Solar Cell Solutions to Industry’s Biggest Hurdle – Degradation – UCLA Samueli School of Engineering


Solar Solutions 031822

Materials scientists at the UCLA Samueli School of Engineering and colleagues from five other universities around the world have discovered the major reason why perovskite solar cells — which show great promise for improved energy-conversion efficiency — degrade in sunlight, causing their performance to suffer over time.  

The team successfully demonstrated a simple manufacturing adjustment to fix the cause of the degradation, clearing the biggest hurdle toward the widespread adoption of the thin-film solar cell technology. 

  

A research paper detailing the findings was published in Nature. The research is led by Yang Yang, a UCLA Samueli professor of materials science and engineering and holder of the Carol and Lawrence E. Tannas, Jr., Endowed Chair. The co-first authors are Shaun Tan and Tianyi Huang, both recent UCLA Samueli Ph.D. graduates whom Yang advised. 

Perovskites are a group of materials that have the same atomic arrangement or crystal structure as the mineral calcium titanium oxide. A subgroup of perovskites, metal halide perovskites, are of great research interest because of their promising application for energy-efficient, thin-film solar cells.  

 

Perovskite-based solar cells could be manufactured at much lower costs than their silicon-based counterparts, making solar energy technologies more accessible if the commonly known degradation under long exposure to illumination can be properly addressed. For further information see the IDTechEx report on Energy Harvesting Microwatt to Gigawatt: Opportunities 2020-2040. 

   

“Perovskite-based solar cells tend to deteriorate in sunlight much faster than their silicon counterparts, so their effectiveness in converting sunlight to electricity drops over the long term,” said Yang, who is also a member of the California NanoSystems Institute at UCLA. “However, our research shows why this happens and provides a simple fix. This represents a major breakthrough in bringing perovskite technology to commercialization and widespread adoption.” 

  

A common surface treatment used to remove solar cell defects involves depositing a layer of organic ions that makes the surface too negatively charged. The UCLA-led team found that while the treatment is intended to improve energy-conversion efficiency during the fabrication process of perovskite solar cells, it also unintentionally creates a more electron-rich surface — a potential trap for energy-carrying electrons. 

  

This condition destabilizes the orderly arrangement of atoms, and over time the perovskite solar cells become increasingly less efficient, ultimately making them unattractive for commercialization. 

  

Armed with this new discovery, the researchers found a way to address the cells’ long-term degradation by pairing the positively charged ions with negatively charged ones for surface treatments. The switch enables the surface to be more electron-neutral and stable, while preserving the integrity of the defect-prevention surface treatments. 

  

 The team tested the endurance of their solar cells in a lab under accelerated ageing conditions and 24/7 illumination designed to mimic sunlight. The cells managed to retain 87% of their original sunlight-to-electricity conversion performance for more than 2,000 hours. For comparison, solar cells manufactured without the fix dropped to 65% of their original performance after testing over the same time and conditions. 

  

“Our perovskite solar cells are among the most stable in efficiency reported to date,” Tan said. “At the same time, we’ve also laid new foundational knowledge, on which the community can further develop and refine our versatile technique to design even more stable perovskite solar cells.” 

  

Source and top image: University of California Los Angeles 

Leave a Comment 

 

ONE (Our Next Energy) Raises $65M to Accelerate Plans for First US factory – Tests New Prototype Battery in Tesla Model S – Achieves 752 Mile Range


Michigan-based energy storage technology company, Our Next Energy (ONE), has raised an additional $65 million in a new funding round led by BMW i Ventures. The new funding round will allow ONE to expand its operations and prepare for increasing demand and customer activity.

It also announced that it has signed contracts with four customers totaling more than 25 GWh of energy storage capacity over the next five years, equating to approximately 300,000 electric vehicle battery packs. This development allows ONE to begin the process of site selection for its first US-based battery factory.

Last year, the company demonstrated its proof-of-concept Gemini battery that powered an electric vehicle 752-mile (1,210-km) without recharging. In late December. It retrofitted a Tesla Model S with an experimental battery for real-world road testing across Michigan, where the test vehicle achieved 882 miles (1,419 km) at an average speed of 55 mph (88.5 km/h).

“This most recent investment accelerates the timeline for ONE’s Gemini battery technology following our recent 752-mile range demonstration. We are excited to have BMW i Ventures lead this round, and we are thrilled to welcome Coatue Management and their support as we raise the capital required to build a U.S. cell factory that supports Aries and Gemini,” said Mujeeb Ijaz, Founder, and CEO of ONE.

The ONE battery factory wants to accelerate electrification with safer, more powerful energy storage technologies that use more sustainable raw materials while creating a reliable, low-cost, and conflict-free supply chain.

ONE will begin evaluating site locations for its US-based battery factory, where production will start on its first product, a smaller battery cell called Aries, in late 2022. It expects to demonstrate a production prototype of the Gemini dual-chemistry battery in 2023.

ONE-Gemini-001-Tesla-range-record-1536x1040 (1)

Read About ONE (Our Next Energy)

Green hydrogen: the world’s largest project announced in Texas


green-hydrogen_060322The largest green hydrogen project in the world has just been unveiled! Named Hydrogen City, it will produce several million tons of green hydrogen every year…

With a capacity of 60 GW, Hydrogen City is a project led by the American startup Green Hydrogen International (GHI), which was founded in 2019 by renewable energy expert Brian Maxwell.

This mega-plant will be located in Duval County, a sparsely populated area located in southern Texas. It will be powered by wind and solar energy. Pipelines will transport the hydrogen produced to the port cities of Corpus Christi about 145 km away and Brownsville on the Mexican border.

The project will also have a cavern located inside the Salt Dome of Piedras Pintas that will allow on-site storage of the hydrogen produced. GHI claims that it will be possible to create about fifty similar caves in this area. This will allow Hydrogen City to store up to 6 TWh of energy.

Green Hydrogen International

Hydrogen City, Texas – World’s Largest Green Hydrogen Production and Storage Hub

A colossal production

Once finalized, Hydrogen City is expected to produce more than 2.5 million tons of green hydrogen per year, which currently corresponds to nearly 3.5% of global gray hydrogen production.

The first phase of 2 GW of the project will begin in 2026 with the creation of two storage caverns.

New method Using Aluminum Nanoparticles Creates Rapid, Efficient Hydrogen Generation from Water – UC Santa Cruz


Aluminum is a highly reactive metal that can strip oxygen from water molecules to generate hydrogen gas. Now, researchers at UC Santa Cruz have developed a new cost-effective and effective way to use aluminum’s reactivity to generate clean hydrogen fuel.

In a new study, a team of researchers shows that an easily produced composite of gallium and aluminum creates aluminum nanoparticles that react rapidly with water at room temperature to yield large amounts of hydrogen. According to researchers, the gallium was easily recovered for reuse after the reaction, which yields 90% of the hydrogen that could theoretically be produced from the reaction of all the aluminum in the composite.

“We don’t need any energy input, and it bubbles hydrogen-like crazy. I’ve never seen anything like it,” said UCSC Chemistry Professor Scott Oliver.

The reaction of aluminum and gallium with water works because gallium removes the passive aluminum oxide coating, allowing direct contact of aluminum with water.

Using scanning electron microscopy and x-ray diffraction, the researchers showed the formation of aluminum nanoparticles in a 3:1 gallium-aluminum composite, which they found to be the optimal ratio for hydrogen production. In this gallium-rich composite, the gallium serves both to dissolve the aluminum oxide coating and to separate the aluminum into nanoparticles.

“The gallium separates the nanoparticles and keeps them from aggregating into larger particles,” said Bakthan Singaram, corresponding authors of a paper on the new findings“People have struggled to make aluminum nanoparticles, and here we are producing them under normal atmospheric pressure and room temperature conditions.”

The researchers say the composite for their method can be made with readily available sources of aluminum, including used foil or cans. The composite can be easily stored for long periods by covering it with cyclohexane to protect it from moisture.

HF Z

While gallium is not abundant and is relatively expensive, it can be recovered and reused multiple times without losing effectiveness. However, it remains to be seen if this process can be scaled up to be practical for commercial hydrogen production.

Green Hydrogen Systems Receives Electrolysis Units from Logan Energy


Green Hydro uk-01

Green Hydrogen Systems, a leading provider of efficient pressurized alkaline electrolyzers used in on-site hydrogen production based on renewable electricity, has today signed a supply agreement with Edinburgh-based Logan Energy to deliver electrolysis equipment for a project in England.

The order includes the supply of two GHS HyProvide® A90 electrolysers with a combined capacity of 0.9 MW for the production of green hydrogen from renewable energy.

Manufactured by Green Hydrogen Systems and operated by Logan Energy, the electrolyzers will be deployed in a 40 ft container as a complete green hydrogen plant as part of plans to develop a regional hydrogen economy in Dorset, England.

Green Hydrogen Systems will be responsible for delivering the electrolyser units and will support the project with on-site maintenance and remote monitoring and support as part of a three-year service agreement.

Logan Energy is a leading hydrogen technology company with a proven track record for delivering affordable, market-ready projects and solutions in the low carbon, renewable energy, and hydrogen sectors.

When fully operational during 4Q22, the ordered electrolyzers have the capacity to provide approximately 389 kg/day of green hydrogen.

Aso Read About:

Beyond Cars: General Motors and Others Look to Expand Market for Hydrogen Fuel Cells


GM-aims-to-use-hydrogen-fuel-cells-for-mobile-power

General Motors is finding new markets for its hydrogen fuel cell systems, announcing that it will work with another company to build mobile electricity generators, electric vehicle charging stations and power generators for military camps.

The emissions-free generators will be designed to power large commercial buildings in the event of a power outage, but the company says it’s possible that smaller ones could someday be marketed for home use.

The automaker says it will supply fuel cell power systems to Renewable Innovations of Lindon, Utah, which will build the generators and rapid charging stations. The partnership adds more products and revenue from GM’s hydrogen power systems that now are being developed for heavy trucks, locomotives and even airplanes.

Hydrogen generators are far quieter than those powered by petroleum, and their only byproduct is water, Charlie Freese, executive director of GM’s hydrogen business, told reporters Wednesday.

He said it’s too early to talk about prices, but said production of the systems should start in the next year. At first the generators will be aimed at powering police stations or industrial uses, as well as outdoor concerts.

“These systems run extremely quietly,” he said. “You can stand next to them while having a conversation,” he said.

But Freese said the technology also can be very compact and could be used to power homes at some point.

GM would provide the hydrogen fuel cells built at a plant in Brownstown Township, Michigan, while Renewable Innovations will build the generator units, he said.

GM is not alone in entering the hydrogen generator market. Multiple companies, including AFC Energy in the United Kingdom, are selling or testing the products, said Shawn Litster, a professor of mechanical engineering at Carnegie Mellon University who has studied hydrogen fuel cells for about two decades.

There will be more demand for the generators as vehicles switch from internal combustion to electric power. Police departments and municipal governments, he said, will need backup power to charge emergency vehicles in case of a power outage. Hydrogen can be stored for long periods and used in emergency cases, he said.

Hydrogen, the most abundant element in the universe, is increasingly viewed, along with electric vehicles, as a way to slow the environmentally destructive impact of the planet’s 1.2 billion vehicles, most of which burn gasoline and diesel fuel. Manufacturers of large trucks and commercial vehicles are beginning to embrace hydrogen fuel cell technologies as a way forward. So are makers of planes, trains and passenger vehicles.

But generating hydrogen isn’t always clean. At present, most it is produced by using natural gas or coal for refineries and fertilizer manufacturing. That process pollutes the air, warming the planet rather than saving it. A new study by researchers from Cornell and Stanford universities found that most hydrogen production emits carbon dioxide, which means that hydrogen-fueled transportation cannot yet be considered clean energy.

Yet proponents say that in the long run, hydrogen production is destined to become more environmentally safe. They envision a growing use of electricity from wind and solar energy, which can separate hydrogen and oxygen in water. As such renewable forms of energy gain broader use, hydrogen production should become a cleaner and less expensive process.

Read More in the Scientific American: Read how other Renewable Energy Sources could power a new industrial revolution ….. that has been long delayed, but may now be ready to fulfill the promise envisioned by futurist Jeremy Rifkin in his book “The Hydrogen Economy” that prophesiedJ Rifkin the hydrogen Economy hydrogen gas would catalyze a new industrial revolution. 

Solar and Wind Power Could Ignite a Hydrogen Energy Comeback

Freese said GM would always look to get hydrogen from a green source. But he conceded that supplies synthesized from natural gas would have to be a “stepping stone” to greener sources.

The EV charging stations would be able to charge up to four vehicles at once, and they could be installed quickly without changes to the electrical grid, Freese said. They also could go up to handle seasonal demand in places where people travel, he said.

The quietness and relative lack of heat make the military generators ideal for powering a camp of soldiers, Freese said.

GM wouldn’t say how much revenue it expects from the products, and it did not release financial arrangements of the deal.

Related video:

GM looks beyond cars for hydrogen fuel cell markets originally appeared on Autoblog on Thu, 20 Jan 2022 08:28:00 EST.

Iron-Flow Battery Technology Breakthrough Could Displace Lithium Batteries as ‘Top Choice’ for Renewable Energy Storage


iron-flow-batteries 2

Iron-flow technology from ESS is being deployed at scale in the U.S.

The world’s electric grids are creaking under the pressure of volatile fossil-fuel prices and the imperative of weaning the world off polluting energy sources. A solution may be at hand, thanks to an innovative battery that’s a cheaper alternative to lithium-ion technology.

SB Energy Corp., a U.S. renewable-energy firm that’s an arm of Japan’s SoftBank Group Corp., is making a record purchase of the batteries manufactured by ESS Inc. The Oregon company says it has new technology that can store renewable energy for longer and help overcome some of the reliability problems that have caused blackouts in California and record-high energy prices in Europe.

Battery Breakthrough May Help End Globe’s Grid Failures
ESS batteries Photographer: Tojo Andrianarivo/Bloomberg

The units, which rely on something called “iron-flow chemistry,” will be used in utility-scale solar projects dotted across the U.S., allowing those power plants to provide electricity for hours after the sun sets. SB Energy will buy enough batteries over the next five years to power 50,000 American homes for a day.

“Long-duration energy storage, like this iron-flow battery, are key to adding more renewables to the grid,” said Venkat Viswanathan, a battery expert and associate professor of mechanical engineering at Carnegie Mellon University.

Battery Breakthrough May Help End Globe’s Grid Failures
Founder: Craig Evans: Credit: Tojo Andrianarivo/Bloomberg

ESS was founded in 2011 by Craig Evans, now president, and Julia Song, the chief technology officer. They recognized that while lithium-ion batteries will play a key role in electrification of transport, longer duration grid-scale energy storage needed a different battery. That’s because while the price of lithium-ion batteries has declined 90% over the last decade, their ingredients, which sometimes include expensive metals such as cobalt and nickel, limit how low the price can fall.

The deal for 2 gigawatt-hours of batteries is worth at least $300 million, according to ESS. Rich Hossfeld, chief executive officer of SB Energy, said the genius of the units lies in their simplicity.

Battery Breakthrough May Help End Globe’s Grid Failures
Julia Song: Credit: Tojo Andrianarivo/Bloomberg

“The battery is made of iron salt and water,” said Hossfeld. “Unlike lithium-ion batteries, iron flow batteries are really cheap to manufacture.”

Every battery has four components: two electrodes between which charged particles shuffle as the battery is charged and discharged, electrolyte that allows the particles to flow smoothly and a separator that prevents the two electrodes from forming a short circuit.

Flow batteries, however, look nothing like the battery inside smartphones or electric cars. That’s because the electrolyte needs to be physically moved using pumps as the battery charges or discharges. That makes these batteries large, with ESS’s main product sold inside a shipping container.

What they take up in space, they can make up in cost. Lithium-ion batteries for grid-scale storage can cost as much as $350 per kilowatt-hour. But ESS says its battery could cost $200 per kWh or less by 2025.

Crucially, adding storage capacity to cover longer interruptions at a solar or wind plant may not require purchasing an entirely new battery. Flow batteries require only extra electrolyte, which in ESS’s case can cost as little as $20 per kilowatt hour.

“This is a big, big deal,” said Eric Toone, science lead at Breakthrough Energy Ventures, which has invested in ESS. “We’ve been talking about flow batteries forever and ever and now it’s actually happening.”

Battery Breakthrough May Help End Globe’s Grid Failures
A worker at the ESS facility in Wilsonville, OR Credit: Tojo Andrianarivo/Bloomberg

The U.S. National Aeronautics and Space Administration built a flow battery as early as 1980. Because these batteries used water, they presented a much safer option for space applications than lithium-ion batteries developed around that time, which were infamous for catching on fire. Hossfeld says he’s been able to get permits for ESS batteries, even in wildfire-prone California, that wouldn’t have been given to lithium-ion versions.

Still, there was a problem with iron flow batteries. During charging, the battery can produce a small amount of hydrogen, which is a symptom of reactions that, left unchecked, shorten the battery’s life. ESS’s main innovation, said Song, was a way of keeping any hydrogen produced within the system and thus hugely extending its life.

“As soon as you close the loop on hydrogen, you suddenly turn a lab prototype into a commercially viable battery option,” said Viswanathan. ESS’s iron-flow battery can endure more than 20 years of daily use without losing much performance, said Hossfeld.

Battery Breakthrough May Help End Globe’s Grid Failures
Plastic sheets are treated with plasma at the ESS manufacturing facility in Wilsonville, OR
Credit: Tojo Andrianarivo/Bloomberg

At the company’s factory near Portland, yellow robots cover plastic sheets with chemicals and glue them together to form the battery cores. Inside the shipping containers, vats full of electrolyte feed into each electrode through pumps — allowing the battery to do its job of absorbing renewable power when the sun shines and releasing it when it gets dark.

It’s a promising first step. ESS’s battery is a cheap solution that can currently provide about 12 hours of storage, but utilities will eventually need batteries that can last much longer as more renewables are added to the grid. Earlier this month, for example, the lack of storage contributed to a record spike in power prices across the U.K. when wind speeds remained low for weeks. Startups such as Form Energy Inc. are also using iron, an abundant and cheap material, to build newer forms of batteries that could beat ESS on price.

So far, ESS has commercially deployed 8 megawatt-hours of iron flow batteries. Last week, after a six-month evaluation, Spanish utility Enel Green Power SpA signed a single deal for ESS to build an equivalent amount. SB Energy’s Hossfeld, who also sits on ESS’s board, said the company would likely buy still more battery capacity from ESS in the next five years.

Even as its order books fill up, ESS faces a challenging road ahead. Bringing new batteries to market is notoriously difficult and the sector is littered with failed startups. Crucially, lithium-ion technology got a head start and customers are more familiar with its pros and cons. ESS will have to prove that its batteries can meet the rigorous demands of power plant operators.

The new order should help ESS as it looks to go public within weeks through a special-purpose acquisition company at a valuation of $1.07 billion. The listing will net the company $465 million, which it plans to use to scale up its operations.

Contributions by Tom Metcalf

U of Waterloo startups rank second in North America for investor ROI


Investor coin

Waterloo companies power past Stanford, MIT and Harvard in key metric

Ahhh …. Those wily Canadians! Surpassing MIT, Stanford and Silicon Valley 

Investors looking for higher returns might be wiser to look to Waterloo companies than ventures started by alumni at Stanford, MIT and Harvard.

A new report from a U.S. platform for investors and startups has found that ventures founded by Waterloo alumni produce a higher-than-expected return on investment than their counterparts at the three American institutions.

The data from AngelList Venture show Waterloo startups generate outsized ROI for their investors, with an average excess markup rate 13 per cent higher than the baseline at 12 and 36 months.

Only the University of Washington ranked higher with a rate of 21 per cent, while Brown University came in third with an 11.5 per cent excess markup rate.  Two other Canadian universities made the ranking, with University of Toronto coming in at 16th and McGill University at 19th.

The platform considers an investment on its list to be marked up if it does an equity round at a higher price per share in a future fundraise. The rate is a strong indication of how an investment is performing, the company says.

“This speaks highly of Waterloo founders’ ability to thrive here in southwestern Ontario, well outside of Silicon Valley, New-York or Boston,” said Vivek Goel, president and vice-chancellor of the University. “Waterloo companies like ApplyBoard, Vidyard and Clearco are paving the way for future founders who want to grow within Canada, helping to increase the prominence of the Toronto-Waterloo tech ecosystem on the global stage.”

The Toronto-Waterloo corridor ranked 18th globally in a Startup Genome’s 2020 Global Startup Ecosystem Ranking and first in Canada.

u of waterlooThe findings indicate that Waterloo founders are being underestimated or undervalued by investors, said Alex Norman, a partner at N49P and co-founder of TechTO. “As investors see more and more University of Waterloo founders succeed, this may lead to more teams being funded or higher valuations for early-stage companies.”

While Canadian founders might be initially passed over by U.S. investors, great results for Waterloo founders over time are allowing early supporters to reap outsized rewards.

“It is no longer a secret that the University of Waterloo is a top school for innovative talent in North America,” said John Dick, director of Concept, the University’s experiential entrepreneurship program.

Young companies will continue to flourish in Waterloo Region through the University’s Campus Innovation Ecosystem and Velocity Incubator, which offer many problem-solving and venture-building opportunities, he said.

While founders with Waterloo pedigrees might not see the same level of investor demand as those at larger institutions in the U.S. AngelList says that can make them undervalued, “meaning that investors willing to back the founders from these institutions may have an opportunity to capture some excess returns.”

The findings come at an eventful time for Velocity, the University’s flagship entrepreneurial incubator, which announced recently that the total amount of funding raised by Velocity companies surpassed $2.4 billion. The incubator took almost a decade to reach the $1-billion mark but less than two years to reach $2 billion, showing an acceleration in both deal numbers and sizes. Velocity is expecting an alumni company to go through IPO for the first time later this year.

Velocity started its own pre-seed venture fund in 2019, and 18 out of 19 companies they have invested in so far received meaningful follow-on investments, highlighting the program’s ability to support early-stage founders and help them turn ideas and prototypes into marketable, scalable companies.

Genesis Is Going Very Electric, Very Soon


Genesis going electric

Hyundai’s luxury brand pledges to stop releasing new ICE-powered models in 2025.

Genesis will lead Hyundai’s electrification efforts, Takata airbag recalls are still a thing and, surprise, the Tesla Roadster has slipped back another year. All this and more in this Thursday edition of The Morning Shift for September 2, 2021.

1st Gear: Genesis Isn’t Waiting Around

Automakers are busy making projections that they’ll stop selling gas-powered vehicles by maybe 2030 or 2035. Genesis in now among them. As a very young brand with just five models on sale in the United States, it doesn’t have a lot of history or buyers entrenched in the brand to please. It’s pretty much free to go in any direction it chooses, when it chooses. Starting in 2025, it’ll stop bringing new ICE cars to market, it announced Wednesday. From Automotive News:

Hyundai Motor Group’s top-shelf brand said that all new vehicles will be electric from 2025 under a dual-pronged approach that focuses on full-electric vehicles and hydrogen fuel cells.

The company will drop internal combustion technology from new models beginning that year, meaning Genesis will also bypass hybrids and plug-in hybrids, spokesman Jee Hyun Kim said.

By 2030, the global lineup will consist of eight EV and fuel cell models, he said. Around that time, Genesis plans to achieve worldwide sales of 400,000 vehicles a year. As recently as late 2019, Genesis was expecting annual sales to crest at 100,000 for the first time.

The report notes that Genesis shifted 128,365 cars in 2020. Last year was Genesis’ first in which it offered an SUV — the GV80 — and this year, the company added the GV70. The weird-looking GV60 is next, and will represent the brand’s first EV. Now that it finally has a couple SUVs and crossovers under its belt, I imagine Genesis is well on its way toward that 400,000-car goal. Unfortunately, it doesn’t change the way I feel about the GV60, which is that it looks like the automotive equivalent of a naked mole rat.

2nd Gear: NHTSA Is Probing Tesla Over That Autopilot Crash With a Police Car In Florida

Last Saturday morning, a Tesla Model 3 in Orlando collided with a parked police car while Autopilot was enabled. The National Highway Traffic Safety Administration opened a probe into crashes between Autopilot-enabled Teslas and emergency vehicles last month. The department added this one to the list on Tuesday, making for the 12th incident on the books. From Reuters:

The National Highway Traffic Safety Administration (NHTSA) on Aug. 16 said it had opened a formal safety probe into Tesla driver assistance system Autopilot after 11 crashes. The probe covers 765,000 U.S. Tesla vehicles built between 2014 and 2021.

The 12th occurred in Orlando on Saturday, NHTSA said. The agency sent Tesla a detailed 11-page letter on Tuesday with numerous questions it must answer, as part of its investigation.

Like with the latest crash, most of them have happened in dark conditions according to the NHTSA. As part of the probe, Tesla is asked to explain how its software is designed to respond to emergency vehicles and hazard alerts like cones, lights and flares.

Tesla is required to disclose any adjustments it plans to make to Autopilot over the next 120 days, Reuters reports. The company must also answer the NHTSA’s questions by October 22, or risk fines up to $115 million if it doesn’t respond.

3rd Gear: Volkswagen’s Latest Takata Settlement Is Worth $42 Million

Supposedly, every vehicle with a Takata airbag inflator has been recalled. But millions of those cars are still driving around with potentially faulty inflators and automakers have struggled to get them into service — Volkswagen included. From Reuters:

Volkswagen’s U.S. unit has agreed to a $42 million settlement covering 1.35 million vehicles that were equipped with potentially dangerous Takata air bag inflators, according to documents filed in U.S. District Court in Miami.

The settlement is the latest by major automakers and much of the funding goes to boosting recall completion rates. To date, seven other major automakers have agreed to settlements worth about $1.5 billion covering tens of millions of vehicles.

According to court documents, it’s estimated that 35 percent of the inflators in question in Volkswagen and Audi cars have not been replaced. The main purpose of this settlement is to cover out-of-pocket expenses like rental fees, or cover for wages lost while owners are without their cars.

4th Gear: 2021 Imprezas Recalled For Welding Issue

Speaking of recalls, Subaru will soon reach out to some owners of 2021 Imprezas due to an “improper weld” on the car’s front driver’s side lower control arm. Some 802 vehicles are reportedly affected. If the weld breaks, it could cause the tire to partially detach and strike the inside of the wheel well. From Automotive News:

Subaru on Wednesday said the improper weld is near a connection joint between the lower control arm and the crossmember, and could lead to a partial separation of the two components.

Subaru says it has received no reports of crashes or injuries related to the defect, but is warning owners to have their vehicles checked by Subaru dealers to see if the lot number stamped into the control arm is part of the recall. If it is, consumers are being told not to drive the vehicle until it is repaired.

Subaru will notify owners by mail, but if you’re wondering if your Impreza might be affected and would rather not wait to know for sure, you could visit the NHTSA’s recall tracker or Subaru’s website, enter your car’s VIN number, and find out.

5th Gear: Tesla Roadster Delayed

The Tesla Roadster was announced in 2017. Lots of people made deposits. Then thrusters were added as an optional extra for some reason. Then Elon Musk said around the middle of last year that Roadster production would begin basically now, during mid-to-late 2021. On Wednesday, Musk tweeted that the production target’s been pushed back to next year, and the cars will reach buyers in 2023. The reason? The chip shortage!

I know automotive manufacturing is wholeheartedly broken right now, but considering the Roadster was announced four whole years ago, the “oh, us too” excuse doesn’t quite sound so convincing. I do believe the Roadster will eventually be a real thing that really exists. Because Tesla felt it necessary to announce the car extremely early for some reason, now it feels like vaporware. It’ll continue to feel like vaporware until it’s proven to be otherwise.

Reverse: Let’s Go See The ‘Vettes

The National Corvette Museum in Bowling Green, Kentucky opened its doors on September 2, 1994. 120,000 visitors reportedly attended its grand opening during its first weekend. I learned about the existence of this museum the same way I figure a great many people did: when a sinkhole opened up underneath it in 2014 and swallowed up a bunch of cars. Thankfully the Corvette Museum bounced back, and here’s something else: you can actually tour the sinkhole itself from your web browser, right now, in 3D. I’m not kidding.

Hydrogen Cars – How do Fuel Cells Really Work? Where do they fit into the Alternative Fuel Plan? Will they Prove to be the ‘Ultimate’ Renewable Fuel?


Many project hydrogen as the ultimate alternative fuel, but how does it stack up now and in the future?

In the conversation of sustainable motoring, there has long been a quiet alternative to electricity as a propulsion for our cars – hydrogen. Projected by many as a no-compromise alternative fuel that just needs more development, the reality is somewhat more complicated.

Manufacturers are persisting regardless, with Toyota, Honda and Hyundai all at the forefront of the technology in 2021.

Its future in locomotive and long-haul trucking will almost certainly drive its continued development, and as the technology matures further some have started thinking about its applications in future motorsport – an offshoot from the main technological drive that could make it viable, and crucially more entertaining than racing EVs.

What is hydrogen fuel, and how does it work?

As the most abundant element in the universe, hydrogen is a great place to start when it comes to using it as fuel. Yet while sourcing it isn’t an issue, the process of turning it into useable fuel is where the complexity lies. For use in cars, hydrogen needs to be turned into its liquid form, which requires it to be compressed and kept at cryogenic temperatures.

This process is both energy intensive and expensive, which is where the practical realities of its commercial use come into question. As it stands, the production of compressed hydrogen is more energy and carbon intensive than what it gives back during the ‘burn’, but this process is being continually refined and improved. Soon, there will be a Europe-recognised certification of ‘Green Hydrogen’, which will guarantee the carbon neutrality of its production.

There are also many entirely different ways that hydrogen can create energy and thus drive cars, further complicating the technology. For the sake of simplicity let’s focus on the main two: hydrogen combustion and hydrogen fuel cells.

Hydrogen combustion

Hydrogen combustion works, as its name suggests, in exactly the same way as fossil fuel combustion engines, but without the carbon emissions. It sounds perfect, in theory, but the reality is quite different. In this process, liquid hydrogen is stored in an insulated and pressurised tank where it is injected directly into the cylinders at high pressure, burning in the same four-stroke cycle as a normal petrol engine.

Running fuel in a pressurised circuit is not the issue – cars that burn compressed natural gas are common in Australia and Brazil. Rather it lies in compressed hydrogen’s poor energy density, which makes it burn very inefficiently. BMW developed a limited-run version of a 7-seriesback in 2002 with a V12 engine converted to run on liquid hydrogen, but its fuel consumption was rated at around 50l/100kms or 4.7mpg, around four times higher than that of its petrol V12 counterpart.

From an emissions perspective, the carbon footprint of producing that much fuel is extremely high per kg, which more than counteracted its lack of a CO2 output at the exhaust pipe. And there is another long-standing issue associated with burning liquid hydrogen, as while it may not produce CO2, it does still produce large amounts of nitrogen oxide (NOx), or more specifically the nasty greenhouse gas associated with VW’s dieselgate emissions scandal.

Hydrogen cars – cutaway

Hydrogen fuel cells

Hydrogen fuel cells, by contrast, don’t burn liquid hydrogen, but create electricity from it by a completely different method.

Rather than using any form of combustion engine, hydrogen fuel cell vehicles use the process of electrolysis to create electricity, which feeds a battery and then an electric motor.

As well as being far more efficient per unit of liquid hydrogen than quite literally setting it on fire in a combustion process, a fuel cell also produces no harmful NOx emissions. This, in theory, combines the benefits of EVs and combustion engines, with the former’s lack of harmful emissions and the latter’s fast fill time come refuelling.

The drawbacks once again come from the process of creating the liquid hydrogen, before taking into account the relative complexity and expense of having what is essentially a tiny atom-splitting power station on your driveway.

As battery technology continues to grow in leaps and bounds, the benefits of a quick fill time will also become less of a drawcard.

This hasn’t stopped manufacturers such as Hyundai and Toyota from persisting with hydrogen fuel cells, exemplified by the all-new second-generation Toyota Mirai and Hyundai Nexo. So while your next car is far more likely to be electric than hydrogen, it certainly will have its place in the wider ecosystem.

Hydrogen cars – mirai engine bay

Motorsport and combustion engines

For those of us skeptical about the reality of carbon-neutral motor racing, hydrogen does offer another alternative to traditional eFuels as a clean fuel source for the continuation of motorsport and combustion engines.

While widespread applications of hydrogen combustion engines make little commercial sense, the ability to run racing engines on liquid hydrogen could be a possibility in future.

Toyota is already experimenting with the technology, running a converted Corolla racing car in the Japanese Super Taikyu Series in 2021. As mentioned above, the lack of carbon emission is the obvious reason to apply this technology, although Toyota has not approached the issue of NOx.

Luckily, technology to remove nitrogen oxide from exhaust gases has been underpinned by advances in diesel technology of all places, utilising AdBlue technology, or a mixture of urea and deionised water, to remove NOx before it reaches the end of the exhaust pipe.