Grid Batteries Are Poised to Become Cheaper Than Natural-Gas Plants in Minnesota



A 60-acre solar farm in Camp Ripley, a National Guard base in Minnesota.

A new report suggests the economics of large-scale batteries are reaching an important inflection point.

When it comes to renewable energy, Minnesota isn’t typically a headline-grabber: in 2016 it got about 18 percent of its energy from wind, good enough to rank in the top 10 states. 
But it’s just 28th in terms of installed solar capacity, and its relatively small size means projects within its borders rarely garner the attention that giants like California and Texas routinely get.

A new report on the future of energy in the state should turn some heads (PDF). According to the University of Minnesota’s Energy Transition Lab, starting in 2019 and for the foreseeable future, the overall cost of building grid-scale storage there will be less than that of building natural-gas plants to meet future energy demand.


Minnesota currently gets about 21 percent of its energy from renewables. That’s not bad, but current plans also call for bringing an additional 1,800 megawatts of gas-fired “peaker” plants online by 2028 to meet growing demand. As the moniker suggests, these plants are meant to spin up quickly to meet daily peaks in energy demand—something renewables tend to be bad at because the wind doesn’t always blow and the sun doesn’t always shine.

Storing energy from renewables could solve that problem, but it’s traditionally been thought of as too expensive compared with other forms of energy.

The new report suggests otherwise. According to the analysis, bringing lithium-ion batteries online for grid storage would be a good way to stockpile energy for when it’s needed, and it would prove less costly than building and operating new natural-gas plants.

The finding comes at an interesting time. For one thing, the price of lithium-ion batteries continues to plummet, something that certainly has the auto industry’s attention. And grid-scale batteries, while still relatively rare, are popping up more and more these days. The Minnesota report, then, suggests that such projects may become increasingly common—and could be a powerful way to lower emissions without sending our power bills skyrocketing in the process.
(Read more: Minnesota Public Radio, “Texas and California Have Too Much Renewable Energy,” 

“The One and Only Texas Wind Boom,” “By 2040, More Than Half of All New Cars Could Be Electric”)

World’s Largest Lithium-Ion Battery System to be Built in Australia by Tesla + Video


AS TESLA MODEL 3 PRODUCTION BEGINS, ELON MUSK ANNOUNCES BIGGEST BATTERY ON OTHER SIDE OF THE WORLD 

You’d think the biggest Tesla news today would be surrounding landmark production of Tesla Model 3 SN1 — aka serial number 1. 



However, news emerged that Elon Musk was on the other side of the world. Wall Street Journal* reports, “Tesla Inc.’s Elon Musk has agreed to build the world’s largest lithium-ion battery system in Australia, an ambitious project that he hopes will show how the technology can help solve energy problems.”


Above: Tesla is planning the world’s biggest battery installation in South Australia (Image: Tesla)




It’s reported that, “The plan is to build a 100-megawatt storage system in the state of South Australia—which has been hit by a string of blackouts over the past year—that will collect power generated by a wind farm built by French energy company Neoen.” Musk emphasized the magnitude of the project, explaining: ““This is not a minor foray into the frontier, this is like going three times further than anyone has gone before.”

Above: More on Tesla’s project in South Australia (Youtube: Jay Weatherill)
It turns out that “Tesla was selected from more than 90 bids to build a storage system for the state, said South Australia Premier Jay Weatherill. The value of the project wasn’t disclosed. The origins of the deal trace back to a Twitter exchange in March between Mr. Musk and local entrepreneur Mike Cannon-Brookes, which led to conversations between Mr. Musk and Mr. Weatherill and Australian Prime Minister Malcolm Turnbull.”

Above: Tesla CEO Elon Musk and South Australia Premier Jay Weatherill (Twitter: Jay Weatherill)

True to his word, “Mr. Musk pledged to complete the project—which he said will be three times more powerful than any other battery system in the world—within 100 days of signing an agreement or it would be free.” In addition, “Once the project is completed, which Tesla expects will happen by the start of the Australian summer in December, it will be larger than a storage facility in the Southern California desert also built on Tesla batteries.”


Above: Tesla Powerpack installation (Image: Tesla)
According to Tesla, “The project will provide enough power for more than 30,000 homes, about equal to the number of homes that lost power during the blackouts.” Back in Fremont, the Tesla factory will get started on the first-ever production Model 3. Coming off historic rocket launches at SpaceX, chalk up another landmark milestone (or two) for Tesla today — just another week of work for the Iron Man, Elon Musk.

*Source: Wall Street Journal

Large Emissions from the Electric Car (EV) Battery Makers – Tesla an ‘Eco-Villain’?


EV Battery Villans Elfordon-Nevs-700-394-ny-teknik

Electric power: When batteries are eco-villains in the production, according to a new report. Photo: Tomas Oneborg / SvD / TT

Huge hopes tied to electric cars as the solution to automotive climate problem. But the electric car batteries are eco-villains in the production. Several tons of carbon dioxide has been placed, even before the batteries leave the factory.

IVL Swedish Environmental Research Institute was commissioned by the Swedish Transport Administration and the Swedish Energy Agency investigated lithium-ion batteries climate impact from a life cycle perspective. There are batteries designed for electric vehicles included in the study. The two authors Lisbeth Dahllöf and Mia Romare has done a meta-study that is reviewed and compiled existing studies.

The report shows that the battery manufacturing leads to high emissions. For every kilowatt hour of storage capacity in the battery generated emissions of 150 to 200 kilos of carbon dioxide already in the factory. The researchers did not study individual bilmärkens batteries, how these produced or the electricity mix they use. But if we understand the great importance of play battery take an example: Two common electric cars on the market, the Nissan Leaf and the Tesla Model S, the batteries about 30 kWh and 100 kWh.

Even when buying the car emissions have already occurred, corresponding to approximately 5.3 tons and 17.5 tons, the batteries of these sizes. The numbers can be difficult to relate to. As a comparison, a trip for one person round trip from Stockholm to New York by air causes the release of more than 600 kilograms of carbon dioxide, according to the UN organization ICAO calculation.

Another conclusion of the study is that about half the emissions arising from the production of raw materials and half the production of the battery factory. The mining accounts for only a small proportion of between 10-20 percent.

Read more: “The potential electric car the main advantage”

The calculation is based on the assumption that the electricity mix used in the battery factory consists of more than half of the fossil fuels. In Sweden, the power production is mainly of fossil-nuclear and hydropower why lower emissions had been achieved.

The study also concluded that emissions grow almost linearly with the size of the battery, even if it is pinched by the data in that field. It means that a battery of the Tesla-size contributes more than three times as much emissions as the Nissan Leaf size. It is a result that surprised Mia Romare.

– It should have been less linear as the electronics used is not increased to the same extent. But the battery cells are so sensitive as production looks today, she says.

– One conclusion is that you should not run around with unnecessarily large batteries, says Mia Romare

The authors emphasize that a large part of the study has been about finding out what data is available and find out what quality they are. They have in many cases been forced to conclude that it is difficult to compare existing studies together.

 

We’ve been frustrated, but it is also part of the result, says Lisbeth Dahllöf.

His colleague, Mats-Ola Larsson at IVL has made a calculation of how long you have to drive a petrol or diesel before it has released as much carbon dioxide as battery manufacturing has caused. The result was 2.7 years for a battery of the same size as the Nissan Leaf and 8.2 years for a battery of the Tesla-size, based on a series of assumptions (see box below).

– It’s great that companies and authorities for ambitious environmental policies and buying into climate-friendly cars. But these results show that one should consider not to choose an electric car with a bigger battery than necessary, he says, noting that politicians should also take this on in the design of instruments.

An obvious part to look at the life cycle analysis is recycling. The authors note that the characteristics of the batteries is the lack of the same, since there is no financial incentive to send batteries for recycling, as well as the volumes are still small.

Cobalt, nickel and copper are recovered but not the energy required to manufacture electrodes, says Mia Romare and points out that the point of recycling the resource rather than the reduction of carbon emissions.

Peter Kasche the report originator Energy Agency emphasizes the close of the linear relationship between the battery size and emissions is important.

– Somehow you really get to see so as to optimize the batteries. One should not run around with a lot of kilowatt hours unnecessarily. In some cases, a plug-in hybrid to be the optimum, in other cases a clean vehicle battery.

So counted IVL

Mats-Ola Larsson has made a number of assumptions in the calculation of emissions from a battery of the Nissan Leaf size and a battery of Tesla’s size takes 2.7 and 8.2 years to “run together into” a normal petrol or diesel:

The average emissions of new Swedish cars in 2016 were 126 grams of carbon dioxide per kilometer. The value has been adjusted to 130 because some of the cars that are classified as electric vehicles are plug-in hybrids, which sometimes runs on fossil fuels.

While adoption of petrol and diesel have 18 percent renewable fuels, which affect emissions.

Average Mileage per year is 1224 mil under Traffic Analysis.

NREL: Semiconducting Single-Walled Carbon Nanotubes in Solar Energy Harvesting


National Renewable Energy Laboratory, Golden, Colorado 

Semiconducting single-walled carbon nanotubes (s-SWCNTs) represent a tunable model one-dimensional system with exceptional optical and electronic properties. 

High-throughput separation and purification strategies have enabled the integration of s-SWCNTs into a number of optoelectronic applications, including photovoltaics (PVs). In this Perspective, we discuss the fundamental underpinnings of two model PV interfaces involving s-SWCNTs. 

We first discuss s-SWCNT–fullerene heterojunctions where exciton dissociation at the donor–acceptor interface drives solar energy conversion. Next, we discuss charge extraction at the interface between s-SWCNTs and a photoexcited perovskite active layer. 

In each case, the use of highly enriched semiconducting SWCNT samples enables fundamental insights into the thermodynamic and kinetic mechanisms that drive the efficient conversion of solar photons into long-lived separated charges. 

These model systems help to establish design rules for next-generation PV devices containing well-defined organic semiconductor layers and help to frame a number of important outstanding questions that can guide future studies.

Solar paint offers endless energy from water vapor: Breakthrough by RMIT Researchers


Credit: CC0 Public Domain


Researchers have developed a solar paint that can absorb water vapour and split it to generate hydrogen – the cleanest source of energy.

The paint contains a newly developed compound that acts like silica gel, which is used in sachets to absorb moisture and keep food, medicines and electronics fresh and dry.

But unlike silica gel, the new material, synthetic molybdenum-sulphide, also acts as a semi-conductor and catalyses the splitting of water atoms into hydrogen and oxygen.

Lead researcher Dr Torben Daeneke, from RMIT University in Melbourne, Australia, said: “We found that mixing the compound with titanium oxide particles leads to a sunlight-absorbing paint that produces hydrogen fuel from solar energy and moist air.

“Titanium oxide is the white pigment that is already commonly used in wall paint, meaning that the simple addition of the new material can convert a brick wall into energy harvesting and fuel production real estate.

“Our new development has a big range of advantages,” he said. “There’s no need for clean or filtered water to feed the system. Any place that has water vapour in the air, even remote areas far from water, can produce fuel.”

 

His colleague, Distinguished Professor Kourosh Kalantar-zadeh, said hydrogen was the cleanest source of energy and could be used in fuel cells as well as conventional combustion engines as an alternative to fossil fuels.

“This system can also be used in very dry but hot climates near oceans. The sea water is evaporated by the hot sunlight and the vapour can then be absorbed to produce fuel.

“This is an extraordinary concept – making fuel from the sun and water vapour in the air.”

 

More information: Torben Daeneke et al, Surface Water Dependent Properties of Sulfur-Rich Molybdenum Sulfides: 
Electrolyteless Gas Phase Water Splitting, ACS Nano (2017). DOI: 10.1021/acsnano.7b01632
Provided by: RMIT University

New “Instantly Rechargeable” Flow Battery could Dramatically Change EV Market


IN BRIEF

Purdue researchers have developed a flow battery that would allow electric cars to be recharged instantly at stations like conventional cars are. The technology is clean, safe, and cheap.

GO WITH THE FLOW

Purdue researchers have developed technology for an “instantly rechargeable” battery that is affordable, environmentally friendly, and safe. Currently, electric vehicles need charging ports in convenient locations to be viable, but this battery technology would allow drivers of hybrid and electric vehicles to charge up much like drivers of conventional cars refill quickly and easily at gas stations.

This breakthrough would not only speed the switch to electric vehicles by making them more convenient to drive, but also reduce the amount of new supportive infrastructure needed for electric cars dramatically. 

Purdue University professors John Cushman and Eric Nauman teamed up with doctoral student Mike Mueterthies to co-found Ifbattery LLC (IF-battery) for commercializing and developing the technology.
Image Credit: John Cushman/Purdue

The new model is a flow battery, which does not require an electric charging station to be recharged. Instead, all the users have to do is replace the battery’s fluid electrolytes — rather like filling up a tank. 

This battery’s fluids from used batteries, all clean, inexpensive, and safe, could be collected and recharged at any solar, wind, or hydroelectric plant. Electric cars using this technology would arrive at the refueling station, deposit spent fluids for recharging, and “fill up” like a traditional car might.

CLEANER, FASTER BATTERY TECHNOLOGY

This flow battery system is unique because, unlike other versions of the flow battery, this one lacks the membranes which are both costly and vulnerable to fouling. 

“Membrane fouling can limit the number of recharge cycles and is a known contributor to many battery fires,” Cushman said in a press release. “Ifbattery’s components are safe enough to be stored in a family home, are stable enough to meet major production and distribution requirements, and are cost effective.”

What’s My Range? Electric Vehicles (Click to View Full Infographic)

Transitioning existing infrastructure to accommodate cars using these batteries would be far simpler than designing and building a host of new charging stations — which is Tesla’s current strategy. Existing pumps could even be used for these battery chemicals, which are very safe.

“Electric and hybrid vehicle sales are growing worldwide and the popularity of companies like Tesla is incredible, but there continues to be strong challenges for industry and consumers of electric or hybrid cars,” Cushman said in the press release. “The biggest challenge for industry is to extend the life of a battery’s charge and the infrastructure needed to actually charge the vehicle.”

When can we expect to see these batteries in use? 
The biggest hurdle isn’t the materials, which are cheap and plentiful, but person power. The researchers still need more financing to complete research and development to put the batteries into mass production.

 To overcome this problem, they’re working to publicize the innovation in the hopes of drawing interest from investors.

References: Purdue, Purdue Research Park

EPPL Creates a low-cost system for splitting carbon dioxide – Turning Renewable Energy into Fuel


Ball-and-stick model of carbon dioxide. Credit: Wikipedia

Using Earth-abundant materials, EPFL scientists have built the first low-cost system for splitting CO2 into CO, a reaction necessary for turning renewable energy into fuel.
The future of clean energy depends on our ability to efficiently store energy from renewable sources and use it later. 


A popular way to do this is to electrolyze carbon dioxide to carbon monoxide, which is then mixed with hydrogen to produce liquid hydrocarbons like gasoline or kerosene that can be used as fuel. 

However, we currently lack efficient and Earth-abundant catalysts for the initial splitting of CO2 into CO and oxygen, which makes the move into renewable energy expensive and prohibitive. 

EPFL scientists have now developed an Earth-abundant catalyst based on copper-oxide nanowires modified with tin oxide. 
The system can split CO2 with an efficiency of 13.4%. 
The work is published in Nature Energy, and can help worldwide efforts to synthetically produce carbon-based fuels from CO2 and water.

The research was carried out by the lab of Michael Grätzel at EPFL. Grätzel is known worldwide for the invention of the first ever dye-sensitized solar cells (or “Grätzel cells”). 

The catalyst, developed by PhD student Marcel Schreier and postdoc Jingshan Luo, is made by depositing an atomic layer of tin oxide on copper oxide nanowires

By using such Earth-abundant materials, the design keeps the cost of the catalyst low while significantly increasing the yield of CO, as opposed to the other products that are generated from CO2 electrocatalysis.
The catalyst was integrated into a CO2 electrolysis system and linked to a triple-junction solar cell (GaInP/GaInAs/Ge) to make a CO2 electrolyzer. 

The system uses the catalyst as a bifunctional electrode that both reduces CO2 into CO and produces oxygen through what is known as the “oxygen evolution” reaction. The two products are separated with a bipolar membrane.

Using solar energy, the system was able to selectively convert CO2 to CO with an efficiency of 13.4%, and do so with a Faradaic efficiency up to 90%—this describes how efficiently electrical charge is transferred in a electrocatalysis system like the one developed here. “The work sets a new benchmark for solar-driven CO2 reduction,” says Luo.

“This is the first time that such a bi-functional and low-cost catalyst is demonstrated,” adds Schreier. “Very few catalysts—except expensive ones, like gold and silver—can selectively transform CO2 to CO in water, which is crucial for industrial applications.”

 
More information: Marcel Schreier, Florent Héroguel, Ludmilla Steier, Shahzada Ahmad, Jeremy S. Luterbacher, Matthew T. Mayer, Jingshan Luo, Michael Grätzel. Solar conversion of CO2 to CO using Earth-abundant electrocatalysts prepared by atomic layer modification of CuO. Nature Energy 2, 17087 (05 June 2017). nature.com/articles/doi:10.1038/nenergy.2017.87
Provided by: Ecole Polytechnique Federale de Lausanne

Los Alamos National Laboratory Studies Perovskites for Efficient Optoelectronics: Video


Los Alamos III 13785853973_eee18af4fc_b

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are gaining an extra degree of freedom in designing and fabricating efficient optoelectronic devices based on 2D layered hybrid perovskites. Industrial applications could include low cost solar cells, LEDs, laser diodes, detectors, and other nano-optoelectronic devices.

Los Alamos Lab lanl-logo-footerThe 2D, near-single-crystalline “Ruddlesden-Popper” thin films have an out-of-plane orientation so that uninhibited charge transport occurs through the perovskite layers in planar devices. The new research finds the existence of “layer-edge-states” at the edges of the perovskite layers which are key to both high efficiency of solar cells (greater than 12 percent) and high fluorescence efficiency (a few tens of percent) for LEDs. The spontaneous conversion of excitons (bound electron-hole pairs) to free carriers via these layer-edge states appears to be the key to the improvement of the photovoltaic and light-emitting thin film layered materials.

Watch the Video

See the news release here:
http://www.lanl.gov/discover/news-rel…

And the research paper in Science:
http://science.sciencemag.org/content…

What is up with the U.S. ‘Solar Industry’? Is There and Impending US Solar Energy Crash?


Solar Crash I solar-and-wind-energy

After nice stretch of sunny weather, the last few months have clouded over for big solar. Declining prices for photovoltaic cells are hurting panel manufacturers and stressing solar installation businesses.

This situation was in sharp relief this week in Tesla’s (TSLA Tesla Motors Inc TSLA 307.19 -0.38%) earnings, as its solar installation business, SolarCity, disclosed a big slowdown in builds. SolarCity commands 41 percent of the residential solar installation market, according to GTM. In its latest earnings, the firm revealed that it had installed 150 MW of panels in the first quarter, down nearly 39 percent y/y.

“Rather than prioritizing the growth of MW of solar deployed at any cost, we are selectively deploying projects that have higher margin and generate cash up front. Consequently, solar energy generation deployments in Q1 2017 declined year-over-year, but had better financial results,” said the earnings release.

The Curious Logic of the Solar Market

Industry body Solar Energy Industries Association (SEIA) reports that installations for the past year actually went up. In 2016, the U.S. saw 14.8GW solar capacity installed with a new installation taking place every 84 seconds.

There are companies that are doing well. First Solar (FSLR First Solar In FSLR 35.15 +1.77%) just reported strong earnings while Vivint Solar (VSLR Vivint Solar Inc VSLR 3.00+1.70%) announced is expansion into Rhode Island and is expected to announce financial results next week. However, the list of struggling companies in the sector is longer.

SunPower Corp. (SPWR) reported its sixth consecutive quarter of losses and laid off 25 percent of its workforce. Verengo Solar filed for bankruptcy last year, while Sungevity and Suninva did the same earlier this year.

But if solar energy is seeing such high demand, why are the companies feeling the heat?

The Price Is Not Right

The cost of the production and installation of solar panels has dropped dramatically and that is driving demand. According to SEIA, the cost to install solar capacity dropped 29 percent in the final quarter of 2016, compared to the same period last year. Over the past 10 years, installation costs have come down by nearly 60 percent.

There is more than one reason for price suppression in the solar industry.

“Driving the cost reductions were lower module and inverter prices, increased competition, lower installer and developer overheads, improved labor productivity, and optimized system configurations,” a National Renewable Energy Laboratory report states.

At home, the government tried to promote solar energy to consumers by making it affordable. One such initiative was the Solar Investment Tax Credit for residential and business solar installations, adopted in 2006 and extended in 2015.

In the international arena, U.S. solar companies blame declining panel prices on foreign imports, especially from countries like China, Mexico and Canada. Suniva recently implored President Trump for protectionist policies for the sector.

However, as the big ones struggled, someone made hay as the sun shone. According to GTM research’s U.S. Residential Solar Update 2017, many of the larger firms struggled to do well while smaller, local companies thrived.

More Insights: Investopedia http://www.investopedia.com/news/solar-industry-slowdown-catches-solarcity/#ixzz4gWsv7IYa

Perovskite Nanocrystals: Bright – Cheap – Stable: Discovery Illuminates Path to Highly Efficient Perovskite based Quantum Dots Photovoltaics


Perovskite Nanocrystals id46560

Digital picture of colloidal solution in toluene taken under UV-light (λ = 365 nm) and crystal structure of Formamidinium lead-halide perovskite. (Image: Friedrich-Alexander-Universität Erlangen-Nürnberg)

The team reports facile and rapid room temperature synthesis of cubic and platelet-like colloidal nanocrystals (NCs) of Formamidinium Lead Halide Perovskite FAPbX3 (X=Cl, Br, I, or mixed Cl/Br and Br/I) by ligand-assisted re-precipitation method (LARP).
The obtained NCs are 15-25 nm in size and exhibit a remarkably high photoluminescence quantum yield of up to 85% as well as colloidal and chemical stability.
The cubic and platelet-like NCs with their emission in the range of 415-740 nm, full width at half maximum of 20-44 nm and radiative lifetimes of 5-166 ns, allow precise band gap tuning by halide composition as well as by tailoring their dimensions.
Notably, for the first time they have demonstrate thermodynamically stable FAPbI3 NCs in the black cubic α-phase without transition to the yellow hexagonal δ-phase even after 150 days of storage. This is in strong contrast to polycrystalline films and single crystals which convert within hours.
This fact paves the way to highly efficient perovskite based quantum dots photovoltaics, which is underpinned by demonstrating FAPbI3 NCs based photodetector.
To highlight the potential of FAPbX3 NCs as a promising candidate for optoelectronic and luminescent applications, the scientists modified the surface with polyhedral oligomeric silsesquioxane. This modification protects the brightly luminescent FAPbX3 NCs from decomposition even after storage in water for more than 2 months.
Source: Friedrich-Alexander-Universität Erlangen-Nürnberg

 

%d bloggers like this: