Renewable Energy’s Climb to the Top: Five Major Types of Renewable Energy & Their Potential Impact


The Renewable Energy Age

Awareness around climate change is shaping the future of the global economy in several ways.

Governments are planning how to reduce emissions, investors are scrutinizing companies’ environmental performance, and consumers are becoming conscious of their carbon footprints. But no matter the stakeholder, energy generation and consumption from fossil fuels is one of the biggest contributors to emissions.

Therefore, renewable energy sources have never been more top-of-mind than they are today.

The Five Types of Renewable Energy

Renewable energy technologies harness the power of the sun, wind, and heat from the Earth’s core, and then transforms it into usable forms of energy like heat, electricity, and fuel.

The above infographic uses data from LazardEmber, and other sources to outline everything you need to know about the five key types of renewable energy:Energy Source% of 2021 Global Electricity GenerationAvg. levelized cost of energy per MWhHydro 💧 15.3%$64Wind 🌬 6.6%$38Solar ☀️ 3.7%$36Biomass 🌱 2.3%$114Geothermal ♨️ <1%$75

Editor’s note: We have excluded nuclear from the mix here, because although it is often defined as a sustainable energy source, it is not technically renewable (i.e. there are finite amounts of uranium).

Though often out of the limelight, hydro is the largest renewable electricity source, followed by wind and then solar.

Together, the five main sources combined for roughly 28% of global electricity generation in 2021, with wind and solar collectively breakingthe 10% share barrier for the first time.

The levelized cost of energy (LCOE) measures the lifetime costs of a new utility-scale plant divided by total electricity generation. The LCOE of solar and wind is almost one-fifth that of coal ($167/MWh), meaning that new solar and wind plants are now much cheaper to build and operate than new coal plants over a longer time horizon.

With this in mind, here’s a closer look at the five types of renewable energy and how they work.

1. Wind

Wind turbines use large rotor blades, mounted at tall heights on both land and sea, to capture the kinetic energy created by wind.

When wind flows across the blade, the air pressure on one side of the blade decreases, pulling it down with a force described as the lift. The difference in air pressure across the two sides causes the blades to rotate, spinning the rotor.

The rotor is connected to a turbine generator, which spins to convert the wind’s kinetic energy into electricity

2. Solar (Photovoltaic)

Solar technologies capture light or electromagnetic radiation from the sun and convert it into electricity.

Photovoltaic (PV) solar cells contain a semiconductor wafer, positive on one side and negative on the other, forming an electric field. When light hits the cell, the semiconductor absorbs the sunlight and transfers the energy in the form of electrons. These electrons are captured by the electric field in the form of an electric current.

A solar system’s ability to generate electricity depends on the semiconductor material, along with environmental conditions like heat, dirt, and shade.

3. Geothermal

Geothermal energy originates straight from the Earth’s core—heat from the core boils underground reservoirs of water, known as geothermal resources.

Geothermal plants typically use wells to pump hot water from geothermal resources and convert it into steam for a turbine generator. The extracted water and steam can then be reinjected, making it a renewable energy source.

4. Hydropower

Similar to wind turbines, hydropower plants channel the kinetic energy from flowing water into electricity by using a turbine generator.

Hydro plants are typically situated near bodies of water and use diversion structures like dams to change the flow of water. Power generation depends on the volume and change in elevation or head of the flowing water.

Greater water volumes and higher heads produce more energy and electricity, and vice versa.

5. Biomass

Humans have likely used energy from biomass or bioenergy for heat ever since our ancestors learned how to build fires.

Biomass—organic material like wood, dry leaves, and agricultural waste—is typically burned but considered renewable because it can be regrown or replenished. Burning biomass in a boiler produces high-pressure steam, which rotates a turbine generator to produce electricity.

Biomass is also converted into liquid or gaseous fuels for transportation. However, emissions from biomass vary with the material combusted and are often higher than other clean sources.

When Will Renewable Energy Take Over?

Despite the recent growth of renewables, fossil fuels still dominate the global energy mix.

Most countries are in the early stages of the energy transition, and only a handful get significant portions of their electricity from clean sources. However, the ongoing decade might see even more growth than recent record-breaking years.

The IEA forecasts that, by 2026, global renewable electricity capacity is set to grow by 60% from 2020 levels to over 4,800 gigawatts—equal to the current power output of fossil fuels and nuclear combined. So, regardless of when renewables will take over, it’s clear that the global energy economy will continue changing.

“California We Have Problem” – Electric Vehicles Need Access to Charging Equity – Who are the companies working to solve it?


Photo Courtesy of GM

The electric vehicle revolution is well underway, with California banning the sale of new gas cars by 2035 and automakers increasing their lineup of EV offerings. While electric has plenty of supporters in the automotive, power, and charging industries, the issue of charging equity, or fair and equal access to charging, looms large.

Currently, the EV market is dominated by luxury cars, with Tesla controlling three-fourths of the U.S. market. The cost of these cars is still well beyond the reach of many Americans. According to the U.S. Census, median household income was $70,784 in 2021, the most recent year for which data is available. The average price for an electric vehicle in July of 2022, was over $66,000, according to Kelley Blue Book (KBB).

As the EV market expands, however, equity will become a growing problem. In a report on the auto industry earlier this year, Morning Consult found that 83% of vehicle owners who make under $50,000 per year don’t have dedicated access to EV charging at home. In the same study, 39% of people in that income bracket expressed interest in buying an electric vehicle. Even now, EV owners who live in rentals must sometimes go to great lengths—including running electric cord extensions out their apartment windows—to get their cars charged.

The U.S. government has earmarked more than $7.5 billion to invest in charging infrastructure in the bill that President Joe Biden signed into law in February. Most of this investment is earmarked to put chargers along major highway locations, which won’t address the equity issue.

For some companies, equity is front and center as EV charging infrastructure is built out. Dianne Martinez is chair of East Bay Community Energy, a public electric power agency in Northern California. The EBCE uses the buying power of ratepayers to procure clean energy for customers, and it’s working on a project to install fast charging in municipal lots—not just along highway corridors.  

“When you look at EV charging infrastructure delivered through an equity lens, you have to consider how a community has been impacted negatively by the fossil fuel industry,” Martinez says. “Huge swaths of urban neighborhoods that suffer the ill health effects of pollution, from freeways, from ports and goods movement, from proximity to drilling and gas-powered plants. Instead of just looking to provide the same charging opportunities that we have to folks who already have more wealth, what if we found a metric that included and supported those who have been traditionally the last ones considered in the green revolution? What if we even put them first?”

A challenge for renters

EV owners Jason Mott of Venice, Calif., and Natacha Favry of Boston have gone to great lengths to charge their cars while living in rentals. Neither Mott nor Favry have charging access in their apartment or condo buildings, so they use a combination of public charging stations and, occasionally, power cords strung out of apartment windows. Charging an EV fully using a standard power cord can take as long as a week.

“There’s a lot of folks who don’t have parking,” Mott notes. “And you will see people with extension cords [running] over the sidewalk to a tree, so that when they can happen to grab that spot in front of their place, they can plug in their car. You see people putting down those little rubber cord protectors as you’re walking down the sidewalk, because people have their cord running out to their car.”

A longtime EV owner and environmentalist, Mott says he’s learned to lock his extension cord to his current vehicle, a new Rivian R1T, when he’s charging overnight since the heavy-duty extension cords he uses to charge regularly get stolen. Previously, Mott owned a Fiat 500e, and a Chevrolet Bolt. 

Favry has owned an EV and rented flats both overseas and on the outskirts of Boston, where she and her family moved in January for work. She says that her charging experience in her native home of France was far more nerve-racking than it is in the U.S. She drives a Tesla Model 3 and uses a nearby proprietary Tesla supercharger at a local mall to keep her vehicle running. She says she’s asked the landlord of her building to install a charger, but her request was denied. 

“There’s no plug in the garage,” Favry says. “And we were told by the owner that it’s not allowed.” Local and state incentives exist to help landlords install chargers in multifamily dwellings, but they don’t cover the costs of upgrading building power or wiring—and landlords don’t have a profit incentive to make the investment worthwhile. 

Rentals comprise about one-third of American housing units, according to the U.S. Census. They are typically located in dense urban areas, and a majority were built in the 1970s and 1980s, according to a report from 2020 by the Urban Institute. Upgrading them to handle the charge required to power EVs is a costly endeavor.

“The reality is that 90% of the multifamily housing in our territory is 50 years or older, and 47% of our community here in our territory live in that multifamily housing,” says Martinez of EBCE. “It’s very hard to incentivize landlords to make the necessary upgrades to support their tenants in buying EVs.”

Businesses tackle charging equity

The good news for consumers is that a number of startups, utilities, and auto manufacturers are working to solve the charging equity problem. 

Joseph Vellone is head of North America operations for Ev.energy, a London-based certified B Corporation whose software platform connects utilities, automakers, EV chargers, and drivers to streamline charging and make it more affordable and sustainable. About 80% of EV charging happens at home, which Vellone cites as a reason why charging equity must begin with increasing access at multifamily dwellings.

“Home charging access is very much a question of income level, and very quickly becomes a social equity issue,” he says. 

To solve this, Ev.energy recently launched a first-of-its-kind smart charging cable and app, which allows multifamily unit occupants to manage their own individual power usage and get credits or incentives for charging in off-peak hours. The cord, called Smartenit, enables EV drivers without dedicated home charging to optimize their usage and access, as well as save money on home charging.

California-based charging-station company ChargePoint is also thinking about how to get landlords to embrace the EV revolution. The company primarily operates charging stations at stores and offices, with some stations in multifamily units. CEO Pasquale Romano says landlords should think of EV charging the same way they do cable or internet—as a must-have for modern living.

“The landlord doesn’t really make any money on cable TV or internet,” he says. “EV charging is going to be like Wi-Fi. Access is going to be required.” 

Even large companies like General Motors, which is already heavily invested in the EV and electrification space, are working to tackle the charging equity question. The company has just announced a new business unit called GM Energy, which will offer everything from commercial battery and energy management solutions to individual home and multiunit solutions. By getting battery storage to multifamily units, landlords can then install EV chargers. 

These solutions will be built on GM’s Ultium battery technology and utilize integrated energy management that will include bidirectional charging, vehicle-to-home and vehicle-to-grid solutions, as well as stationary storage, solar products, software applications, cloud management tools, microgrid solutions, hydrogen fuel cells, and more. 

“The public charging infrastructure needs to grow, and grow rapidly, both on freeway infrastructure as well as multiunit dwellings and high-density living,” says Travis Hester, vice president of EV growth operations at GM. “We’re walking into this area where EVs are about to scale. They’re not there yet, but they’re about to, and this, we think, is an integral part of the electric vehicle ecosystem, but it’s also part of a non-vehicle ecosystem.”

On the utility and municipal side, the EBCE is focusing on working with state and local authorities to lease municipal parking lots and install chargers where, Martinez says, they are needed the most. “What we find to be the greatest bang for our buck is supporting DC [direct current] fast chargers in communities where there’s a high degree of multifamily housing,” Martinez says. She hopes that the EBCE’s efforts will help serve as a blueprint for other cities. 

“Low-income and disadvantaged communities [are] not the first-wave adopters of electric vehicles. They have their minds set on keeping their households together, getting to work,” Martinez says. “It’s time to focus on that second wave of people who are thinking about their next small-car purchase.”

Article Provided by A. Bassett: Fortune

“Turning Up the Heat” – Heat-resistant nanophotonic material could help turn heat into electricity: U of Michigan


Looking for Renewable Energy Sources “In the Small Things” Contributed By G. Cherry UOM
A new nanophotonic material has broken records for high-temperature stability, potentially ushering in more efficient electricity production and opening a variety of new possibilities in the control and conversion of thermal radiation.
Developed by a University of Michigan-led team of chemical and materials science engineers, the material controls the flow of infrared radiation and is stable at temperatures of 2,000 degrees Fahrenheit in air, a nearly twofold improvement over existing approaches.
The material uses a phenomenon called destructive interference to reflect infrared energy while letting shorter wavelengths pass through. This could potentially reduce heat waste in thermophotovoltaic cells, which convert heat into electricity but can’t use infrared energy, by reflecting infrared waves back into the system. The material could also be useful in optical photovoltaics, thermal imaging, environmental barrier coatings, sensing, camouflage from infrared surveillance devices and other applications.
“It’s similar to the way butterfly wings use wave interference to get their color. Butterfly wings are made up of colorless materials, but those materials are structured and patterned in a way that absorbs some wavelengths of white light but reflects others, producing the appearance of color,” said Andrej Lenert, U-M assistant professor of chemical engineering and co-corresponding author of the study in Nature Photonics (“Nanophotonic control of thermal emission under extreme conditions”).
“This material does something similar with infrared energy. The challenging part has been preventing breakdown of that color-producing structure under high heat.”
The approach is a major departure from the current state of engineered thermal emitters, which typically use foams and ceramics to limit infrared emissions. These materials are stable at high temperature but offer very limited control over which wavelengths they let through. Nanophotonics could offer much more tunable control, but past efforts haven’t been stable at high temperatures, often melting or oxidizing (the process that forms rust on iron). In addition, many nanophotonic materials only maintain their stability in a vacuum.
The new material works toward solving that problem, besting the previous record for heat resistance among air-stable photonic crystals by more than 900 degrees Fahrenheit in open air. In addition, the material is tunable, enabling researchers to tweak it to modify energy for a wide variety of potential applications. The research team predicted that applying this material to existing TPVs will increase efficiency by 10% and believes that much greater efficiency gains will be possible with further optimization.
The team developed the solution by combining chemical engineering and materials science expertise. Lenert’s chemical engineering team began by looking for materials that wouldn’t mix even if they started to melt.
“The goal is to find materials that will maintain nice, crisp layers that reflect light in the way we want, even when things get very hot,” Lenert said. “So we looked for materials with very different crystal structures, because they tend not to want to mix.”
They hypothesized that a combination of rock salt and perovskite, a mineral made of calcium and titanium oxides, fit the bill. Collaborators at U-M and the University of Virginia ran supercomputer simulations to confirm that the combination was a good bet.
John Heron, co-corresponding author of the study and an assistant professor of materials science and engineering at U-M, and Matthew Webb, a doctoral student in materials science and engineering, then carefully deposited the material using pulsed laser deposition to achieve precise layers with smooth interfaces. To make the material even more durable, they used oxides rather than conventional photonic materials; the oxides can be layered more precisely and are less likely to degrade under high heat.
“In previous work, traditional materials oxidized under high heat, losing their orderly layered structure,” Heron said. “But when you start out with oxides, that degradation has essentially already taken place. That produces increased stability in the final layered structure.”
After testing confirmed that the material worked as designed, Sean McSherry, first author of the study and a doctoral student in materials science and engineering at U-M, used computer modeling to identify hundreds of other combinations of materials that are also likely to work. While commercial implementation of the material tested in the study is likely years away, the core discovery opens up a new line of research into a variety of other nanophotonic materials that could help future researchers develop a range of new materials for a variety of applications.
Source: By Gabe Cherry, University of Michigan

Loop Energy Grows European Footprint with UK Expansion


VANCOUVER, BRITISH COLUMBIA and LONDON, UNITED KINGDOM – August 16, 2022 – Loop Energy™ (TSX: LPEN), a designer and manufacturer of hydrogen fuel cells for commercial mobility, will extend its presence in Europe later this month by expanding into the UK.

Loop Energy’s newest facility will be based in Grays, Essex, just east of the centre of London and next to a growing group of manufacturers helping decarbonize road transport, including current customer Tevva Motors, the hydrogen and electric truck OEM which is based in Tilbury.

Loop Energy has already started to recruit for the roles at the new facility, with employees assisting in the areas of production support, customer support and inventory.

The move is in reaction to growing customer demand for Loop Energy’s fuel cells in continental Europe and the UK, where diesel and petrol vehicles will start to be banned from 2030.

Loop Energy, which is listed on the Toronto Stock Exchange, and has raised $100 million CAD so far, is targeting the commercial vehicle sector, including buses and heavy goods vehicles (HGVs).

Diesel and petrol HGVs made up 18% of all road emissions in 2019, amounting to 19.5 metric tons carbon dioxide equivalent (MtCO2e), according to UK government data.

The market for zero-emissions commercial vehicles continues to evolve quickly and Loop Energy is well positioned to provide its technology and expertise to help OEMs and others decarbonize the transportation industry.

The announcement comes just a month after Loop Energy signed a multi-year fuel cell supply agreement with UK-based Tevva, which includes delivery commitments in excess of US$12 million through 2023.

Elsewhere, Loop Energy recently entered the Australian bus market as a supplier of fuel cell modules to Aluminium Revolutionary Chassis Company (ARCC) and the company has seen its order book grow substantially for its technology, with 52 purchase orders in the six months to the end of June, up from 13 over the same period last year.

Loop Energy President & CEO, Ben Nyland said:

“We are excited to open a new facility in the UK, where both the private and public sector is quickly growing around decarbonizing commercial vehicles. We were pleased to see the UK government’s recent commitment to the hydrogen sector, with the Business Secretary’s pledge to unlock £9bn investment needed to make hydrogen a cornerstone of the UK’s greener future,”

“Our investment commitment for the UK market is strategic to serve both UK and the rest of Europe. We expect to service a truck and bus market size upwards of US $15 Billion over the next 2 to 3 years, and our UK facility is established as the localized support center for these vehicles. Our investments to the UK will grow in lock-step with the growth of our local OEM customers, and our investment strategy will align with the timing and volume of our ecosystem partners as the industry ramps up supply to this market,”

“We also believe that the UK’s strong pool of manufacturing and design talent will help take Loop to the next level in its growth story.”

UK Business Minister Lord Callanan said:

“Hydrogen is likely to be fundamental to cutting emissions across some of our largest forms of commercial transport – from buses to heavy goods vehicles. As the world shifts to cleaner transport it is critical we embed a UK supply chain that can capture the economic opportunities of hydrogen technology,”

“Loop Energy’s expansion in Essex is fantastic news for the region, bringing green jobs and growth, while adding to the UK’s reputation as a leader in hydrogen and fuel cell research.”


About Loop Energy Inc.
Loop Energy is a leading designer and manufacturer of fuel cell systems targeted for the electrification of commercial vehicles, including light commercial vehicles, transit buses and medium and heavy-duty trucks. Loop’s products feature the company’s proprietary eFlow™ technology in the fuel cell stack’s bipolar plates. eFlow™ is designed to enable commercial customers to achieve performance maximization and cost minimization. Loop works with OEMs and major vehicle sub-system suppliers to enable the production of hydrogen fuel cell electric vehicles. For more information about how Loop is driving towards a zero-emissions future, visit www.loopenergy.com.
Forward Looking Warning

This press release contains forward-looking information within the meaning of applicable securities legislation, which reflect management’s current expectations and projections regarding future events. Particularly, statements regarding the Company’s expectations of future results, performance, achievements, prospects or opportunities or the markets in which we operate is forward-looking information, including without limitation the ability for Loop to service the truck and bus market and the market’s potential to reach upwards of US $15 billion.

Forward-looking information is based on a number of assumptions (including without limitation assumptions with respect to the potential growth of the bus and truck market and is subject to a number of risks and uncertainties, many of which are beyond the Company’s control and could cause actual results and events to vary materially from those that are disclosed, or implied, by such forward‐looking information. Such risks and uncertainties include, but are not limited to, the market reaching the TAM of upwards of US $15 billion, the realization of electrification of transportation, the elimination of diesel fuel and ongoing government support of such developments, the expected growth in demand for fuel cells for the commercial transportation market and the factors discussed under “Risk Factors” in the Company’s Annual Information Form dated March 23, 2022. Loop disclaims any obligation to update these forward-looking statements.

Source: Loop Energy Inc.

‘Quantum Dot’ Photovoltaic Window Project to receive Funding from U.S. Air force


UbiQD, a nanotechnology company, has revealed that its quantum dot solar technology will be used in a Small Business Innovation Research project with the US Air Force. The contract provides funding for two installations of more than 20 windows and additional scale-up and development funds for the product.

“We are seeing strong fiscal support for sustainability initiatives in the built environment right now,” said CEO Hunter McDaniel. “Our expanded contract with the US Air Force couldn’t come at a better time, right as we are scaling and ahead of the upgraded solar investment tax incentives.”

The company uses luminescent quantum dot tinting to concentrate solar energy and generate electricity while maintaining transparency. Quantum dots are photoluminescent particles so small that it would take 100,000 of them to span one fingernail, said UbiQD. The company said the technology has applications in localized DC microgrids and smart building solutions, including integration with sensors for climate and ambient controls.

Commercial buildings account for 36% of all US electricity consumption at a cost of more than $190 billion annually. Additionally, windows represent 30% of a commercial building’s heating and cooling energy, costing US building owners about $50 billion annually, according to the US Department of Energy.

UbiQD’s quantum-dot tinted window, called WENDOW, has recently been installed in a series of demonstrations projects, including a campus building at the Western Washington University, which the company said is the largest solar window installation to date. The WENDOW can be tinted, allowing for colorful designs. The university installation features vibrant yellow and orange windows. 

“This technology helps Western Washington University get closer to achieving our sustainability goals on campus,” said David Patrick, vice provost for research. “I was impressed by how easily the windows were installed and love how great they look. I’m hoping to see more projects like this on campus in the near future.” 

While the solar windows offer less efficiency than a conventional solar panel, they represent an alternative to blending photovoltaics with the build environment. Read more about solar in uncommon spaces.

UbiQD also builds translucent panels for greenhouses that are integrated with photoluminescent particles that are efficient at converting light into a preferable wavelength. The UbiQD “UbiGro” panels glow a spectrum of color that is optimized for plant growth, absorbing UV and blue light and emitting fruitful orange or red light.

In recent trials, UbiGro led to a 21% boost in flowering in geranium flowers, a 14 to 28% boost in winter strawberry growth, and an 8% yield increase in cannabis production. Increased crop yields are a welcome sign to any grower, and the two companies are set to take that benefit one step further, integrating productive solar PV in the greenhouse-topping modules.

From pv magazine USA **

Solar Cell Solutions to Industry’s Biggest Hurdle – Degradation – UCLA Samueli School of Engineering


Solar Solutions 031822

Materials scientists at the UCLA Samueli School of Engineering and colleagues from five other universities around the world have discovered the major reason why perovskite solar cells — which show great promise for improved energy-conversion efficiency — degrade in sunlight, causing their performance to suffer over time.  

The team successfully demonstrated a simple manufacturing adjustment to fix the cause of the degradation, clearing the biggest hurdle toward the widespread adoption of the thin-film solar cell technology. 

  

A research paper detailing the findings was published in Nature. The research is led by Yang Yang, a UCLA Samueli professor of materials science and engineering and holder of the Carol and Lawrence E. Tannas, Jr., Endowed Chair. The co-first authors are Shaun Tan and Tianyi Huang, both recent UCLA Samueli Ph.D. graduates whom Yang advised. 

Perovskites are a group of materials that have the same atomic arrangement or crystal structure as the mineral calcium titanium oxide. A subgroup of perovskites, metal halide perovskites, are of great research interest because of their promising application for energy-efficient, thin-film solar cells.  

 

Perovskite-based solar cells could be manufactured at much lower costs than their silicon-based counterparts, making solar energy technologies more accessible if the commonly known degradation under long exposure to illumination can be properly addressed. For further information see the IDTechEx report on Energy Harvesting Microwatt to Gigawatt: Opportunities 2020-2040. 

   

“Perovskite-based solar cells tend to deteriorate in sunlight much faster than their silicon counterparts, so their effectiveness in converting sunlight to electricity drops over the long term,” said Yang, who is also a member of the California NanoSystems Institute at UCLA. “However, our research shows why this happens and provides a simple fix. This represents a major breakthrough in bringing perovskite technology to commercialization and widespread adoption.” 

  

A common surface treatment used to remove solar cell defects involves depositing a layer of organic ions that makes the surface too negatively charged. The UCLA-led team found that while the treatment is intended to improve energy-conversion efficiency during the fabrication process of perovskite solar cells, it also unintentionally creates a more electron-rich surface — a potential trap for energy-carrying electrons. 

  

This condition destabilizes the orderly arrangement of atoms, and over time the perovskite solar cells become increasingly less efficient, ultimately making them unattractive for commercialization. 

  

Armed with this new discovery, the researchers found a way to address the cells’ long-term degradation by pairing the positively charged ions with negatively charged ones for surface treatments. The switch enables the surface to be more electron-neutral and stable, while preserving the integrity of the defect-prevention surface treatments. 

  

 The team tested the endurance of their solar cells in a lab under accelerated ageing conditions and 24/7 illumination designed to mimic sunlight. The cells managed to retain 87% of their original sunlight-to-electricity conversion performance for more than 2,000 hours. For comparison, solar cells manufactured without the fix dropped to 65% of their original performance after testing over the same time and conditions. 

  

“Our perovskite solar cells are among the most stable in efficiency reported to date,” Tan said. “At the same time, we’ve also laid new foundational knowledge, on which the community can further develop and refine our versatile technique to design even more stable perovskite solar cells.” 

  

Source and top image: University of California Los Angeles 

Leave a Comment 

 

ONE (Our Next Energy) Raises $65M to Accelerate Plans for First US factory – Tests New Prototype Battery in Tesla Model S – Achieves 752 Mile Range


Michigan-based energy storage technology company, Our Next Energy (ONE), has raised an additional $65 million in a new funding round led by BMW i Ventures. The new funding round will allow ONE to expand its operations and prepare for increasing demand and customer activity.

It also announced that it has signed contracts with four customers totaling more than 25 GWh of energy storage capacity over the next five years, equating to approximately 300,000 electric vehicle battery packs. This development allows ONE to begin the process of site selection for its first US-based battery factory.

Last year, the company demonstrated its proof-of-concept Gemini battery that powered an electric vehicle 752-mile (1,210-km) without recharging. In late December. It retrofitted a Tesla Model S with an experimental battery for real-world road testing across Michigan, where the test vehicle achieved 882 miles (1,419 km) at an average speed of 55 mph (88.5 km/h).

“This most recent investment accelerates the timeline for ONE’s Gemini battery technology following our recent 752-mile range demonstration. We are excited to have BMW i Ventures lead this round, and we are thrilled to welcome Coatue Management and their support as we raise the capital required to build a U.S. cell factory that supports Aries and Gemini,” said Mujeeb Ijaz, Founder, and CEO of ONE.

The ONE battery factory wants to accelerate electrification with safer, more powerful energy storage technologies that use more sustainable raw materials while creating a reliable, low-cost, and conflict-free supply chain.

ONE will begin evaluating site locations for its US-based battery factory, where production will start on its first product, a smaller battery cell called Aries, in late 2022. It expects to demonstrate a production prototype of the Gemini dual-chemistry battery in 2023.

ONE-Gemini-001-Tesla-range-record-1536x1040 (1)

Read About ONE (Our Next Energy)

Green hydrogen: the world’s largest project announced in Texas


green-hydrogen_060322The largest green hydrogen project in the world has just been unveiled! Named Hydrogen City, it will produce several million tons of green hydrogen every year…

With a capacity of 60 GW, Hydrogen City is a project led by the American startup Green Hydrogen International (GHI), which was founded in 2019 by renewable energy expert Brian Maxwell.

This mega-plant will be located in Duval County, a sparsely populated area located in southern Texas. It will be powered by wind and solar energy. Pipelines will transport the hydrogen produced to the port cities of Corpus Christi about 145 km away and Brownsville on the Mexican border.

The project will also have a cavern located inside the Salt Dome of Piedras Pintas that will allow on-site storage of the hydrogen produced. GHI claims that it will be possible to create about fifty similar caves in this area. This will allow Hydrogen City to store up to 6 TWh of energy.

Green Hydrogen International

Hydrogen City, Texas – World’s Largest Green Hydrogen Production and Storage Hub

A colossal production

Once finalized, Hydrogen City is expected to produce more than 2.5 million tons of green hydrogen per year, which currently corresponds to nearly 3.5% of global gray hydrogen production.

The first phase of 2 GW of the project will begin in 2026 with the creation of two storage caverns.

New method Using Aluminum Nanoparticles Creates Rapid, Efficient Hydrogen Generation from Water – UC Santa Cruz


Aluminum is a highly reactive metal that can strip oxygen from water molecules to generate hydrogen gas. Now, researchers at UC Santa Cruz have developed a new cost-effective and effective way to use aluminum’s reactivity to generate clean hydrogen fuel.

In a new study, a team of researchers shows that an easily produced composite of gallium and aluminum creates aluminum nanoparticles that react rapidly with water at room temperature to yield large amounts of hydrogen. According to researchers, the gallium was easily recovered for reuse after the reaction, which yields 90% of the hydrogen that could theoretically be produced from the reaction of all the aluminum in the composite.

“We don’t need any energy input, and it bubbles hydrogen-like crazy. I’ve never seen anything like it,” said UCSC Chemistry Professor Scott Oliver.

The reaction of aluminum and gallium with water works because gallium removes the passive aluminum oxide coating, allowing direct contact of aluminum with water.

Using scanning electron microscopy and x-ray diffraction, the researchers showed the formation of aluminum nanoparticles in a 3:1 gallium-aluminum composite, which they found to be the optimal ratio for hydrogen production. In this gallium-rich composite, the gallium serves both to dissolve the aluminum oxide coating and to separate the aluminum into nanoparticles.

“The gallium separates the nanoparticles and keeps them from aggregating into larger particles,” said Bakthan Singaram, corresponding authors of a paper on the new findings“People have struggled to make aluminum nanoparticles, and here we are producing them under normal atmospheric pressure and room temperature conditions.”

The researchers say the composite for their method can be made with readily available sources of aluminum, including used foil or cans. The composite can be easily stored for long periods by covering it with cyclohexane to protect it from moisture.

HF Z

While gallium is not abundant and is relatively expensive, it can be recovered and reused multiple times without losing effectiveness. However, it remains to be seen if this process can be scaled up to be practical for commercial hydrogen production.

Green Hydrogen Systems Receives Electrolysis Units from Logan Energy


Green Hydro uk-01

Green Hydrogen Systems, a leading provider of efficient pressurized alkaline electrolyzers used in on-site hydrogen production based on renewable electricity, has today signed a supply agreement with Edinburgh-based Logan Energy to deliver electrolysis equipment for a project in England.

The order includes the supply of two GHS HyProvide® A90 electrolysers with a combined capacity of 0.9 MW for the production of green hydrogen from renewable energy.

Manufactured by Green Hydrogen Systems and operated by Logan Energy, the electrolyzers will be deployed in a 40 ft container as a complete green hydrogen plant as part of plans to develop a regional hydrogen economy in Dorset, England.

Green Hydrogen Systems will be responsible for delivering the electrolyser units and will support the project with on-site maintenance and remote monitoring and support as part of a three-year service agreement.

Logan Energy is a leading hydrogen technology company with a proven track record for delivering affordable, market-ready projects and solutions in the low carbon, renewable energy, and hydrogen sectors.

When fully operational during 4Q22, the ordered electrolyzers have the capacity to provide approximately 389 kg/day of green hydrogen.

Aso Read About: