’s Office of Science.

NREL is the U.S. Department of Energy’s primary national laboratory for renewable energy and energy efficiency research and development. NREL is operated for the Energy Department by The Alliance for Sustainable Energy, LLC.

Hydrogen Infrastructure Testing and Research Facility: Mountain Driving Demonstration: 175 Mile Loop + Two 11,000 foot Mountain Passes ~ ‘Colorado Cool!’


Published on Oct 10, 2016

Recently, researchers at the National Renewable Energy Laboratory wanted to know, how well does NREL’s hydrogen infrastructure support fueling multiple fuel cell electric vehicles (FCEVs) for a day trip to the Rocky Mountains?car-fc-3-nrel-download

The answer-great! NREL staff took FCEVs on a trip to demonstrate real-world performance and range in high-altitude conditions. To start the trip, drivers filled three cars at NREL’s hydrogen fueling station. The cars made a 175-mile loop crossing two 11,000+ foot mountain passes on the way. Back at NREL, the cars were filled up with hydrogen in ~5 minutes and ready to go again. Learn more at http://www.nrel.gov/hydrogen.

img_0742-1

Genesis Nanotechnology, Inc. ~ “Great Things from Small Things”

Solar Fuel Cell U of T energy_cycleRead More on Nano Enabled Fuel Cell Technologies for many more Energy Applications: Genesis Nanotechnology Fuel Cell Articles & Videos

NREL: Nanoscale confinement leads to new all-inorganic perovskite with exceptional solar cell properties – Using Quantum Dots to Create Increased Solar Cell Efficiency: Colorado School of Mines


confinement-for-qdots-100816-nanoscaleconAshley Marshall, Erin Sanehira and Joey Luther with solutions of all-inorganic perovskite quantum dots, showing intense photoluminescence when illuminated with UV light. Credit: National Renewable Energy Laboratory

Scientists with the Energy Department’s National Renewable Energy Laboratory (NREL) for the first time discovered how to make perovskite solar cells out of quantum dots and used the new material to convert sunlight to electricity with 10.77 percent efficiency.

The research, Quantum dot-induced phase stabilization of a-CsPbI3 perovskite for high-efficiency photovoltaics, appears in the journal Science. The authors are Abhishek Swarnkar, Ashley Marshall, Erin Sanehira, Boris Chernomordik, David Moore, Jeffrey Christians, and Joseph Luther from NREL. Tamoghna Chakrabarti from the Colorado School of Mines also is a co-author.co-school-of-mines-222925_original

In addition to developing quantum dot , the researchers discovered a method to stabilize a crystal structure in an all-inorganic perovskite material at room temperature that was previously only favorable at high temperatures. The crystal phase of the inorganic material is more stable in .

Most research into perovskites has centered on a hybrid organic-inorganic structure. Since research into perovskites for photovoltaics began in 2009, their efficiency of converting sunlight into electricity has climbed steadily and now shows greater than 22 percent power conversion efficiency. However, the organic component hasn’t been durable enough for the long-term use of perovskites as a solar cell.

NREL scientists turned to quantum dots-which are essentially nanocrystals-of cesium lead iodide (CsPbI3) to remove the unstable and open the door to high-efficiency quantum dot optoelectronics that can be used in LED lights and photovoltaics. NREL 20140609_buildings_26954_hp

The nanocrystals of CsPbI3 were synthesized through the addition of a Cs-oleate solution to a flask containing PbI2 precursor. The NREL researchers purified the nanocrystals using methyl acetate as an anti-solvent that removed excess unreacted precursors. This step turned out to be critical to increasing their stability.

Contrary to the bulk version of CsPbI3, the nanocrystals were found to be stable not only at temperatures exceeding 600 degrees Fahrenheit but also at room temperatures and at hundreds of degrees below zero. The bulk version of this material is unstable at , where photovoltaics normally operate and convert very quickly to an undesired crystal structure.

NREL scientists were able to transform the nanocrystals into a thin film by repeatedly dipping them into a methyl acetate solution, yielding a thickness between 100 and 400 nanometers. Used in a solar cell, the CsPbI3 nanocrystal film proved efficient at converting 10.77 percent of sunlight into electricity at an extraordinary high open circuit voltage. The efficiency is similar to record quantum dot solar cells of other materials and surpasses other reported all-inorganic perovskite solar cells.

Explore further: Rubidium pushes perovskite solar cells to 21.6 percent efficiency

More information: A. Swarnkar et al. Quantum dot-induced phase stabilization of -CsPbI3 perovskite for high-efficiency photovoltaics, Science (2016). DOI: 10.1126/science.aag2700

 

Nanotechnology Education for the Global World: Training the Leaders of Tomorrow


Nano Education 062116 nn-2016-03872b_0004

Nanoscience is one of the fastest growing and most impactful fields in global scientific research. In order to support the continued development of nanoscience and nanotechnology, it is important that nanoscience education be a top priority to accelerate research excellence. In this Nano Focus, we discuss current approaches to nanoscience training and propose a learning design framework to promote the next generation of nanoscientists. Prominent among these are the abilities to communicate and to work across and between conventional disciplines. While the United States has played leading roles in initiating these developments, the global landscape of nanoscience calls for worldwide attention to this educational need. Recent developments in emerging nanoscience nations are also discussed. Photo credit: Jae Hyeon Park.

Education has long been recognized as an important factor for growing the fields of nanoscience and nanotechnology and solidifying and expanding their roles in the global economy. In many countries, there is growing interest in developing educational programs across the full spectrum of educational levels from K-12 to postgraduate studies.

Various formal and informal educational practices are being designed and tested that promote general awareness of nanoscience and nanotechnology as well as provide advanced learning and skills development, including through group learning and peer assessment”In their article, the authors discuss innovative learning models that are being applied at the undergraduate level in order to train future leaders at the interface of engineering and management.

students running nanoscience experiments

Middle and high school students spend time at the California NanoSystems Institute at UCLA running nanoscience experiments. High school teachers from over 100 schools and 30 school districts are trained, networked to one another, and supplied with kits for their classrooms. Graduate students, postdocs, faculty, and staff run, expand, and improve these fully subscribed outreach events on a continuous basis. (© American Chemical Society)

While thee programs are not strictly focused on nanotechnology, many graduates pursue nanotechnology-focused careers and they provide examples of important factors that should be considered in the nanotechnology field.Moreover, they represent the growing trend of holistic learning, which integrates coursework across disciplines, promotes foreign experiences, and encourages industrial internships.

Here is the set of recommendations they make:

Inspire Students To Envision What Is or Could Be Possible

Possibilities include a greater focus on nanotechnology applications in courses or hands-on laboratory experiences that tie in with class concepts. Even before reaching the classroom, students should have positive views of nanoscience and the potential it holds. Successful learning practices start with capturing the imagination of students. Communicating the remarkable features of nanoscience in a simple and clear way to the mainstream public would go a long way toward achieving this goal.

Promote Role Models Who Impact Society

From an educational perspective, the tech world is a particularly good example because successful entrepreneurs such as Steve Jobs, Elon Musk, Sheryl Sandberg, and Mark Zuckerberg have captured the public audience and inspired countless students to think beyond the classroom. In nanotechnology, similar role models can inspire students with the many opportunities available in the field.

Encourage Global Collaboration

Nanotechnology research and development is truly global. Early exposure to these trends will better inform students about career opportunities and give them ideas about how to work together in teams across disciplines and cultures. A growing number of partnerships already provide international experiences for nanoscience and nanotechnology students.

Support Early Exposure Inside and Outside of the Laboratory

For many students, nanoscience and nanotechnology are about working in a lab doing scientific research. While this activity is common, its generalization could not be farther from the truth. There are many possible ways to get involved in nanotechnology, from instructional education and hands-on training to entrepreneurship and manufacturing.Holistic approaches that integrate these different possibilities, while providing targeted career development, would greatly benefit students and the overall goals of nanotechnology education. Developing a strong workforce infrastructure for nanotechnology

Communication Across Fields

Stressing the importance of communication, the authors conclude:

“Finally, one of the great strengths of the nanoscience and nanotechnology communities is that we have taught each other how to communicate across fields, to look at and to leverage each other’s approaches, and to address the key issues of a multitude of fields.

As a field, we are increasingly viewed as problem solvers in science and technology, developing new tools, materials, methods, and opportunities. Bringing this aspect of our field to students (and scientists and engineers at all levels) will have significant impact on the world around us and our ability to make it better.”

By Michael Berger. © Nanowerk

GNT Thumbnail Alt 3 2015-page-001

Genesis Nanotechnology, Inc. ~ “Great Things from Small Things”

Facebook 042616.jpgFollow Us on Facebook

Twitter Icon 042616.jpgUp to the Minute Nanotech News on Our Twitter Feed

LinkedIn IconA 042316.jpg‘Link-Up” with Us on LinkedIn

 Website Icon 042616Connect with Our Website

YouTube small 050516Watch Our YouTube Video 

A Chemical Switch-Flip Helps Perovskite Solar Cells Beat the Heat


Flip Chem Switch 042716 solarenergy

 

Thin films of crystalline materials called perovskites provide a promising new way of making inexpensive and efficient solar cells. Now, an international team of researchers has shown a way of flipping a chemical switch that converts one type of perovskite into another — a type that has better thermal stability and is a better light absorber.

The study, by researchers from Brown University, the National Renewable Energy Laboratory (NREL) and the Chinese Academy of Sciences’ Qingdao Institute of Bioenergy and Bioprocess Technology published in the Journal of the American Chemical Society, could be one more step toward bringing perovskite solar cells to the mass market.

“We’ve demonstrated a new procedure for making solar cells that can be more stable at moderate temperatures than the perovskite solar cells that most people are making currently,” said Nitin Padture, professor in Brown’s School of Engineering, director of Brown’s Institute for Molecular and Nanoscale Innovation, and the senior co-author of the new paper. “The technique is simple and has the potential to be scaled up, which overcomes a real bottleneck in perovskite research at the moment.”

Perovskites have emerged in recent years as a hot topic in the solar energy world. The efficiency with which they convert sunlight into electricity rivals that of traditional silicon solar cells, but perovskites are potentially much cheaper to produce. These new solar cells can also be made partially transparent for use in windows and skylights that can produce electricity, or to boost the efficiency of silicon solar cells by using the two in tandem.

Despite the promise, perovskite technology has several hurdles to clear — one of which deals with thermal stability. Most of the perovskite solar cells produced today are made with of a type of perovskite called methylammonium lead triiodide (MAPbI3). The problem is that MAPbI3 tends to degrade at moderate temperatures.

“Solar cells need to operate at temperatures up to 85 degrees Celsius,” said Yuanyuan Zhou, a graduate student at Brown who led the new research. “MAPbI3 degrades quite easily at those temperatures.”Flip Chem Switch 042716 solarenergy

That’s not ideal for solar panels that must last for many years. As a result, there’s a growing interest in solar cells that use a type of perovskite called formamidinium lead triiodide (FAPbI3) instead. Research suggests that solar cells based on FAPbI3 can be more efficient and more thermally stable than MAPbI3. However, thin films of FAPbI3 perovskites are harder to make than MAPbI3 even at laboratory scale, Padture says, let alone making them large enough for commercial applications.

(Right) Thin films of crystalline materials called perovskites provide a promising new way of making inexpensive and efficient solar cells. Now, an international team of researchers has shown a way of flipping a chemical switch that converts one type of perovskite into another — a type that has better thermal stability and is a better light absorber. Credit: Padture Lab / Brown University

Part of the problem is that formamidinium has a different molecular shape than methylammonium. So as FAPbI3 crystals grow, they often lose the perovskite structure that is critical to absorbing light efficiently.

This latest research shows a simple way around that problem. The team started by making high-quality MAPbI3 thin films using techniques they had developed previously. They then exposed those MAPbI3 thin films to formamidine gas at 150 degrees Celsius. The material instantly converted from MAPbI3 to FAPbI3 while preserving the all-important microstructure and morphology of the original thin film.

“It’s like flipping a switch,” Padture said. “The gas pulls out the methylammonium from the crystal structure and stuffs in the formamidinium, and it does so without changing the morphology. We’re taking advantage of a lot of experience in making excellent quality MAPbI3 thin films and simply converting them to FAPbI3 thin films while maintaining that excellent quality.”

This latest research builds on the work this international team of researchers has been doing over the past year using gas-based techniques to make perovskites. The gas-based methods have the potential of improving the quality of the solar cells when scaled up to commercial proportions. The ability to switch from MAPbI3 to FAPbI3 marks another potentially useful step toward commercialization, the researchers say.

“The simplicity and the potential scalability of this method was inspired by our previous work on gas-based processing of MAPbI3 thin films, and now we can make high-efficiency FAPbI3-based perovskite solar cells that can be thermally more stable,” Zhou said. “That’s important for bringing perovskite solar cells to the market.”

Laboratory scale perovskite solar cells made using this new method showed efficiency of around 18 percent — not far off the 20 to 25 percent achieved by silicon solar cells.

“We plan to continue to work with the method in order to further improve the efficiency of the cells,” said Kai Zhu, senior scientist at NREL and co-author of the new paper. “But this initial work demonstrates a promising new fabrication route.”

NREL Study finds Carbon Nanotube Semiconductors Well-Suited for PV Systems


NREL C nanotubes 042616 studyfindsna

 

Researchers at the Energy Department’s National Renewable Energy Laboratory (NREL) discovered single-walled carbon nanotube semiconductors could be favorable for photovoltaic systems because they can potentially convert sunlight to electricity or fuels without losing much energy.

The research builds on the Nobel Prize-winning work of Rudolph Marcus, who developed a fundamental tenet of physical chemistry that explains the rate at which an electron can move from one chemical to another. The Marcus formulation, however, has rarely been used to study photoinduced electron transfer for emerging organic semiconductors such as (SWCNT) that can be used in organic PV devices.

In organic PV devices, after a photon is absorbed, charges (electrons and holes) generally need to be separated across an interface so that they can live long enough to be collected as electrical current. The electron transfer event that produces these separated charges comes with a potential loss as the molecules involved have to structurally reorganize their bonds. This loss is called reorganization energy, but NREL researchers found little energy was lost when pairing SWCNT semiconductors with fullerene molecules.

“What we find in our study is this particular system—nanotubes with fullerenes—have an exceptionally low reorganization energy and the nanotubes themselves probably have very, very low reorganization energy,” said Jeffrey Blackburn, a senior scientist at NREL and co-author of the paper “Tuning the driving force for exciton dissociation in single-walled carbon nanotube heterojunctions.”

The paper appears in the new issue of the journal Nature Chemistry. Its other co-authors are Rachelle Ihly, Kevin Mistry, Andrew Ferguson, Obadiah Reid, and Garry Rumbles from NREL, and Olga Boltalina, Tyler Clikeman, Bryon Larson, and Steven Strauss from Colorado State University.

Organic PV devices involve an interface between a donor and an acceptor. In this case, the SWCNT served as the donor, as it donated an electron to the acceptor (here, the fullerene). The NREL researchers strategically partnered with colleagues at Colorado State University to take advantage of expertise at each institution in producing donors and acceptors with well-defined and highly tunable energy levels: semiconducting SWCNT donors at NREL and fullerene acceptors at CSU. This partnership enabled NREL’s scientists to determine that the event didn’t come with a large energy loss associated with reorganization, meaning solar energy can be harvested more efficiently. For this reason, SWCNT semiconductors could be favorable for PV applications.

Explore further: Researchers achieve record 8.4 percent conversion efficiency in fullerene-free organic solar cells

More information: Rachelle Ihly et al, Tuning the driving force for exciton dissociation in single-walled carbon nanotube heterojunctions, Nature Chemistry (2016). DOI: 10.1038/nchem.2496

Journal reference:Nature Chemistrysearch and more infowebsite

Provided by: National Renewable Energy Laboratory

 

GNT Thumbnail Alt 3 2015-page-001

Genesis Nanotechnology, Inc. ~ “Great Things from Small Things”

Facebook 042616.jpgFollow Us On Facebook   Twitter Icon 042616.jpg Follow Us On Twitter

LinkedIn IconA 042316.jpg “Link Up” with Us on LinkedIn    Website Icon 042616  More Info – Connect with Our Website                YouTube Icon 042616 Watch Our YouTube Videos

 

NREL: From Pump to Plug: Measuring the Public’s Attitude about Plug-In Electric Vehicles


electric cars imagesApril 4, 2016

Vehicle manufacturers, U.S. Department of Energy laboratories, universities, private researchers, and other organizations from around the globe are pursuing advanced vehicle technologies that aim to reduce petroleum consumption. However, the broad acceptance of these technologies depends on consumer sentiment — drivers must be willing to purchase such vehicles for them to succeed.

A new report by NREL’s Mark Singer highlights what consumers really think about plug-in electric vehicles (PEVs) — including pure electric vehicles (EVs) and plug-in hybrid electric vehicles (PHEVs) — and what is needed to overcome widespread barriers to adoption. The report, titled Consumer Views on Plug-in Electric Vehicles-National Benchmark ReportPDF, presents the findings of a study on the public’s sentiments regarding PEVs, with a focus on vehicle purchasing behaviors, awareness, and barriers to acceptance. Conducted in February 2015, the study covered a 1,015-household sample designed to be representative of the U.S. population.

NREL plans to repeat the study annually to track changing consumer perceptions.

Consumer Views Quick Facts

The following list provides a sampling of study findings.

Vehicle Purchasing Behaviors

  • 60% of respondent households owned two or more vehicles.
  • 48% of respondents stated their next vehicle purchases would likely be sedans.

PEV Awareness

  • 48% of respondents were able to name a specific PEV make and model.
  • 52% of respondents stated PHEVs were just as good as or better than traditional gasoline vehicles.
  • 24% of respondents stated they would consider or expect to purchase a PHEV for their next vehicle purchase or lease.

Barriers to PEV Acceptance

  • An EV would need to be able to travel 300 miles on a single charge for 56% of respondents to be willing to consider purchasing one.
  • 53% of respondents could consistently park their vehicles near electrical outlets at home.

PEV Acceptance

  • Respondents who were aware of PEV charging stations were more likely than respondents overall to view PEVs positively and be willing to consider purchasing them.
  • Respondents who were able to name one of the top nine best-selling PEVs were more likely than respondents overall to view PEVs positively and be willing to consider purchasing them.

The U.S. Department of Energy’s Vehicle Technologies Office sponsored this report as part of its mission to support research, development, and deployment of efficient and sustainable highway transportation technologies that increase energy security, lower costs, and reduce environmental impacts.

NREL: Genetically Modified Algae Could Replace Oil for Plastic


Algae for Ethelyne 9D305D6D-C3FB-4C68-A116B9AD02D05513_articleTweaked cyanobacteria can churn out a plastic precursor, potentially replacing fossil fuels.

From polyester shirts, plastic milk jugs and PVC pipes to the production of high-grade industrial ethanol, the contribution of the chemical feedstock ethylene can be found just about everywhere around the globe.

But ethylene’s ubiquity as a building block in plastics and chemicals masks an underlying environmental cost. The cheap hydrocarbon is made using petroleum and natural gas, and the way it is produced emits more carbon dioxide than any other chemical process. As concerns about levels of CO2 in the atmosphere have grown, some scientists have been experimenting with ways to make ethylene production more green. At the Department of Energy’s National Renewable Energy Laboratory (NREL), researchers are finding unexpected success with the help of cyanobacteria, or blue-green algae.

Jianping Yu, a research scientist with NREL’s Photobiology Group, is leading a team of researchers who are working with these organisms. In his lab, they have been able to make ethylene directly from genetically modified algae.

The researchers were able to accomplish this by introducing a gene that coded for an ethylene-producing enzyme—effectively altering the cyanobacteria’s metabolism. This allows the organisms to convert some of the carbon dioxide normally used to make sugars and starches during photosynthesis into ethylene. Because ethylene is a gas, it can easily be collected.

Making ethylene doesn’t require many inputs, either. The basic requirements for cyanobacteria are water, some minerals and light, and a carbon source. In a commercial setting, CO2 could come from a point source like a power plant, Yu said.

If this alternative production method becomes efficient enough, it could potentially replace steam cracking, the energy-intensive method currently used to break apart petrochemicals into ethylene and other compounds. Because the algae take in three times the CO2 to produce a single ton of ethylene, the process acts as a carbon sink. That would be a significant improvement over steam cracking, which generates between 1 ½ and 3 tons of carbon dioxide per ton of ethylene, according to the researchers’ own analysis. The captured ethylene gas can then be transformed for use in a wide range of fuels and products.

“I think it’s better to turn CO2 into something useful,” Yu said, comparing the approach to other methods of carbon capture. “You don’t have to pump CO2 into the ground, and [the products] will last for many years.”

Engineering genes to suck up carbon
Yu and his colleagues weren’t the first to come up with the idea of using cyanobacteria to make ethylene. The process was first attempted by researchers in Japan more than a decade ago. At the time, the researchers were not able to produce ethylene reliably. When Yu read the study years later, he thought that by genetically altering a different strain with which he had worked closely (Synechocystis sp. PCC6803), he might be able to make ethylene production more consistent.

Algae Ethelyne II safe_imageThe researchers are able to make ethylene from algae by altering a part of the organism’s metabolism called the tricarboxylic acid (TCA) cycle, which is involved in biosynthesis and energy production. In genetically unaltered blue-green algae, the cycle can only take in a relatively small fraction, or 13 percent, of the 2 to 3 percent of fixed CO2. But in Yu’s lab, the algae are able to send three times more carbon to the TCA cycle and emit 10 percent of the fixed carbon dioxide as ethylene—at a rate of 35 milligrams per liter per hour. That might not sound like very much, but it represents a thousandfold increase in productivity since he first began working with the cyanobacteria in 2010. By the end of this year, Yu is aiming to increase that productivity to 50 milligrams.

“This is by no means close to the upper limit,” he said, explaining that the ultimate goal will be to convert 90 percent of fixed carbon to ethylene. “I cannot see why it cannot go higher; I haven’t run into a brick wall yet. I don’t know what would prevent that from happening, but of course it could.”

Surprisingly, even though the cyanobacteria are producing more ethylene, the organisms are still growing at the same rate as non-ethylene-producing algae. The results demonstrate that the cyanobacteria’s metabolism was much more flexible than previously thought, according to Yu.

“It’s like a person that’s losing blood all the time but appears healthy,” he said.

Yu and his colleagues aren’t certain how this is happening, but the mutation that enabled ethylene production has also stimulated photosynthesis.

“This system gives us a new insight into photosynthesis and gives us hope that we can learn from this and increase photosynthetic activity,” he said.

That insight into cyanobacteria’s metabolism is as important a finding as the creation of organisms that can consistently produce ethylene, said Robert Burnap, a professor of microbiology and molecular genetics at Oklahoma State University. He was not involved with the study, but did provide a reference for Yu’s application to this year’s R&D 100 Awards. Yu is now a finalist in the Mechanical Devices/Material category.

“It’s surprising how adaptive the metabolism is. It’s producing something it’s not evolved to make. There was a lot of controversy over whether or not that was even possible to have consistent ethylene production. It shows it is flexible,” he said.

The research could help other scientists better understand metabolic pathways in other plants and even in humans. The TCA cycle is even active in our cells’ mitochondria, Burnap said.

“What makes this study really special is the depths of analysis that they went into,” he said, describing the research as a whole as a “seminal piece of work.”

Manufacturing centers … in ponds?
It’s still much too early to say when or even if these algae will produce ethylene at a commercial scale. Yu estimates that development to that stage could take more than 10 years.

“It will take a lot of work to improve carbon efficiency to 50 percent or higher,” Yu said.

Philip Pienkos, principal manager of the Bioprocess R&D Group at NREL’s National Bioenergy Center, said the project is beginning to focus more on the development side, even as Yu continues to work to achieve higher ethylene volumes.

“How do you recover ethylene? What do you do with the biomass? This project is poised to answer these important questions,” Pienkos said.

Sometime next year, the researchers plan to move their work outdoors to see how the algae behave in an environment that more closely resembles how they would be grown commercially.

“We have to get a real scalable ethylene process so we have a better sense of what this will look like,” Pienkos said.

Yu envisions the cyanobacteria growing either in ponds, or possibly vertically, on newspaper-like sheets. In either case, the solid or liquid cultures would have to be enclosed to capture the ethylene, he said.

There are also some safety concerns associated with producing large quantities of the gas. The hydrocarbon and oxygen that are also produced by the algae are flammable, and certain safety precautions would have to be put in place to safely collect ethylene.

Even if the cyanobacteria can create large volumes of ethylene, their success will depend on whether the product can become cost-competitive. That won’t be easy because petrochemical-based ethylene is cheap and widely available. According to the researchers’ economic analysis, ethylene made from petrochemicals cost $600 to $1,300 per ton, while the gas coming from the algae is estimated to be about $3,240 per ton.

Proving the system’s economic viability down the road will also help maintain research funding from the Department of Energy, Peinkos said.

“Algae is not the primary focus of DOE; they’ve spent decades supporting work in cellulosics. Algae is a much smaller portfolio, and most of the work is in conversion directly to liquid fuels,” he said. “Ethylene stands out a little bit because it’s not a fuel, but it can be a fuel feedstock.”