Penn State U. – New ‘Flow-Cell’ Battery Recharged with Carbon Dioxide – Capturing CO2 Emissions for an Untapped Source of Energy


co2flowcell
The pH-gradient flow cell has two channels: one containing an aqueous solution sparged with carbon dioxide (low pH) and the other containing an aqueous solution sparged with ambient air (high pH). The pH gradient causes ions to flow across …more

Researchers have developed a type of rechargeable battery called a flow cell that can be recharged with a water-based solution containing dissolved carbon dioxide (CO2) emitted from fossil fuel power plants. The device works by taking advantage of the CO2 concentration difference between CO2 emissions and ambient air, which can ultimately be used to generate electricity.

The new flow cell produces an average power density of 0.82 W/m2, which is almost 200 times higher than values obtained using previous similar methods. Although it is not yet clear whether the process could be economically viable on a large scale, the early results appear promising and could be further improved with future research.

The scientists, Taeyong Kim, Bruce E. Logan, and Christopher A. Gorski at The Pennsylvania State University, have published a paper on the new method of CO2-to-electricity conversion in a recent issue of Environmental Science & Technology Letters.

“This work offers an alternative, simpler means to capturing energy from CO2 emissions compared to existing technologies that require expensive catalyst materials and very high temperatures to convert CO2 into useful fuels,” said Gorski.

While the contrast of gray-white smoke against a blue sky illustrates the adverse environmental impact of burning , the large difference in CO2 concentration between the two gases is also what provides an untapped energy source for generating electricity.fossil-fuels-co2-to-green-images

In order to harness the potential energy in this concentration difference, the researchers first dissolved CO2 gas and in separate containers of an aqueous solution, in a process called sparging. At the end of this process, the CO2-sparged solution forms bicarbonate ions, which give it a lower pH of 7.7 compared to the air-sparged solution, which has a pH of 9.4.

After sparging, the researchers injected each solution into one of two channels in a flow cell, creating a pH gradient in the cell. The flow cell has electrodes on opposite sides of the two channels, along with a semi-porous membrane between the two channels that prevents instant mixing while still allowing ions to pass through. Due to the pH difference between the two solutions, various ions pass through the membrane, creating a voltage difference between the two electrodes and causing electrons to flow along a wire connecting the electrodes.

After the flow cell is discharged, it can be recharged again by switching the channels that the solutions flow through. By switching the solution that flows over each electrode, the charging mechanism is reversed so that the electrons flow in the opposite direction. Tests showed that the cell maintains its performance over 50 cycles of alternating solutions.

The results also showed that, the higher the pH difference between the two channels, the higher the average power density. Although the pH-gradient flow cell achieves a power density that is high compared to similar cells that convert waste CO2 to electricity, it is still much lower than the power densities of fuel cell systems that combine CO2 with other fuels, such as H2.

However, the new flow cell has certain advantages over these other devices, such as its use of inexpensive materials and room-temperature operation. These features make the flow cell attractive for practical applications at existing .

“A system containing numerous identical flow cells would be installed at power plants that combust fossil fuels,” Gorski said. “The flue gas emitted from fossil fuel combustion would need to be pre-cooled, then bubbled through a reservoir of water that can be pumped through the flow cells.”

In the future, the researchers plan to further improve the flow cell performance.

“We are currently looking to see how the solution conditions can be optimized to maximize the amount of energy produced,” Gorski said. “We are also investigating if we can dissolve chemicals in the water that exhibit pH-dependent redox properties, thus allowing us to increase the amount of energy that can be recovered. The latter approach would be analogous to a flow battery, which reduces and oxidizes dissolved chemicals in aqueous solutions, except we are causing them to be reduced and oxidized here by changing the solution pH with CO2.”

Explore further: Chemists present an innovative redox-flow battery based on organic polymers and water

More information: Taeyoung Kim et al. “A pH-Gradient Flow Cell for Converting Waste CO2 into Electricity.” Environmental Science & Technology Letters. DOI: 10.1021/acs.estlett.6b00467

 

Harvard: Renewable Energy: Long-lasting flow battery could run for more than a decade


Flow batteries are a promising storage solution for renewable, intermittent energy like wind and solar.

Posted: Feb 09, 2017

Researchers from the Harvard John A. Paulson School of Engineering and Applied Sciences (SEAS) have developed a new flow battery that stores energy in organic molecules dissolved in neutral pH water. 

This new chemistry allows for a non-toxic, non-corrosive battery with an exceptionally long lifetime and offers the potential to significantly decrease the costs of production.

The research, published in ACS Energy Letters (“A Neutral pH Aqueous Organic/Organometallic Redox Flow Battery with Extremely High Capacity Retention”), was led by Michael Aziz, the Gene and Tracy Sykes Professor of Materials and Energy Technologies and Roy Gordon, the Thomas Dudley Cabot Professor of Chemistry and Professor of Materials Science.

Renewable Energy 

Flow batteries are a promising storage solution for renewable, intermittent energy like wind and solar.

Flow batteries store energy in liquid solutions in external tanks — the bigger the tanks, the more energy they store. Flow batteries are a promising storage solution for renewable, intermittent energy like wind and solar but today’s flow batteries often suffer degraded energy storage capacity after many charge-discharge cycles, requiring periodic maintenance of the electrolyte to restore the capacity.

By modifying the structures of molecules used in the positive and negative electrolyte solutions, and making them water soluble, the Harvard team was able to engineer a battery that loses only one percent of its capacity per 1000 cycles.

“Lithium ion batteries don’t even survive 1000 complete charge/discharge cycles,” said Aziz.

“Because we were able to dissolve the electrolytes in neutral water, this is a long-lasting battery that you could put in your basement,” said Gordon. “If it spilled on the floor, it wouldn’t eat the concrete and since the medium is noncorrosive, you can use cheaper materials to build the components of the batteries, like the tanks and pumps.”

This reduction of cost is important. The Department of Energy (DOE) has set a goal of building a battery that can store energy for less than $100 per kilowatt-hour, which would make stored wind and solar energy competitive to energy produced from traditional power plants.

“If you can get anywhere near this cost target then you change the world,” said Aziz. “It becomes cost effective to put batteries in so many places. This research puts us one step closer to reaching that target.”

“This work on aqueous soluble organic electrolytes is of high significance in pointing the way towards future batteries with vastly improved cycle life and considerably lower cost,” said Imre Gyuk, Director of Energy Storage Research at the Office of Electricity of the DOE. “I expect that efficient, long duration flow batteries will become standard as part of the infrastructure of the electric grid.”

The key to designing the battery was to first figure out why previous molecules were degrading so quickly in neutral solutions, said Eugene Beh, a postdoctoral fellow and first author of the paper. By first identifying how the molecule viologen in the negative electrolyte was decomposing, Beh was able to modify its molecular structure to make it more resilient.

Next, the team turned to ferrocene, a molecule well known for its electrochemical properties, for the positive electrolyte.

“Ferrocene is great for storing charge but is completely insoluble in water,” said Beh. “It has been used in other batteries with organic solvents, which are flammable and expensive.”

But by functionalizing ferrocene molecules in the same way as with the viologen, the team was able to turn an insoluble molecule into a highly soluble one that could also be cycled stably.

“Aqueous soluble ferrocenes represent a whole new class of molecules for flow batteries,” said Aziz.

The neutral pH should be especially helpful in lowering the cost of the ion-selective membrane that separates the two sides of the battery. Most flow batteries today use expensive polymers that can withstand the aggressive chemistry inside the battery. They can account for up to one third of the total cost of the device. With essentially salt water on both sides of the membrane, expensive polymers can be replaced by cheap hydrocarbons.

This research was coauthored by Diana De Porcellinis, Rebecca Gracia, and Kay Xia. It was supported by the Office of Electricity Delivery and Energy Reliability of the DOE and by the DOE’s Advanced Research Projects Agency-Energy.

With assistance from Harvard’s Office of Technology Development (OTD), the researchers are working with several companies to scale up the technology for industrial applications and to optimize the interactions between the membrane and the electrolyte. Harvard OTD has filed a portfolio of pending patents on innovations in flow battery technology.

Source: By Leah Burrows, Harvard School of Engineering and Applied Sciences

Physics, photosynthesis and ‘Green’ solar cells


green-solar-cells-161130154310_1_540x360
In a light harvesting quantum photocell, particles of light (photons) can efficiently generate electrons. When two absorbing channels are used, solar power entering the system through the two absorbers (a and b) efficiently generates power in the machine (M). Credit: Nathaniel Gabor and Tamar Melen

A University of California, Riverside assistant professor has combined photosynthesis and physics to make a key discovery that could help make solar cells more efficient. The findings were recently published in the journal Nano Letters.

Nathan Gabor is focused on experimental condensed matter physics, and uses light to probe the fundamental laws of quantum mechanics. But, he got interested in photosynthesis when a question popped into his head in 2010: Why are plants green? He soon discovered that no one really knows.

During the past six years, he sought to help change that by combining his background in physics with a deep dive into biology.

He set out to re-think solar energy conversion by asking the question: can we make materials for solar cells that more efficiently absorb the fluctuating amount of energy from the sun. Plants have evolved to do this, but current affordable solar cells — which are at best 20 percent efficient — do not control these sudden changes in solar power, Gabor said. That results in a lot of wasted energy and helps prevent wide-scale adoption of solar cells as an energy source.

Gabor, and several other UC Riverside physicists, addressed the problem by designing a new type of quantum heat engine photocell, which helps manipulate the flow of energy in solar cells. The design incorporates a heat engine photocell that absorbs photons from the sun and converts the photon energy into electricity.

Surprisingly, the researchers found that the quantum heat engine photocell could regulate solar power conversion without requiring active feedback or adaptive control mechanisms. In conventional photovoltaic technology, which is used on rooftops and solar farms today, fluctuations in solar power must be suppressed by voltage converters and feedback controllers, which dramatically reduce the overall efficiency.

The goal of the UC Riverside teams was to design the simplest photocell that matches the amount of solar power from the sun as close as possible to the average power demand and to suppress energy fluctuations to avoid the accumulation of excess energy.

The researchers compared the two simplest quantum mechanical photocell systems: one in which the photocell absorbed only a single color of light, and the other in which the photocell absorbed two colors. They found that by simply incorporating two photon-absorbing channels, rather than only one, the regulation of energy flow emerges naturally within the photocell.

The basic operating principle is that one channel absorbs at a wavelength for which the average input power is high, while the other absorbs at low power. The photocell switches between high and low power to convert varying levels of solar power into a steady-state output.

When Gabor’s team applied these simple models to the measured solar spectrum on Earth’s surface, they discovered that the absorption of green light, the most radiant portion of the solar power spectrum per unit wavelength, provides no regulatory benefit and should therefore be avoided. They systematically optimized the photocell parameters to reduce solar energy fluctuations, and found that the absorption spectrum looks nearly identical to the absorption spectrum observed in photosynthetic green plants.

The findings led the researchers to propose that natural regulation of energy they found in the quantum heat engine photocell may play a critical role in the photosynthesis in plants, perhaps explaining the predominance of green plants on Earth.

Other researchers have recently found that several molecular structures in plants, including chlorophyll a and b molecules, could be critical in preventing the accumulation of excess energy in plants, which could kill them. The UC Riverside researchers found that the molecular structure of the quantum heat engine photocell they studied is very similar to the structure of photosynthetic molecules that incorporate pairs of chlorophyll.

The hypothesis set out by Gabor and his team is the first to connect quantum mechanical structure to the greenness of plants, and provides a clear set of tests for researchers aiming to verify natural regulation. Equally important, their design allows regulation without active input, a process made possible by the photocell’s quantum mechanical structure.


Story Source:

Materials provided by University of California – Riverside. Original written by Sean Nealon. Note: Content may be edited for style and length.


Journal Reference:

  1. Trevor B. Arp, Yafis Barlas, Vivek Aji, Nathaniel M. Gabor. Natural Regulation of Energy Flow in a Green Quantum Photocell. Nano Letters, 2016; DOI: 10.1021/acs.nanolett.6b03136

The Small Matter of Big Solutions: Nanotechnologies Helping to Fulfill the Promise of Solar Energy


back-to-the-future-bttf2Nanotechnology is more than just a set of applications. When people wonder what the next big product will be, the truth is more nuanced. Prof.Jillian Buriak, a chemistry professor at the University of Alberta, calls it a quiet revolution. For the first time in history, scientists from all disciplines are working together towards solving big problems; the ability to control matter at the atomic and molecular level is how nanotechnology is opening doors all across the sciences.

[See Our Article This Week: The Promise of Nanotechnology ~ Where to Look for Emerging (Nano) Technologies that will: (1) Create New Market Opportunities or (2) Disrupt Existing Markets ]

I call this a quiet revolution because for the first time, and I think in the history of science, is that you’ve got the distinct silos – you have the biologists talking to the physicists, talking to the medical people – all using the tools and the enabling technologies of nanotechnology to solve these big problems.

One area that Prof. Buriak’s research addresses is the critical need for renewable energy.

Read the Full Article Here: The Small Matter of Big Solutions

Watch the YouTube Video Below

Sun SolarCan Nanotechnology Turn Windows Into Solar Panels?

Solar energy technology is becoming more efficient and more effective while also becoming invisible to the naked eye – here’s how.

img_0759Quantum dot solar windows go non-toxic, colorless, with record efficiency

A luminescent solar concentrator is an emerging sunlight harvesting technology that has the potential to disrupt the way we think about energy; It could turn any window into a daytime power source.

“In these devices, a fraction of light transmitted through the window is absorbed by nanosized particles (semiconductor ) dispersed in a glass window, re-emitted at the infrared wavelength invisible to the human eye, and wave-guided to a solar cell at the edge of the window,” said Victor Klimov, lead researcher on the project at the Department of Energy’s Los Alamos National Laboratory. “Using this design, a nearly transparent window becomes an electrical generator, one that can power your room’s air conditioner on a hot day or a heater on a cold one.”

Read the Full Article Here: Quantum dot solar windows go non-toxic, colorless, with record efficiency

rice-nanoporus-battery-102315-untitled-1Silicon Nanowire-Based Solar Cells

Nanotechnology celebrates 25 years in an interview with the author of one of the most cited and downloaded papers: ‘Silicon nanowire-based solar cells’. It demonstrates the fabrication of silicon nanowire-based solar cells on silicon wafers and on multicrystalline silicon thin films on glass.

Silke Christiansen, from the Helmholtz-Center Berlin for Materials and Energy, talks about the motivation behind the paper and the impact that it has had on further research.

Watch the YouTube Video Below:

More Reading on Solar Energy – Nanotechnology – Quantum Dots

confinement-for-qdots-100816-nanoscaleconScientists with the Energy Department’s National Renewable Energy Laboratory (NREL) for the first time discovered how to make perovskite solar cells out of quantum dots and used the new material to convert sunlight to electricity with 10.77 percent efficiency.

The research, Quantum dot-induced phase stabilization of a-CsPbI3perovskite for high-efficiency photovoltaics, appears in the journal Science.

Read More Here: NREL: Nanoscale confinement leads to new all-inorganic perovskite with exceptional solar cell properties – Using Quantum Dots to Create Increased Solar Cell Efficiency: Colorado School of Mines

 

 

2- sprayon solar scientistsdeNanotechnology could improve the efficiency of organic photovoltaic technology, researchers at King Abdullah University of Science and Technology (KAUST) have demonstrated. In general, solar cells made from organic materials offer a cheap, simple and sustainable approach to harvesting light from the sun. But there is an urgent need to improve the efficiency of these organic cells. The performance of these devices is limited by the re-emission of light that has been absorbed, thus detracting energy that should be converted to electricity.

Read More Here: Quantum Dots Improve the Performance of Cost Effective Processed Solar Cells

 

 

St Mary Spray on Solar 150928083119_1_540x360A Rice University laboratory has found a way to turn common carbon fiber into graphene quantum dots, tiny specks of matter with properties expected to prove useful in electronic, optical and biomedical applications.

Quantum dots, discovered in the 1980s, are semiconductors that contain a size- and shape-dependent . These have been promising structures for applications that range from computers, LEDs, and lasers to medical imaging devices. The sub-5 nanometer carbon-based quantum dots produced in bulk through the wet chemical process discovered at Rice are highly soluble, and their size can be controlled via the temperature at which they’re created.

Read More Here: Rice University: Graphene Quantum Dots: The Next Big “Small Thing”

 

Genesis Nanotechnology, Inc.

img_0742

YouTube small 050516

 

Watch Our YouTube Video: https://youtu.be/Y1618kgUSXI

 

YouTube small 050516

 

Watch a Video on Our Latest Project: Tenka Energy, LLC ~

High Energy-Density, Thin-Form Flexible Super Capacitors and Batteries: https://youtu.be/rEhk3gdeu0Q

 

gnt-new-thumbnail-2016

Read Our Online ‘Nano-Business-News’” https://paper.li/GenesisNanoTech/1354215819#!headlines

 

Twitter Icon 042616.jpgFollow Us On Twitter: https://twitter.com/GenesisNanoTech

Facebook 042616.jpgFollow and ‘Like’ Us on Facebook: https://www.facebook.com/GenesisNanoTech/

gnt-new-thumbnail-2016

 

Connect To Our Website: http://genesisnanotech.com/

 

LinkedIn IconA 042316.jpg “Join the Conversation” on Our LinkedIn ‘Nano Network’ Group: https://www.linkedin.com/groups/3935461

 

The Promise of Nanotechnology ~ Where to Look for Emerging (Nano) Technologies that will: (1) Create New Market Opportunities or (2) Disrupt Existing Markets


img_0752nano-diamonds-ii-imagesback-to-the-future-bttf2

                                                      “Back To Our Future”

We recently published an article on 30 emerging technologies that investors should be watching and we were quick to notice that nowhere in that list was any mention of nanotechnology. Whatever happened to all the wonders of nanotechnology that we were promised?

We’ve been hearing for years about how carbon nanotubes were the way forward and that a miracle material called graphene was going to solve all our problems. None of these promises seem to have transpired leaving us to ask, is nanotechnology dead?

The way we see it, nanotechnology has never been more alive, except that now we’re calling it something very different.

A Nanotechnology Definition

Let’s start with the most basic definition of nanotechnology there is:

Nanotechnology is the manipulation of matter at a scale of 100 nanometers or less.

We could get just sit and read about this sort of thing for days on end but as investors we’re here to make money off of “the next big thing” so we’re going to expand the definition to something like this:

Nanotechnology is the manipulation of matter at a scale of less than 100 nanometers that results in supernatural effects which can be applied to any particular industry resulting in benefits which either create entirely new markets or disrupt existing markets.

That should be about what we’re looking for as investors. If we look at carbon nanotubes and graphene, they passed the first definition but failed the second because as of now, they haven’t created any new markets or disrupted any existing markets on a large scale.

Carbon nanotube tennis rackets and graphene bike wheels don’t count. While we have had some nano drug delivery companies IPO like Selecta Biosciences and carbon nanotube memory (NRAM) has finally debuted, we’re left scratching our heads as to why nanotechnology is not on the list of the 30 most promising disruptive technologies. We think that in fact it is on the list, but now it’s so pervasive that we’ve just started calling it other things. Take a look at the below table:

nanotechnology-definition-table

 

 

Here we can see that 12 out of 30 emerging technologies are either a manifestation of nanotechnology by definition or use nanotechnology specifically. Let’s look at some examples of each.

Emerging Technologies that Use Nanotechnology

Five emerging technologies are using nanotechnology in a meaningful manner. Many of the advances we see in next generation batteries result from using nanomaterials for battery components.

391f84fd-6427-4c06-9fb4-3d3c8a433f41

Tenka Energy, LLC

Read About & Watch the Video for A New (Nano) Energy Storage and Battery Company

Advanced materials pretty much just refer to nano materials these days like those being used by pretty much all the thermoelectric startups we profiled. The broad renewable energy space uses nanotechnology with examples like processes that produce biofuels. While the majority of 3D printing doesn’t involve nanotechnology, we do see the emergence of 3D printing filaments that use graphene and 3D printing electronics with nano inks. A technology called microfluidics enables organ-on-a-chip solutions which operate on the nano level.

Emerging Technologies that Are Nanotechnology

Seven emerging technologies seem to be nanotechnology just by definition. We recently wrote about optogenetics which involves using gene therapy techniques to inject photosensory molecules into neurons which would certainly be considered manipulation at the nano level. The same would hold true for gene editing, immune engineering, or any sort of genetic engineering that involves modifying things at a molecular level. Systems metabolic engineering pretty much describes how one can create the sort of futuristic nano machines that Eric Drexler talked about.

The idea of the digital genome where your genetic “fingerprint” is used to provide personalized healthcare is also enabled by techniques at the nano level which are used to decode your genome. Lastly, quantum computingworks at the nano level where we use qubits as building blocks.Nanotech_cell_cultures%20copy

 

Investing in Nanotechnology

As we can see, nanotechnology is far from dead. In fact, nanotechnology is so alive and well that it is now just common practice for us to be manipulating matter at the nano level which has enabled a whole slew of exciting technologies to invest in.

The idea of “investing in nanotechnology” doesn’t seem to make much sense anymore. Sure, we may consider graphene companies to be “nanotechnology companies” but the real exciting emerging technologies do not contain the prefix “nano-” but rather just use nanotechnology as a tool that enable us to realize benefits which either create entirely new markets or disrupt existing markets. That’s ultimately what we’re looking for as investors who want to invest in tomorrow’s big technologies today.

Looking to buy shares in companies before they IPO? A company called Motif Investing lets you buy pre-IPO shares in companies that are led by JP Morgan. You can open an account with Motif with no deposit required so that you are ready to buy pre-IPO shares when they are offered.

Re-Posted from Nanalyze **

SolarWindow™ Surpasses Critical Milestone for Manufacturing Electricity-Generating Windows


Quantum Dot Window 082515 id41125

Columbia, MD – October 26, 2016  – SolarWindow Technologies, Inc. (OTCQB: WNDW), the developer of electricity-generating coatings for commercial glass and flexible plastics, announced today that its SolarWindow™ coatings successfully performed under test conditions designed to simulate the high pressure and temperatures of the ‘autoclave’ manufacturing processes used by commercial glass and window producers.

“Today’s announcement marks a major milestone for the production of commercial electricity-generating windows, our early target market,” said John A. Conklin, President and CEO of SolarWindow Technologies. “It’s important for our customers, such as window manufacturers, to have confidence that our SolarWindow™ products perform under such rigorous autoclave conditions.”

About SolarWindow Technologies, Inc.

SolarWindow Technologies, Inc. creates transparent electricity-generating liquid coatings. When applied to glass or plastics, these coatings convert passive windows and other materials into electricity generators under natural, artificial, low, shaded, and even reflected light conditions.

Our liquid coating technology has been presented to members of the U.S. Congress and has received recognition in numerous industry publications. Our SolarWindow™ technology has been independently validated to generate 50-times the power of a conventional rooftop solar system and achieves a one-year payback when modeled on a 50-story building.

The company’s Proprietary Power Production & Financial Model (Power & Financial Model) uses photovoltaic (PV) modeling calculations that are consistent with renewable energy practitioner standards for assessing, evaluating and estimating renewable energy for a PV project. The Power & Financial Model estimator takes into consideration building geographic location, solar radiation for flat-plate collectors (SolarWindow™ irradiance is derated to account for 360 degree building orientation and vertical installation), climate zone energy use and generalized skyscraper building characteristics when estimating PV power and energy production, and carbon dioxide equivalents.

Actual power, energy production and carbon dioxide equivalents modeled may vary based upon building-to-building situational characteristics and varying installation methodologies. More About SolarWindow Technologies

Social Media Disclaimer
Investors and others should note that we announce material financial information to our investors using SEC filings and press releases. We use our website and social media to communicate with our subscribers, shareholders and the public about the company, SolarWindow™ technology development, and other corporate matters that are in the public domain. At this time, the company will not post information on social media could be deemed to be material information unless that information was distributed to public distribution channels first. We encourage investors, the media, and others interested in the company to review the information we post on the company’s website.

 

 

Big renewable energy source could be at our feet – literally: U of Wisconsin


energy-at-our-feet-161020131916_1_540x360Associate Professor Xudong Wang holds a prototype of the researchers’ energy harvesting technology, which uses wood pulp and harnesses nanofibers. The technology could be incorporated into flooring and convert footsteps on the flooring into usable electricity.
Credit: Stephanie Precourt/UW-Madison
Source: University of Wisconsin-Madison

 

 

 

Summary:
Flooring can be made from any number of sustainable materials, making it, generally, an eco-friendly feature in homes and businesses alike. Now, flooring could be even more “green,” thanks to an inexpensive, simple method that allows them to convert footsteps into usable electricity.

Flooring can be made from any number of sustainable materials, making it, generally, an eco-friendly feature in homes and businesses alike.

Now, flooring could be even more “green,” thanks to an inexpensive, simple method developed by University of Wisconsin-Madison materials engineers that allows them to convert footsteps into usable electricity.

Xudong Wang, an associate professor of materials science and engineering at UW-Madison, his graduate student Chunhua Yao, and their collaborators published details of the advance Sept. 24 in the journal Nano Energy.

The method puts to good use a common waste material: wood pulp. The pulp, which is already a common component of flooring, is partly made of cellulose nanofibers. They’re tiny fibers that, when chemically treated, produce an electrical charge when they come into contact with untreated nanofibers.

nano-fiber-flooring-button-3When the nanofibers are embedded within flooring, they’re able to produce electricity that can be harnessed to power lights or charge batteries. And because wood pulp is a cheap, abundant and renewable waste product of several industries, flooring that incorporates the new technology could be as affordable as conventional materials.

 

While there are existing similar materials for harnessing footstep energy, they’re costly, nonrecyclable, and impractical at a large scale.

Wang’s research centers around using vibration to generate electricity. For years, he has been testing different materials in an effort to maximize the merits of a technology called a triboelectric nanogenerator (TENG). Triboelectricity is the same phenomenon that produces static electricity on clothing. Chemically treated cellulose nanofibers are a simple, low-cost and effective alternative for harnessing this broadly existing mechanical energy source, Wang says.

The UW-Madison team’s advance is the latest in a green energy research field called “roadside energy harvesting” that could, in some settings, rival solar power — and it doesn’t depend on fair weather. Researchers like Wang who study roadside energy harvesting methods see the ground as holding great renewable energy potential well beyond its limited fossil fuel reserves.

“Roadside energy harvesting requires thinking about the places where there is abundant energy we could be harvesting,” Wang says. “We’ve been working a lot on harvesting energy from human activities. One way is to build something to put on people, and another way is to build something that has constant access to people. The ground is the most-used place.”

Heavy traffic floors in hallways and places like stadiums and malls that incorporate the technology could produce significant amounts of energy, Wang says. Each functional portion inside such flooring has two differently charged materials — including the cellulose nanofibers, and would be a millimeter or less thick. The floor could include several layers of the functional unit for higher energy output.grand-central-station-footsteps

“So once we put these two materials together, electrons move from one to another based on their different electron affinity,” Wang says.

The electron transfer creates a charge imbalance that naturally wants to right itself but as the electrons return, they pass through an external circuit. The energy that process creates is the end result of TENGs.

Wang says the TENG technology could be easily incorporated into all kinds of flooring once it’s ready for the market. Wang is now optimizing the technology, and he hopes to build an educational prototype in a high-profile spot on the UW-Madison campus where he can demonstrate the concept. He already knows it would be cheap and durable.

“Our initial test in our lab shows that it works for millions of cycles without any problem,” Wang says. “We haven’t converted those numbers into year of life for a floor yet, but I think with appropriate design it can definitely outlast the floor itself.”


Story Source:

Materials provided by University of Wisconsin-Madison. Original written by Will Cushman. Note: Content may be edited for style and length.


Journal Reference:

  1. Chunhua Yao, Alberto Hernandez, Yanhao Yu, Zhiyong Cai, Xudong Wang. Triboelectric nanogenerators and power-boards from cellulose nanofibrils and recycled materials.Nano Energy, 2016; 30: 103 DOI:10.1016/j.nanoen.2016.09.036

Harnessing the Transformative Possibilities of the “Nanoworld”


4-harnessingth

Snow Crystal Landscape. Credit: Peter Gorges

Scientists have long suspected that the way materials behave on the nanoscale – that is when particles have dimensions of about 1–100 nanometres – is different from how they behave on any other scale. A new paper in the journal Chemical Science provides concrete proof that this is the case.

The laws of thermodynamics govern the behavior of materials in the macro world, while quantum mechanics describes behavior of particles at the other extreme, in the world of single atoms and electrons.

But in the middle, on the order of around 10–100,000 molecules, something different is going on. Because it’s such a tiny scale, the particles have a really big surface-area-to-volume ratio. This means the energetics of what goes on at the surface become very important, much as they do on the atomic scale, where is often applied.

Classical thermodynamics breaks down. But because there are so many particles, and there are many interactions between them, the quantum model doesn’t quite work either.

And because there are so many particles doing different things at the same time, it’s difficult to simulate all their interactions using a computer. It’s also hard to gather much experimental information, because we haven’t yet developed the capacity to measure behaviour on such a tiny scale.

This conundrum becomes particularly acute when we’re trying to understand crystallisation, the process by which particles, randomly distributed in a solution, can form highly ordered crystal structures, given the right conditions.

Chemists don’t really understand how this works. How do around 1018 molecules, moving around in solution at random, come together to form a micro- to millimetre size ordered crystal? Most remarkable perhaps is the fact that in most cases every crystal is ordered in the same way every time the crystal is formed.

However, it turns out that different conditions can sometimes yield different crystal structures. These are known as polymorphs, and they’re important in many branches of science including medicine – a drug can behave differently in the body depending on which polymorph it’s crystallised in.

What we do know so far about the process, at least according to one widely accepted model, is that particles in solution can come together to form a nucleus, and once a critical mass is reached we see crystal growth. The structure of the nucleus determines the structure of the final crystal, that is, which polymorph we get.Nanoparticle 2 051316 coated-nanoparticle

What we have not known until now is what determines the structure of the nucleus in the first place, and that happens on the nanoscale.

In this paper, the authors have used mechanochemistry – that is milling and grinding – to obtain nanosized , small enough that surface effects become significant. In other words, the chemistry of the nanoworld – which structures are the most stable at this scale, and what conditions affect their stability, has been studied for the first time with carefully controlled experiments.

And by changing the milling conditions, for example by adding a small amount of solvent, the authors have been able to control which polymorph is the most stable. Professor Jeremy Sanders of the University of Cambridge’s Department of Chemistry, who led the work, said “It is exciting that these simple experiments, when carried out with great care, can unexpectedly open a new door to understanding the fundamental question of how surface effects can control the stability of nanocrystals.”

Joel Bernstein, Global Distinguished Professor of Chemistry at NYU Abu Dhabi, and an expert in and structure, explains: “The authors have elegantly shown how to experimentally measure and simulate situations where you have two possible nuclei, say A and B, and determine that A is more stable. And they can also show what conditions are necessary in order for these stabilities to invert, and for B to become more stable than A.”

“This is really news, because you can’t make those predictions using classical thermodynamics, and nor is this the quantum effect. But by doing these experiments, the authors have started to gain an understanding of how things do behave on this size regime, and how we can predict and thus control it. The elegant part of the experiment is that they have been able to nucleate A and B selectively and reversibly.”

One of the key words of chemical synthesis is ‘control’. Chemists are always trying to control the properties of materials, whether that’s to make a better dye or plastic, or a drug that’s more effective in the body. So if we can learn to control how molecules in a solution come together to form solids, we can gain a great deal. This work is a significant first step in gaining that control.

Explore further: Surface chemistry offers new approach to directing crystal formation in pharmaceutical industry

More information: A. M. Belenguer et al. Solvation and surface effects on polymorph stabilities at the nanoscale, Chem. Sci. (2016). DOI: 10.1039/C6SC03457H

phantom-matter-screen-shot-2016-09-30-at-4-05-26-pm

Read Genesis Nanotechnology ~ Phantom Matter comes 2 Life+Graphene Super Caps 2 Power Tesla Rival Battery+NanoNeuro 2 treat stroke, epilepsy, Parkinson’s disease, cardiac conditions, and many others + ..http://buff.ly/2eCo78v

Hydrogen Infrastructure Testing and Research Facility: Mountain Driving Demonstration: 175 Mile Loop + Two 11,000 foot Mountain Passes ~ ‘Colorado Cool!’


Published on Oct 10, 2016

Recently, researchers at the National Renewable Energy Laboratory wanted to know, how well does NREL’s hydrogen infrastructure support fueling multiple fuel cell electric vehicles (FCEVs) for a day trip to the Rocky Mountains?car-fc-3-nrel-download

The answer-great! NREL staff took FCEVs on a trip to demonstrate real-world performance and range in high-altitude conditions. To start the trip, drivers filled three cars at NREL’s hydrogen fueling station. The cars made a 175-mile loop crossing two 11,000+ foot mountain passes on the way. Back at NREL, the cars were filled up with hydrogen in ~5 minutes and ready to go again. Learn more at http://www.nrel.gov/hydrogen.

img_0742-1

Genesis Nanotechnology, Inc. ~ “Great Things from Small Things”

Solar Fuel Cell U of T energy_cycleRead More on Nano Enabled Fuel Cell Technologies for many more Energy Applications: Genesis Nanotechnology Fuel Cell Articles & Videos

MIT: Batteries power clean energy transformation: Focus on Electro-Chemical Energy Storage


electro-chemical-101316-images

” … (opportunity for) grid-level battery storage technologies for solar and wind electric generators and affordable electric cars available now could meet 87 percent of Americans’ daily driving needs.”

Batteries, it seems, are everywhere these days, yet important questions remain about what kind of energy storage technologies are needed to help the U.S. meet its commitments to cut greenhouse gases and which areas of research are most likely to pay dividends by improving existing batteries or creating entirely new battery technologies.

After exploring these questions for the past five years, Jessika Trancik, Associate Professor of Energy Studies with MIT’s Institute for Data, Systems, and Society, has found some answers that she will share at “Materials for Electrochemical Energy Storage,” the Materials Processing Center’s Materials Day Symposium on Tuesday, Oct. 18. The symposium will be held in MIT’s Kresge Auditorium, followed by a student poster session in La Sala de Puerto Rico, Stratton Student Center.

“This year’s Materials Day workshop will focus on advancing materials technologies for electrochemical energy storage, as well as on new systems-level approaches to cost-effective integration of these devices in both large and small-scale power grids,” says Materials Processing Center Director Carl V. Thompson, who is the Stavros Salapatas Professor of Materials Science and Engineering at MIT.

Dynamic models

Trancik developed dynamic models of battery technology and consumer demand in two areas with potential for large impact: electric cars and energy storage at solar and wind farms. Her key findings, published in Nature Climate Change and Nature Energy this past summer, are that:

• there is a window of opportunity for adoption of grid-level battery storage technologies for solar and wind electric generators at particular sites; and

affordable electric cars available now could meet 87 percent of Americans’ daily driving needs with charging just once a day, for example, overnight. (article continued below)

391f84fd-6427-4c06-9fb4-3d3c8a433f41

Also Read: THE TENKA ENERGY STORY  (Quote) … “Tenka Energy will develop and commercialize the Next Generation of Super-Capacitors and Batteries, providing the High-Energy-Density, in Flexible-Thin-Form with Rapid Charge/ Recharge Cycles with  Extended Life that is required and in high demand from a“power starved world”. The opportunity is based on a Nanoporous-Nickel Flexible Thin-form technology that is  easily scaled, from Rice University.”

 

(continued) “In some locations, for example, some stationary storage technologies available today add profit to solar and wind, and that’s taking into account the lifetime of the project and so forth,” Trancik explains. “In the next few years, there is an opportunity to do that at low cost with relatively little subsidy needed.” However, as solar and wind prices continue to fall, storage technologies will also need to become cheaper if they are to continue to add value.

jessika_trancik_mitJessika Trancik, associate professor of energy studies at MIT, will present at the annual Materials Day Symposium.    

Trancik, whose input was solicited by the White House ahead of the 2015 climate change negotiations, notes that commitments to the Paris Agreement, if met, will likely lead to significant growth in intermittent solar and wind installations. She says the next 15 years are critical for storage technology development. “By 2030, we really need to have developed affordable and well-functioning storage technologies in order to continue to support the growth of solar and wind worldwide,” she adds.

Similarly, with battery-based vehicles, such as the currently available Nissan Leaf, the outlook for converting a large portion of cars on the road from gasoline to electric looks promising. But, Trancik cautions, since electric vehicles have a shorter travel potential on a full charge than a gasoline car has on a full tank, a solution is needed for the 13 percent of cars on the road whose daily driving range would not be met. “There are a certain number of days during which the average driver will exceed that range. … People buy and own vehicles to get them where they want to go on all days, not just 87 percent of days,” Trancik says. Some type of convenient, on-demand car sharing or other ways to meet these needs are critical, she suggests.

This year’s Materials Processing Center symposium speakers are:

• Kevin Eberman, product development manager at 3M;

• Jessika Trancik, associate professor of energy studies within the Institute for Data, Systems and Society at MIT;

• Boris Kozinsky, principal scientist at Bosch Research;

• Yang Shao-Horn, professor of mechanical engineering and materials science and engineering at MIT;

• Glen D. Merfeld, product science leader at GE Global Research;

• Yet-Ming Chiang, professor of materials science and dngineering at MIT; and

• Martin Z. Bazant, professor of chemical engineering and applied mathematics at MIT.

Bazant, who is executive officer of chemical engineering as well as professor of mathematics, will present his recent work on lithium-ion, lithium-air, and lithium-metal batteries. Recent findings in Bazant’s group uncovered two different ways that lithium deposits grow on the surface of lithium metal electrodes and showed how to effectively control destructive lithium filament growth at lower power levels.

“Energy storage devices are increasingly playing key roles in reducing carbon emissions through use in hybrid and all-electric vehicles, and they will have a key role in efficient use of both conventional sources of electrical power and power from clean intermittent sources such as solar and wind energy,” Thompson says. “These technology drivers have led to rapid advances in development of new materials and device concepts for electrochemical energy storage using batteries. This includes not just lithium-ion batteries, but also other metal-ion batteries, metal-air batteries and flow batteries.”