Is Reliable Energy Storage (and Markets) On The Horizon?


Green and renewable energy markets are bringing power to millions with virtually no adverse environmental impacts, but before we can count on renewables for widespread reliability, one critical innovation must arrive: storage.

image-223

PetersenDean Inc. employees install solar panels on the roof of a home in Lafayette, California, U.S., Photographer: David Paul Morris/Bloomberg

On Tuesday, May 15, 2018. California became the first state in the U.S. to require solar panels on almost all new homes. Most new units built after Jan. 1, 2020, will be required to include solar systems as part of the standards adopted by the California Energy Commission.

While hydroelectric and some other renewable sources can generate power around the clock, solar and wind energy are irregular and not necessarily consistent sources for 24/7 projections.

Storms and darkness disrupt solar farms, while dozens of meteorological phenomena can impact wind farms. Because these sources have natural peaks, they cannot be made to align with consumer power demand without effective storage. Solar and wind may be able to meet demand during the day or a short period, but when energy is high and demand is low, the power generated must either be used or wasted if it cannot be stored in some type of battery.

According to projections from GTM Research and the Energy Storage Association, the energy storage market is expected to grow 17x from 2017 and 2023. This projection accounts for private and commercial deployment of storage capacity, including impacts from government policies like California’s solar panel mandate.

During the same interval, the energy storage market is expected to grow 14x in dollar value.

The exact type of storage deployments in these projections varies. Recent innovations have included advancements in traditional battery technology as well as battery alternatives like liquid air storage.

In New York, one project included a megawatt scaled lithium-ion battery storage system to replace lead acid schemes. The liquid air storage, however, uses excess energy to cool air in pressurized chambers until it is liquid. Rather than storing electrical or chemical energy like a battery, the process stores potential energy.

When demand arises, the liquefied air is allowed to rapidly heat and expand, turning turbines to generate electricity.

Meanwhile, Tesla has added nearly a third of the annual global energy storage deployments since 2015. Leading the charge with low-cost lithium-ion batteries, Telsla and other innovators are bringing global capacity up quickly.

These energy storage devices are versatile, capable of storing energy from any source–fossil fuel or renewable– and in any place–private homes or industrial operations.

With battery costs continuing to decrease and battery alternatives coming into the fore, projections of storage capacity are indeed quite possible. Assuming the electric industry can indeed upgrade its current infrastructure, new grid connections means that energy will be able to be shared more than ever, perhaps even traveling far distances during peak or be stored for non-peak use anywhere on the grid.

When storage costs and capacity align with market incentives, we may just see a renewable energy revolution, one that makes distributed generation mainstream for all consumers.

** Contributed from Forbes Energy

Watch Our YouTube Video:

Tenka Energy, Inc. Building Ultra-Thin Energy Dense SuperCaps and NexGen Nano-Enabled Pouch & Cylindrical Batteries – Energy Storage Made Small and POWERFUL!

Recommended Follow Up Reading:

01.
Solar Energy Prices

02.
Solar Storage Batteries

03.
Cheap Energy Suppliers

04.
Energy Storage

05.
Renewable Solar Energy

Advertisements

Form Energy – A formidable (and notable) Startup Company Tackling the Toughest Problem(s) in Energy Storage


Industry veterans from Tesla, Aquion and A123 are trying to create cost-effective energy storage to last for weeks and months.

A crew of battle-tested cleantech veterans raised serious cash to solve the thorniest problem in clean energy.

As wind and solar power supply more and more of the grid’s electricity, seasonal swings in production become a bigger obstacle. A low- or no-carbon electricity system needs a way to dispatch clean energy on demand, even when wind and solar aren’t producing at their peaks.

Four-hour lithium-ion batteries can help on a given day, but energy storage for weeks or months has yet to arrive at scale.

Into the arena steps Form Energy, a new startup whose founders hope for commercialization not in a couple of years, but in the next decade.

More surprising, they’ve secured $9 million in Series A funding from investors who are happy to wait that long. The funders include both a major oil company and an international consortium dedicated to stopping climate change.

“Renewables have already gotten cheap,” said co-founder Ted Wiley, who worked at saltwater battery company Aquion prior to its bankruptcy. “They are cheaper than thermal generation. In order to foster a change, they need to be just as dependable and just as reliable as the alternative. Only long-duration storage can make that happen.”

It’s hard to overstate just how difficult it will be to deliver.

The members of Form will have to make up the playbook as they go along. The founders, though, have a clear-eyed view of the immense risks. They’ve systematically identified materials that they think can work, and they have a strategy for proving them out.

Wiley and Mateo Jaramillo, who built the energy storage business at Tesla, detailed their plans in an exclusive interview with Greentech Media, describing the pathway to weeks- and months-long energy storage and how it would reorient the entirety of the grid.

The team

Form Energy tackles its improbable mission with a team of founders who have already made their mark on the storage industry, and learned from its most notable failures.

There’s Jaramillo, the former theology student who built the world’s most recognizable stationary storage brand at Tesla before stepping away in late 2016. Soon after, he started work on the unsolved long-duration storage problem with a venture he called Verse Energy.

Separately, MIT professor Yet-Ming Chiang set his sights on the same problem with a new venture, Baseload Renewables. His battery patents made their mark on the industry and launched A123 and 24M. More recently, he’d been working with the Department of Energy’s Joint Center on Energy Storage Research on an aqueous sulfur formula for cost-effective long-duration flow batteries.

He brought on Wiley, who had helped found Aquion and served as vice president of product and corporate strategy before he stepped away in 2015. Measured in real deployments, Aquion led the pack of long-duration storage companies until it suddenly went bankrupt in March 2017.

Chiang and Wiley focused on storing electricity for days to weeks; Jaramillo was looking at weeks to months. MIT’s “tough tech” incubator The Engine put in $2 million in seed funding, while Jaramillo had secured a term sheet of his own. In an unusual move, they elected to join forces rather than compete.

Rounding out the team are Marco Ferrara, the lead storage modeler at IHI who holds two Ph.D.s; and Billy Woodford, an MIT-trained battery scientist and former student of Chiang’s.

The product

Form doesn’t think of itself as a battery company.

It wants to build what Jaramillo calls a “bidirectional power plant,” one which produces renewable energy and delivers it precisely when it is needed. This would create a new class of energy resource: “deterministic renewables.”

By making renewable energy dispatchable throughout the year, this resource could replace the mid-range and baseload power plants that currently burn fossil fuels to supply the grid.

Without such a tool, transitioning to high levels of renewables creates problems.

Countries could overbuild their renewable generation to ensure that the lowest production days still meet demand, but that imposes huge costs and redundancies. One famous 100 percent renewables scenario notoriously relied on a 15x increase in U.S. hydropower capacity to balance the grid in the winter.

The founders are remaining coy about the details of the technology itself.

Jaramillo and Wiley confirmed that both products in development use electrochemical energy storage. The one Chiang started developing uses aqueous sulfur, chosen for its abundance and cheap price relative to its storage ability. Jaramillo has not specified what he chose for seasonal storage.

What I did confirm is that they have been studying all the known materials that can store electricity, and crossing off the ones that definitely won’t work for long duration based on factors like abundance and fundamental cost per embodied energy.

“Because we’ve done the work looking at all the options in the electrochemical set, you can positively prove that almost all of them will not work,” Jaramillo said. “We haven’t been able to prove that these won’t work.”

The company has small-scale prototypes in the lab, but needs to prove that they can scale up to a power plant that’s not wildly expensive. It’s one thing to store energy for months, it’s another to do so at a cost that’s radically lower than currently available products.

“We can’t sit here and tell you exactly what the business model is, but we know that we’re engaged with the right folks to figure out what it is, assuming the technical work is successful,” Jaramillo said.

Given the diversity of power markets around the world, there likely won’t be one single business model.

The bidirectional power plant may bid in just like gas plants do today, but the dynamics of charging up on renewable energy could alter the way it engages with traditional power markets. Then again, power markets themselves could look very different by that time.

If the team can characterize a business case for the technology, the next step will be developing a full-scale pilot. If that works, full deployment comes next.

But don’t bank on that happening in a jiffy.

“It’s a decade-long project,” Jaramillo said. “The first half of that is spent on developing things and the second half is hopefully spent deploying things.”

The backer says

The Form founders had to find financial backers who were comfortable chasing a market that doesn’t exist with a product that won’t arrive for up to a decade.

That would have made for a dubious proposition for cleantech VCs a couple of years ago, but the funding landscape has shifted.

The Engine, an offshoot of MIT, started in 2016 to commercialize “tough tech” with long-term capital.

“We’re here for the long shots, the unimaginable, and the unbelievable,” its website proclaims. That group funded Baseload Renewables with $2 million before it merged into Form.

Breakthrough Energy Ventures, the entity Bill Gates launched to provide “patient, risk-tolerant capital” for clean energy game-changers, joined for the Series A.

San Francisco venture capital firm Prelude Ventures joined as well. It previously bet on next-gen battery companies like the secretive QuantumScape and Natron Energy.

The round also included infrastructure firm Macquarie Capital, which has shown an interest in owning clean energy assets for the long haul.

Saudi Aramco, one of the largest oil and gas supermajors in the world, is another backer.

Saudi Arabia happens to produce more sulfur than most other countries, as a byproduct of its petrochemical industry.

While the kingdom relies on oil revenues currently, the leadership has committed to investing billions of dollars in clean energy as a way to scope out a more sustainable energy economy.

“It’s very much consistent with all of the oil supermajors taking a hard look at what the future is,” Jaramillo said. “That entire sector is starting to look beyond petrochemicals.”

Indeed, oil majors have emerged as a leading source of cleantech investment in recent months.

BP re-entered the solar industry with a $200 million investment in developer Lightsource. Total made the largest battery acquisition in history when it bought Saft in 2016; it also has a controlling stake in SunPower. Shell has ramped up investments in distributed energy, including the underappreciated thermal energy storage subsegment.

The $9 million won’t put much steel in the ground, but it’s enough to fund the preliminary work refining the technology.

“We would like to come out of this round with a clear understanding of the market need and a clear understanding of exactly how our technology meets the market need,” Wiley said.

The many paths to failure

Throughout the conversation, Jaramillo and Wiley avoided the splashy rhetoric one often hears from new startups intent on saving the world.

Instead, they acknowledge that the project could fail for a multitude of reasons. Here are just a few possibilities:

• The technologies don’t achieve radically lower cost.

• They can’t last for the 20- to 25-year lifetime expected of infrastructural assets.

• Power markets don’t allow this type of asset to be compensated.

• Financiers don’t consider the product bankable.

• Societies build a lot more transmission lines.

• Carbon capture technology removes the greenhouse gases from conventional generation.

• Small modular nuclear plants get permitting, providing zero-carbon energy on demand.

• The elusive hydrogen economy materializes.

Those last few scenarios face problems of their own. Transmission lines cost billions of dollars and provoke fierce local opposition.

Carbon capture technology hasn’t worked economically yet, although many are trying.

Small modular reactors face years of scrutiny before they can even get permission to operate in the U.S.

The costliness of hydrogen has thwarted wide-scale adoption.

One thing the Form Energy founders are not worried about is that lithium-ion makes an end run around their technology on price. That tripped up the initial wave of flow batteries, Wiley noted.

“By the time they were technically mature enough to be deployed, lithium-ion had declined in price to be at or below the price that they could deploy at,” he said.

Those early flow batteries, though, weren’t delivering much longer duration than commercially available lithium-ion. When the storage has to last for weeks or months, the cost of lithium-ion components alone makes it prohibitive.

“Our view is, just from a chemical standpoint, [lithium-ion] is not capable of declining another order of magnitude, but there does seem to be a need for storage that is an order of magnitude cheaper and an order of magnitude longer in duration than is currently being deployed,” Wiley explained.

They also plan to avoid a scenario that helped bring down many a storage startup, Aquion and A123 included: investing lots of capital in a factory before the market had arrived.

Form Energy isn’t building small commoditized products; it’s constructing a power plant.

“When we say we’re building infrastructure, we mean that this is intended to be infrastructure,” Wiley said.

So far, at least, there isn’t much competition to speak of in the super-long duration battery market.

That could start to change. Now that brand-name investors have gotten involved, others are sure to take notice. The Department of Energy launched its own long-duration storage funding opportunity in May, targeting the 10- to 100-hour range.

It may be years before Form’s investigations produce results, if they ever do.

But the company has already succeeded in expanding the realm of what’s plausible and fundable in the energy storage industry.

* From Greentech Media J. Spector

Are Sustainable Super-capacitors from Wood (yes w-o-o-d) the Answer for the Future of Energy Storage? Researchers at UST China Think ‘Nano-Cellulose’ may Hold the Key


Supercapacitors are touted by many as the wave of the future when it comes to battery storage for everything from cell phones to electric cars.

Unlike batteries, supercapacitors can charge and discharge much more rapidly — a boon for impatient drivers who want to be able to charge their electric cars quickly.

The key to supercap performance is electrodes with a large surface area and high conductivity that are inexpensive to manufacture, according to Science Daily.

Carbon aerogels satisfy the first two requirements but have significant drawbacks. Some are made from phenolic precursors which are inexpensive but not environmentally friendly. Others are made from  graphene and carbon nanotube precursors but are costly to manufacture.

Researchers at the University of Science and Technology of China have discovered a new process that is low cost and sustainable using nanocellulose, the primary component of wood pulp that gives strength to the cell walls of trees.

Once extracted in the lab, it forms a stable, highly porous network which when oxidized forms a micro-porous hydrogel of highly oriented cellulose nano-fibrils of uniform width and length.

Like most scientific research, there was not a straight line between the initial discovery and the final process.

A lot of tweaking went on in the lab to get things to work just right. Eventually, it was found that heating the hydrogel in the presence of para-toluenesulfonic acid, an organic acid catalyst, lowered the decomposition temperature and yielded a “mechanically stable and porous three dimensional nano-fibrous network” featuring a “large specific surface area and high electrical conductivity,” the researchers say in a report published by the journal Angewandte Chemie International.

The chemists have been able to create a low cost, environmentally friendly wood-based carbon aerogel that works well as a binder-free electrode for supercapacitor applications with electro-chemical properties comparable to commercial electrodes currently in use.

Now the hard work of transitioning this discovery from the laboratory to commercial viability will begin. Contributed by Steve Hanley

Watch Tenka Energy’s YouTube Video

Tenka Energy, Inc. Building Ultra-Thin Energy Dense SuperCaps and NexGen Nano-Enabled Pouch & Cylindrical Batteries – Energy Storage Made Small and POWERFUL!

Forbes on Energy: We Don’t Need Solar And Wind To Save The Climate — And It’s A Good Thing, Too


France and Sweden show solar and wind are not needed to [+] Special Contributor, M. Shellenberger

For 30 years, experts have claimed that humankind needs to switch to solar and wind energy to address climate change. But do we really?

Consider the fact that, while no nation has created a near-zero carbon electricity supply out of solar and wind, the only successful efforts to create near-zero carbon electricity supplies didn’t require solar or wind whatsoever.

As such solar and wind aren’t just insufficient, they are also unnecessary for solving climate change.

That turns out to be a good thing.

Sunlight and wind are inherently unreliable and energy-dilute. As such, adding solar panels and wind turbines to the grid in large quantities increases the cost of generating electricity, locks in fossil fuels, and increases the environmental footprint of energy production.

There is a better way. But to understand what it is, we first must understand the modern history of renewable energies.

Renewables Revolution: Always Just Around the Corner

Most people think of solar and wind as new energy sources. In fact, they are two of our oldest.

The predecessor to Stanford University Professor Mark Jacobson, who advocates “100 percent renewables,” is A man named John Etzler.

In 1833, Etzler proposed to build massive solar power plants that used mirrors to concentrate sunlight on boilers, mile-long wind farms, and new dams to store power.

Even electricity-generating solar panels and wind turbines are old. Both date back to the late 1800s.

Throughout the 20th Century, scientists claimed — and the media credulously reported — that solar, wind, and batteries were close to a breakthrough that would allow them to power all of civilization.

Consider these headlines from The New York Times and other major newspapers:

• 1891: “Solar Energy: What the Sun’s Rays Can Do and May Yet Be Able to Do“ — The author notes that while solar energy was not yet economical “…the day is not unlikely to arrive before long…”

• 1923: “World Awaits Big Invention to Meet Needs of Masses “…solar energy may be developed… or tidal energy… or solar energy through the production of fuel.”

• 1931: “Use of Solar Energy Near a Solution.” “Improved Device Held to Rival Hydroelectric Production”

• 1934: “After Coal, The Sun” “…surfaces of copper oxide already available”

• 1935: “New Solar Engine Gives Cheap Power”

• 1939. “M.I.T. Will ‘Store’ Heat of the Sun”

• 1948: “Changing Solar Energy into Fuel “Blocked Out” in GM Laboratory”  “…the most difficult part of the problem is over…”

• 1949: “U.S. Seeks to Harness Sun, May Ask Big Fund, Krug Says”

Reporters were as enthusiastic about renewables in 1930s as they are today.

“It is just possible the world is standing at a turning point,” a New York Times reporter gushed in 1931, “in the evolution of civilization similar to that which followed the invention by James Watt of the steam engine.”

Decade after decade, scientists and journalists re-discovered how much solar energy fell upon the earth.

“Even on such an area as small as Manhattan Island the noontime heat is enough, could it be utilized, to drive all the steam engines in the world,” The Washington Star reported in 1891.

Progress in chemistry and materials sciences was hyped. “Silver Selenide is Key Substance,” The New York Times assured readers.

In 1948, Interior Secretary Krug called for a clean energy moonshot consisting of “hundreds of millions” for solar energy, pointing to its “tremendous potential.”

R&D subsidies for solar began shortly after and solar and wind production subsidies began in earnest in the 1970s.

Solar and wind subsidies increased substantially, and were increased in 2005 and again in 2009 on the basis of a breakthrough being just around the corner.

By 2016, renewables were receiving 94 times more in U.S. subsidies than nuclear and 46 times more than fossil fuels per unit of energy generated.

According to Bloomberg New Energy Finance (BNEF), public and private actors spent $1.1 trillion on solar and over $900 billion on wind between 2007 and 2016.

Global investment in solar and wind hovered at around $300 billion per year between 2010 and 2016.

Did the solar and wind energy revolution arrive?

Judge for yourself: in 2016, solar and wind constituted 1.3 and 3.9 percent of the planet’s electricity, respectively.

Real World Renewables

Are there places in the world where wind and solar have become a significant share of electricity supplies?

The best real-world evidence for wind’s role in decarbonization comes from the nation of Denmark. By 2017, wind and solar had grown to become 48 and 3 percent of Denmark’s electricity.

Does that make Denmark a model?

Not exactly. Denmark has fewer people than Wisconsin, a land area smaller than West Virginia, and an economy smaller than the state of Washington.

Moreover, the reason Denmark was able to deploy so much wind was because it could easily export excess wind electricity to neighboring countries — albeit at a high cost: Denmark today has the most expensive electricity in Europe.

And as one of the world’s largest manufacturers of turbines, Denmark could justify expensive electricity as part of its export strategy.

As for solar, those U.S. states that have deployed the most of it have seen sharp rises in their electricity costs and prices compared to the national average.

As recently as two years ago, some renewable energy advocates held up Germany as a model for the world.

No more. While Germany has deployed some of the most solar and wind in the world, its emissions have been flat for a decade while its electricity has become the second most expensive in Europe.

More recently, Germany has permitted the demolition of old forests, churches, and villages in order to mine and burn coal.

Meanwhile, the two nations whose electricity sectors produce some of the least amount of carbon emissions per capita of any developed nation did so with very little solar and wind: France and Sweden.

Sweden last year generated a whopping 95 percent of its total electricity from zero-carbon sources, with 42 and 41 coming from nuclear and hydroelectric power.

France generated 88 percent of its total electricity from zero-carbon sources, with 72 and 10 coming from nuclear and hydroelectric power.

Other nations like Norway, Brazil, and Costa Rica have almost entirely decarbonized their electricity supplies with the use of hydroelectricity alone.

That being said, hydroelectricity is far less reliable and scalable than nuclear.

Brazil is A case in point. Hydro has fallen from over 90 percent of its electricity 20 years ago to about two-thirds in 2016. Because Brazil failed to grow its nuclear program in the 1990s, it made up for new electricity growth with fossil fuels.

And both Brazil and hydro-heavy California stand as warnings against relying on hydro-electricity in a period of climate change. Both had to use fossil fuels to make up for hydro during recent drought years.

That leaves us with nuclear power as the only truly scalable, reliable, low-carbon energy source proven capable of eliminating carbon emissions from the power sector.

Why This is Good News

The fact that we don’t need renewables to solve climate change is good news for humans and the natural environment.

The dilute nature of water, sunlight, and wind means that up to 5,000 times more land and 10 – 15 times more concrete, cement, steel, and glass, are required than for nuclear plants.

All of that material throughput results in renewables creating large quantities of waste, much of it toxic.

For example, solar panels create 200 – 300 times more hazardous waste than nuclear, with none of it required to be recycled or safely contained outside of the European Union.

Meanwhile, the huge amounts of land required for solar and wind production has had a devastating impact on rare and threatened desert tortoises, bats, and eagles — even when solar and wind are at just a small percentage of electricity supplies.

Does this mean renewables are never desirable?

Not necessarily. Hydroelectric dams remain the way many poor countries gain access to reliable electricity, and both solar and wind might be worthwhile in some circumstances.

But there is nothing in either their history or their physical attributes that suggests solar and wind in particular could or should be the centerpiece of efforts to deal with climate change.

In fact, France demonstrates the costs and consequences of adding solar and wind to an electricity system where decarbonization is nearly complete.

France is already seeing its electricity prices rise as a result of deploying more solar and wind.

Because France lacks Sweden’s hydroelectric potential, it would need to burn far more natural gas (and/or petroleum) in order to integrate significantly more solar and wind.

If France were to reduce the share of its electricity from nuclear from 75 percent to 50 percent — as had been planned — carbon emissions and the cost of electricity would rise.

It is partly for this reason that France’s president recently declared he would not reduce the amount of electricity from nuclear.

Some experts recently pointed out that nuclear plants, like hydroelectric dams, can ramp up and down. France currently does so to balance demand.

But ramping nuclear plants to accommodate intermittent electricity from solar and wind simply adds to the cost of making electricity without delivering fewer emissions or much in the way of cost-savings. That’s because only very small amounts of nuclear fuel and no labor is saved when nuclear plants are ramped down.

Do We Need Solar and Wind to Save Nuclear?

While solar and wind are largely unnecessary at best and counterproductive at worst when it comes to combating climate change, might we need to them in support of a political compromise to prevent nuclear plants from closing?

At least in some circumstances, the answer is yes. Recently in New Jersey, for example, nuclear energy advocates had to accept a subsidy rate 18 to 28 times higher for solar than for nuclear.

The extremely disproportionate subsidy for solar was a compromise in exchange for saving the state’s nuclear plants.

While nuclear enjoys the support of just half of the American people, for example, solar and wind are supported by 70 to 80 percent of them. Thus, in some cases, it might make sense to package nuclear and renewables together.

But we should be honest that such subsidies for solar and wind are policy sweeteners needed to win over powerful financial interests and not good climate policy.

What matters most is that we accept that there are real world physical obstacles to scaling solar and wind.

Consider that the problem of the unreliability of solar has been discussed for as long as there have existed solar panels. During all of that time, solar advocates have waved their hands about potential future solutions.

“Serious problems will, of course, be raised by the fact that sun-power will not be continuous,” wrote a New York Times reporter in 1931. “Whether these will be solved by some sort of storage arrangement or by the operating of photogenerators in conjuction with some other generator cannot be said at present.”

We now know that, in the real world, electricity grid managers cope with the unreliability of solar by firing up petroleum and natural gas generators.

As such —  while there might be good reasons to continue to subsidize the production of solar and wind — their role in locking in fossil fuel generators means that climate change should not be one of them.

Watch a YouTube Video on Our Latest Project

MIT Technology Review: Sustainable Energy: The daunting math of climate change means we’ll need carbon capture … eventually


 

MIT CC Friedman unknown-1_4

 Net Power’s pilot natural gas plant with carbon capture, near Houston, Texas.

An Interview with Julio Friedmann

At current rates of greenhouse-gas emissions, the world could lock in 1.5 ˚C of warming as soon as 2021, an analysis by the website Carbon Brief has found. We’re on track to blow the carbon budget for 2 ˚C by 2036.

Amid this daunting climate math, many researchers argue that capturing carbon dioxide from power plants, factories, and the air will have to play a big part in any realistic efforts to limit the dangers of global warming.

If it can be done economically, carbon capture and storage (CCS) offers the world additional flexibility and time to make the leap to cleaner systems. It means we can retrofit, rather than replace, vast parts of the global energy infrastructure. And once we reach disastrous levels of warming, so-called direct air capture offers one of the only ways to dig our way out of trouble, since carbon dioxide otherwise stays in the atmosphere for thousands of years.

Julio Friedmann has emerged as one of the most ardent advocates of these technologies. He oversaw research and development efforts on clean coal and carbon capture at the US Department of Energy’s Office of Fossil Energy under the last administration. Among other roles, he’s now working with or advising the Global CCS Institute, the Energy Futures Initiative, and Climeworks, a Switzerland-based company already building pilot plants that pull carbon dioxide from the air.

In an interview with MIT Technology Review, Friedmann argues that the technology is approaching a tipping point: a growing number of projects demonstrate that it works in the real world, and that it is becoming more reliable and affordable. He adds that the boosted US tax credit for capturing and storing carbon, passed in the form of the Future Act as part of the federal budget earlier this year, will push forward many more projects and help create new markets for products derived from carbon dioxide (see “The carbon-capture era may finally be starting”).

But serious challenges remain. Even with the tax credit, companies will incur steep costs by adding carbon capture systems to existing power plants. And a widely cited 2011 study, coauthored by MIT researcher Howard Herzog, found that direct air capture will require vast amounts of energy and cost 10 times as much as scrubbing carbon from power plants.

(This interview has been edited for length and clarity.)

In late February, you wrote a Medium post saying that with the passage of the increased tax credit for carbon capture and storage, we’ve “launched the climate counter-strike.” Why is that a big deal?

It actually sets a price on carbon formally. It says you should get paid to not emit carbon dioxide, and you should get paid somewhere between $35 a ton and $50 a ton. So that is already a massive change. In addition to that, it says you can do one of three things: you can store CO2, you can use it for enhanced oil recovery, or you can turn it into stuff. Fundamentally, it says not emitting has value.

As I’ve said many times before, the lack of progress in deploying CCS up until this point is not a question of cost. It’s really been a question of finance.

The Future Act creates that financing.

I identified an additional provision which said not only can you consider a power plant a source or an industrial site a source, you can consider the air a source.

Even if we zeroed out all our emissions today, we still have a legacy of harm of two trillion tons of CO2 in the air, and we need to do something about that.

And this law says, yeah, we should. It says we can take carbon dioxide out of the air and turn it into stuff.

At the Petra Nova plant in Texas, my understanding is the carbon capture costs are something like $60 to $70 a ton, which is still going to outstrip the tax credit today. How are we going to close that gap?

There are many different ways to go about it. For example, the state of New Jersey today passed a 90 percent clean energy portfolio standard. Changing the policy from a renewable portfolio standard [which would exclude CCS technologies] to a clean energy standard [which would allow them] allowed higher ambition.

In that context, somebody who would build a CCS project and would get a contract to deliver that power, or deliver that emissions abatement, can actually again get staked, get financed, and get built. That can happen without any technology advancement.

The technology today is already cost competitive. CCS today, as a retrofit, is cheaper than a whole bunch of stuff. It’s cheaper than new-build nuclear, it’s cheaper than offshore wind. It’s cheaper than a whole bunch of things we like, and it’s cheaper than rooftop solar, almost everywhere. It’s cheaper than utility-scale concentrating solar pretty much everywhere, and it is cheaper than what solar and wind were 10 years ago.

What do you make of the critique that this is all just going to perpetuate the fossil-fuel industry?

The enemy is not fossil fuels; the enemy is emissions.

In a place like California that has terrific renewable resources and a good infrastructure for renewable energy, maybe you can get to zero [fossil fuels] someday.

If you’re in Saskatchewan, you really can’t do that. It is too cold for too much of the year, and they don’t have solar resources, and their wind resources are problematic because they’re so strong they tear up the turbines. Which is why they did the CCS project in Saskatchewan. For them it was the right solution.

Shifting gears to direct air capture, the basic math says that you’re moving 2,500 molecules to capture one of CO2. How good are we getting at this, and how cheaply can we do this at this point?

If you want to optimize the way that you would reduce carbon dioxide economy-wide, direct air capture is the last thing you would tackle. Turns out, though, that we don’t live in that society. We are not optimizing anything in any way.

So instead we realize we have this legacy of emissions in the atmosphere and we need tools to manage that. So there are companies like ClimeworksCarbon Engineering, and Global Thermostat. Those guys said we know we’re going to need this technology, so I’m going to work now. They’ve got decent financing, and the costs are coming down and improving (see “Can sucking CO2 out of the atmosphere really work?”).

The cost for all of these things now today, all-in costs, is somewhere between $300 and $600 a ton. I’ve looked inside all those companies and I believe all of them are on a glide path to get to below $200 a ton by somewhere between 2022 and 2025. And I believe that they’re going to get down to $100 a ton by 2030. At that point, these are real options.

At $200 a ton, we know today unambiguously that pulling CO2 out of the air is cheaper than trying to make a zero-carbon airplane, by a lot. So it becomes an option that you use to go after carbon in the hard-to-scrub parts of the economy.

Is it ever going to work as a business, or is it always going to be kind of a public-supported enterprise to buy ourselves out of climate catastrophes?

Direct air capture is not competitive today broadly, but there are places where the value proposition is real. So let me give you a couple of examples.

In many parts of the world there are no sources of CO2. If you’re running a Pepsi or a Coca-Cola plant in Sri Lanka, you literally burn diesel fuel and capture the CO2 from it to put into your cola, at a bonkers price. It can cost $300 to $800 a ton to get that CO2. So there are already going to be places in some people’s supply chain where direct air capture could be cheaper.

We talk to companies like Goodyear, Firestone, or Michelin. They make tires, and right now the way that they get their carbon black [a material used in tire production that’s derived from fossil fuel] is basically you pyrolize bunker fuel in the Gulf Coast, which is a horrible, environmentally destructive process. And then you ship it by rail cars to wherever they’re making the tires.

If they can decouple from that market by gathering CO2 wherever they are and turn that into carbon black, they can actually avoid market shocks. So even if it costs a little more, the value to that company might be high enough to bring it into the market. That’s where I see direct air actually gaining real traction in the next few years.

It’s not going to be enough for climate. We know that we will have to do carbon storage, for sure, if we want to really manage the atmospheric emissions. But there’s a lot of ground to chase this, and we never know quite where technology goes.

In one of your earlier Medium posts you said that we’re ultimately going to have to pull 10 billion tons of CO2 out of the atmosphere every year. Climeworks is doing about 50 [at their pilot plant in Iceland]. So what does that scale-up look like?

You don’t have to get all 10 billion tons with direct air capture. So let’s say you just want one billion.

Right now, Royal Dutch Shell as a company moves 300 million tons of refined product every year. This means that you need three to four companies the size of Royal Dutch Shell to pull CO2 out of the atmosphere.

The good news is we don’t need that billion tons today. We have 10 or 20 or 30 years to get to a billion tons of direct air capture. But in fact we’ve seen that kind of scaling in other kinds of clean-tech markets. There’s nothing in the laws of physics or chemistry that stops that.

MIT Technolgy Review: This battery advance could make electric vehicles far cheaper


Sila Nanotechnologies has pulled off double-digit performance gains for lithium-ion batteries, promising to lower costs or add capabilities for cars and phones.

For the last seven years, a startup based in Alameda, California, has quietly worked on a novel anode material that promises to significantly boost the performance of lithium-ion batteries.

Sila Nanotechnologies emerged from stealth mode last month, partnering with BMW to put the company’s silicon-based anode materials in at least some of the German automaker’s electric vehicles by 2023.

A BMW spokesman told the Wall Street Journal the company expects that the deal will lead to a 10 to 15 percent increase in the amount of energy you can pack into a battery cell of a given volume. Sila’s CEO Gene Berdichevsky says the materials could eventually produce as much as a 40 percent improvement (see “35 Innovators Under 35: Gene Berdichevsky”).

For EVs, an increase in so-called energy density either significantly extends the mileage range possible on a single charge or decreases the cost of the batteries needed to reach standard ranges. For consumer gadgets, it could alleviate the frustration of cell phones that can’t make it through the day, or it might enable power-hungry next-generation features like bigger cameras or ultrafast 5G networks.

Researchers have spent decades working to advance the capabilities of lithium-ion batteries, but those gains usually only come a few percentage points at a time. So how did Sila Nanotechnologies make such a big leap?

Berdichevsky, who was employee number seven at Tesla, and CTO Gleb Yushin, a professor of materials science at the Georgia Institute of Technology, recently provided a deeper explanation of the battery technology in an interview with MIT Technology Review.

Sila co-founders (from left to right), Gleb Yushin, Gene Berdichevsky and Alex Jacobs.

An anode is the battery’s negative electrode, which in this case stores lithium ions when a battery is charged. Engineers have long believed that silicon holds great potential as an anode material for a simple reason: it can bond with 25 times more lithium ions than graphite, the main material used in lithium-ion batteries today.

But this comes with a big catch. When silicon accommodates that many lithium ions, its volume expands, stressing the material in a way that tends to make it crumble during charging. That swelling also triggers electrochemical side reactions that reduce battery performance.

In 2010, Yushin coauthored a scientific paper that identified a method for producing rigid silicon-based nanoparticles that are internally porous enough to accommodate significant volume changes. He teamed up with Berdichevsky and another former Tesla battery engineer, Alex Jacobs, to form Sila the following year.

The company has been working to commercialize that basic concept ever since, developing, producing, and testing tens of thousands of different varieties of increasingly sophisticated anode nanoparticles. It figured out ways to alter the internal structure to prevent the battery electrolyte from seeping into the particles, and it achieved dozens of incremental gains in energy density that ultimately added up to an improvement of about 20 percent over the best existing technology.

Ultimately, Sila created a robust, micrometer-size spherical particle with a porous core, which directs much of the swelling within the internal structure. The outside of the particle doesn’t change shape or size during charging, ensuring otherwise normal performance and cycle life.

The resulting composite anode powders work as a drop-in material for existing manufacturers of lithium-ion cells.

With any new battery technology, it takes at least five years to work through the automotive industry’s quality and safety assurance processes—hence the 2023 timeline with BMW. But Sila is on a faster track with consumer electronics, where it expects to see products carrying its battery materials on shelves early next year.

Venkat Viswanathan, a mechanical engineer at Carnegie Mellon, says Sila is “making great progress.” But he cautions that gains in one battery metric often come at the expense of others—like safety, charging time, or cycle life—and that what works in the lab doesn’t always translate perfectly into end products.

Companies including Enovix and Enevate are also developing silicon-dominant anode materials. Meanwhile, other businesses are pursuing entirely different routes to higher-capacity storage, notably including solid-state batteries. These use materials such as glass, ceramics, or polymers to replace liquid electrolytes, which help carry lithium ions between the cathode and anode.

BMW has also partnered with Solid Power, a spinout from the University of Colorado Boulder, which claims that its solid-state technology relying on lithium-metal anodes can store two to three times more energy than traditional lithium-ion batteries. Meanwhile, Ionic Materials, which recently raised $65 million from Dyson and others, has developed a solid polymer electrolyte that it claims will enable safer, cheaper batteries that can operate at room temperature and will also work with lithium metal.

Some battery experts believe that solid-state technology ultimately promises bigger gains in energy density, if researchers can surmount some large remaining technical obstacles.

But Berdichevsky stresses that Sila’s materials are ready for products now and, unlike solid-state lithium-metal batteries, don’t require any expensive equipment upgrades on the part of battery manufacturers.

As the company develops additional ways to limit volume change in the silicon-based particles, Berdichevsky and Yushin believe they’ll be able to extend energy density further, while also improving charging times and total cycle life.

This story was updated to clarify that Samsung didn’t invest in Ionic Material’s most recent funding round.

Read and Watch More:

Tenka Energy, Inc. Building Ultra-Thin Energy Dense SuperCaps and NexGen Nano-Enabled Pouch & Cylindrical Batteries – Energy Storage Made Small and POWERFUL! YouTube Video:

High efficiency solar power conversion allowed by a novel composite material


A composite thin film made of two different inorganic oxide materials significantly improves the performance of solar cells, as recently demonstrated by a joint team of researchers led by Professor Federico Rosei at the Institut national de la recherche scientifique (INRS), and Dr. Riad Nechache from École de technologie supérieure (ÉTS), both in the Montreal Area (Canada).

Following an original device concept, Mr. Joyprokash Chakrabartty, the researchers have developed this new composite thin film material which combines two different crystal phases comprising the atomic elements bismuth, manganese, and oxygen.

The combination of phases with two different compositions optimizes this material’s ability to absorb solar radiation and transform it into electricity. The results are highly promising for the development of future solar technologies, and also potentially useful in other optoelectronic devices.

The results of this research are discussed in an article published in Nature Photonics (“Improved photovoltaic performance from inorganic perovskite oxide thin films with mixed crystal phases”) by researchers and lead author Mr. Joyprokash Chakrabartty.

The key discovery consists in the observation that the composite thin film—barely 110 nanometres thick—absorbs a broader portion of the solar spectrum compared to the wavelengths absorbed in the thin films made of the two individual materials. The interfaces between the two different phases within the composite film play a crucial role in converting more sunlight into electricity. This is a surprising, novel phenomenon in the field of inorganic perovskite oxide-based solar cells.

The composite material leads to a power conversion efficiency of up to 4.2%, which is a record value for this class of materials.

Source: INRS

Paper Biomass Could Yield Lithium-Sulfur Batteries


Rensselaer Polytechnic Institute

A byproduct of the papermaking industry could be the answer to creating long-lasting lithium-sulfur batteries.

A team from Rensselaer Polytechnic Institute has created a method to use sulfonated carbon waste called lignosulfonate to build a rechargeable lithium-sulfur battery.

Lignosulfonate is typically combusted on site, releasing carbon dioxide into the atmosphere after sulfur has been captured for reuse. A battery built with the abundant and cheap material could be used to power big data centers, as well as provide a cheaper energy-storage option for microgrids and the traditional electric grid.

“Our research demonstrates the potential of using industrial paper-mill byproducts to design sustainable, low-cost electrode materials for lithium-sulfur batteries,” Trevor Simmons, a Rensselaer research scientist who developed the technology with his colleagues at the Center for Future Energy Systems (CFES), said in a statement.

Rechargeable batteries have two electrodes—a positive cathode and a negative anode. A liquid electrolyte is placed in between the electrodes to serve as a medium for the chemical reactions that produce electric current. In a lithium-sulfur battery, the cathode is made of a sulfur-carbon matrix and the anode is comprised of a lithium metal oxide.

Sulfur is nonconductive in its elemental form. When combined with carbon at elevated temperatures it becomes highly conductive, but can easily dissolve into a battery’s electrolyte, causing the electrodes on either side to deteriorate after only a few cycles.

Different forms of carbon, like nanotubes and complex carbon foams, have been tried to confine the sulfur in place, but have not been successful.

“Our method provides a simple way to create an optimal sulfur-based cathode from a single raw material,” Simmons said.

The research team developed a dark syrupy substance dubbed “brown liquor,” which they dried and then heated to about 700 degrees Celsius in a quartz tube furnace.

The high heat drives off most of the sulfur gas, while retaining some of the sulfur as polysulfides—chains of sulfur atoms—that are embedded deep within an activated carbon matrix. The heating process is then repeated until the correct amount of sulfur is trapped within the carbon matrix.

The researchers then ground up the material and mix it with an inert polymer binder to create a cathode coating on aluminum foil.

Thus far, the team has created a lithium-sulfur battery prototype the size of a watch battery that can cycle approximately 200 times.

They will now attempt to scale up the prototype to markedly increase the discharge rate and the battery’s cycle life.

“In repurposing this biomass, the researchers working with CFES are making a significant contribution to environmental preservation while building a more efficient battery that could provide a much-needed boost for the energy storage industry,” Martin Byrne, CFES director of business development, said in a statement.

New Electricity-Generating Backpack Lightens the Load on Soldiers


Soldier Pack 1 newlightning_0

Most soldiers carry a heavy burden in the field, including an 80-pound backpack filled with essential supplies and tools.

If that’s not heavy enough, soldiers often carry an additional 20 to 30 pounds in backup batteries to power their radios and other necessary electronics.

However, a new innovation offers a solution.

Lightning Pack—a 2017 R&D 100 Award Winner—is able to generate electricity as soldiers walk and run through the field, eliminating the need for them to carry batteries. They received the award at the R&D 100 Awards Gala held in Orlando, Florida on Nov. 17, 2017.

The backpack works by harvesting kinetic energy, while also reducing the heavy load soldiers have to carry around the field, said Lawrence Rome, PhD, the founder and chief scientific officer of Lightning Packs LLC, in an interview with R&D Magazine.

“Essentially in our backpacks there are two frames, there’s a frame connected to the person with a hip belt and shoulder straps and there is a second frame called a moving frame in which the bag is attached and the whole load sits there,” he said. “In normal backpacks, the two frames are locked together and move in unison.

“What we did is we suspended the moving frame from the fixed frame attached to the body by a spring mechanism,” he added. “So essentially as you walk up and down the moving frame moves in respect to the fixed frame and that generates electricity.”

By reducing the need for extra disposable batteries, soldiers using the backpack can opt to either reduce the overall weight of their backpacks or use the extra space to carry other necessary supplies. The packs also permits longer mission durations and reduces the demand for resupply operations.

In addition to providing a benefit for soldiers, the electricity-generating backpack could provide wearable, renewable electricity for disaster-relief workers operating in remote locations, as well as forestry service workers, medical aid relief workers, hikers, campers, and hunters.

The inspiration for Lightning Pack

Rome was a muscle physiologist in 2002 studying how fish swim when the U.S. Navy approached him unexpectedly on a possible project to develop a submarine that maneuvers similar to a fish.

During conversations with members of the military regarding the submarine, Rome learned about the heavy backpacks that many soldiers must regularly wear.

Although the task of designing a backpack was outside his expertise at the time, Rome was inspired to take on the challenge of eliminating some of the weight from the extra batteries using his knowledge of biomechanics.

“I know from teaching biomechanics that every step they take their hip goes up and down two-to-three inches,” Rome said. “So if their 80 pound backpack is connected at the hip then you have 80 pounds going up and down in every step. That winds up being a lot of mechanical energy.”

Benefits of Lightning Pack

According to Rome, prior to Lightning Pack’s creation the most electricity that was ever derived from walking was 20 milliwatts.

Lightning Packs can generate 12 to 15 watts of electricity by walking at a relaxed pace, 20 to 35 watts by walking at a hump pace, 33 to 40 watts by running and 30 to 50 watts by hand pumping.

Walking can also reduce the accelerative force by 82 percent and running reduces the accelerative force by 86 percent, allowing soldiers to have greater mobility in the field.

The electricity-generating backpacks currently come equipped in three sizes for a military assault pack, a mid-sized molle and a large molle ruck.

Rome explained how the extra electricity is ultimately used.

“Essentially what happens is the electricity that we generate goes to a few different places,” Rome said. “If you have a radio, it could power the radio directly. The excess electricity goes onto a battery, so the output plugs into a military battery.”

Rome said that radio communications are one of the largest drains of battery power for soldiers.

By having soldiers generate electricity by themselves, the military can reduce logistical support, dangerous supply routes and the over environmental impact due to having fewer disposable batteries.

Some of the other benefits include allowing soldiers to manage heavy loads with less stress on the body and minimizing acute and long-term musculoskeletal injuries, while also increasing force readiness and retention.

Lightning Packs are currently being developed with funding from the U.S. military and the National Institutes of Health. The military is currently undergoing stringent field tests on the backpacks.

The next step for Rome and the Lightning Pack team is to focus on creating a non-military version of the backpack that consumers can potentially use to power cell phones, GPS devices and other electronics.

3 Questions for Innovating the Clean Energy Economy (MIT Energy Initiative)


daniel-kammen-mit-energy-initiative-mitei-2018_0Daniel Kammen, professor of energy at the University of California at Berkeley, spoke on clean energy innovation and implementation in a talk at MIT. Photo: Francesca McCaffrey/MIT Energy Initiative

Daniel Kammen of the University of California at Berkeley discusses current efforts in clean energy innovation and implementation, and what’s coming next.

Daniel Kammen is a professor of energy at the University of California at Berkeley, with parallel appointments in the Energy and Resources Group (which he chairs), the Goldman School of Public Policy, and the Department of Nuclear Science and Engineering.

Recently, he gave a talk at MIT examining the current state of clean energy innovation and implementation, both in the U.S. and internationally. Using a combination of analytical and empirical approaches, he discussed the strengths and weaknesses of clean energy efforts on the household, city, and regional levels. The MIT Energy Initiative (MITEI) followed up with him on these topics.

Q: Your team has built energy transition models for several countries, including Chile, Nicaragua, China, and India. Can you describe how these models work and how they can inform global climate negotiations like the Paris Accords?

Clean Energy Storage I header1

A: My laboratory has worked with three governments to build open-source models of the current state of their energy systems and possible opportunities for improvement. This model, SWITCH , is an exceptionally high-resolution platform for examining the costs, reliability, and carbon emissions of energy systems as small as Nicaragua’s and as large as China’s. The exciting recent developments in the cost and performance improvements of solar, wind, energy storage, and electric vehicles permit the planning of dramatically decarbonized systems that have a wide range of ancillary benefits: increased reliability, improved air quality, and monetizing energy efficiency, to name just a few. With the Paris Climate Accords placing 80 percent or greater decarbonization targets on all nations’ agendas (sadly, except for the U.S. federal government), the need for an “honest broker” for the costs and operational issues around power systems is key.

Q: At the end of your talk, you mentioned a carbon footprint calculator that you helped create. How much do individual behaviors matter in addressing climate change?

A: The carbon footprint, or CoolClimate project, is a visualization and behavioral economics tool that can be used to highlight the impacts of individual decisions at the household, school, and city level. We have used it to support city-city competitions for “California’s coolest city,” to explore the relative impacts of lifetime choices (buying an electric vehicle versus or along with changes of diet), and more.

Q: You touched on the topic of the “high ambition coalition,” a 2015 United Nations Climate Change Conference goal of keeping warming under 1.5 degrees Celsius. Can you expand on this movement and the carbon negative strategies it would require?

A: As we look at paths to a sustainable global energy system, efforts to limit warming to 1.5 degrees Celsius will require not only zeroing out industrial and agricultural emissions, but also removing carbon from the atmosphere. This demands increasing natural carbon sinks by preserving or expanding forests, sustaining ocean systems, and making agriculture climate- and water-smart. One pathway, biomass energy with carbon capture and sequestration, has both supporters and detractors. It involves growing biomass, using it for energy, and then sequestering the emissions.

This talk was one in a series of MITEI seminars supported by IHS Markit.