Grid Batteries Are Poised to Become Cheaper Than Natural-Gas Plants in Minnesota



A 60-acre solar farm in Camp Ripley, a National Guard base in Minnesota.

A new report suggests the economics of large-scale batteries are reaching an important inflection point.

When it comes to renewable energy, Minnesota isn’t typically a headline-grabber: in 2016 it got about 18 percent of its energy from wind, good enough to rank in the top 10 states. 
But it’s just 28th in terms of installed solar capacity, and its relatively small size means projects within its borders rarely garner the attention that giants like California and Texas routinely get.

A new report on the future of energy in the state should turn some heads (PDF). According to the University of Minnesota’s Energy Transition Lab, starting in 2019 and for the foreseeable future, the overall cost of building grid-scale storage there will be less than that of building natural-gas plants to meet future energy demand.


Minnesota currently gets about 21 percent of its energy from renewables. That’s not bad, but current plans also call for bringing an additional 1,800 megawatts of gas-fired “peaker” plants online by 2028 to meet growing demand. As the moniker suggests, these plants are meant to spin up quickly to meet daily peaks in energy demand—something renewables tend to be bad at because the wind doesn’t always blow and the sun doesn’t always shine.

Storing energy from renewables could solve that problem, but it’s traditionally been thought of as too expensive compared with other forms of energy.

The new report suggests otherwise. According to the analysis, bringing lithium-ion batteries online for grid storage would be a good way to stockpile energy for when it’s needed, and it would prove less costly than building and operating new natural-gas plants.

The finding comes at an interesting time. For one thing, the price of lithium-ion batteries continues to plummet, something that certainly has the auto industry’s attention. And grid-scale batteries, while still relatively rare, are popping up more and more these days. The Minnesota report, then, suggests that such projects may become increasingly common—and could be a powerful way to lower emissions without sending our power bills skyrocketing in the process.
(Read more: Minnesota Public Radio, “Texas and California Have Too Much Renewable Energy,” 

“The One and Only Texas Wind Boom,” “By 2040, More Than Half of All New Cars Could Be Electric”)

Solar paint offers endless energy from water vapor: Breakthrough by RMIT Researchers


Credit: CC0 Public Domain


Researchers have developed a solar paint that can absorb water vapour and split it to generate hydrogen – the cleanest source of energy.

The paint contains a newly developed compound that acts like silica gel, which is used in sachets to absorb moisture and keep food, medicines and electronics fresh and dry.

But unlike silica gel, the new material, synthetic molybdenum-sulphide, also acts as a semi-conductor and catalyses the splitting of water atoms into hydrogen and oxygen.

Lead researcher Dr Torben Daeneke, from RMIT University in Melbourne, Australia, said: “We found that mixing the compound with titanium oxide particles leads to a sunlight-absorbing paint that produces hydrogen fuel from solar energy and moist air.

“Titanium oxide is the white pigment that is already commonly used in wall paint, meaning that the simple addition of the new material can convert a brick wall into energy harvesting and fuel production real estate.

“Our new development has a big range of advantages,” he said. “There’s no need for clean or filtered water to feed the system. Any place that has water vapour in the air, even remote areas far from water, can produce fuel.”

 

His colleague, Distinguished Professor Kourosh Kalantar-zadeh, said hydrogen was the cleanest source of energy and could be used in fuel cells as well as conventional combustion engines as an alternative to fossil fuels.

“This system can also be used in very dry but hot climates near oceans. The sea water is evaporated by the hot sunlight and the vapour can then be absorbed to produce fuel.

“This is an extraordinary concept – making fuel from the sun and water vapour in the air.”

 

More information: Torben Daeneke et al, Surface Water Dependent Properties of Sulfur-Rich Molybdenum Sulfides: 
Electrolyteless Gas Phase Water Splitting, ACS Nano (2017). DOI: 10.1021/acsnano.7b01632
Provided by: RMIT University

What Do You Think About Nanotechnology? Tell Us with Our Quick Survey – Pleeez!


slate-survey-160928_ft_nano-survey-jpg-crop-promo-xlarge2

Slate Nanotechnology Survey

Slate has recently published an online survey “Tell Us What You Think About Nanotechnology” (Follow the link above to take that survey).

Which … got us to thinking. “We” (Team GNT) should have our very own Survey on Nanotechnology with more focus on youOUR READERS!

entrepren-climbing-mtn-090116-aaeaaqaaaaaaaairaaaajdm5ode1yznlltu4njutngmzyy1hztm3ltgznmnimtvjzwfioaWith over 5 Years of publication, 132,000+ hits on any average reporting cycle, representing Followers in over 50 Countries, and 10,000 plus Followers across Social Media … we are guessing you just might have some very “illuminating” and valuable thoughts, visions and opinions to share with us!

 

So … we are asking you to share your comments with us by answering a few questions and also … leaving us any ‘Open Comments’ you would care to leave. We will gather your responses, share the most interesting ones and let you know what others are “thinking and saying” about Nanotechnology. 

fourth-ir-051416-aaeaaqaaaaaaaatfaaaajgezy2e0nwvilwu4ogitndzkzi1hymzilta1yty1nzczngqzna

Questions Like

1. What Area or Application of Nanotechnology do you find most interesting? (Examples: Bio-Med, Cancer Treatment-Diagnosis, Electronics, Energy – Energy Storage, Materials, Sensors, Quantum Computing, etc.) Don’t let our suggestions limit your responses!

2. Which Areas or Applications do you think are most promising right now? In the future? that will dramatically change the World we live in?

3. Are you worried about the ‘safety’ of nanomaterials? On a scale of 1 to 10, 10 being MOST WORRIED. Why?

4. Which Nanotechnology Application or Area of Research interests you the most?

We have provided a ‘Response/ Contact Form’ for you below OR … you can Leave Us a Comment in the Comments Section. We are really looking forward to hearing from ALL of you!

Thanks! We are expecting … “Great Things from Small Things”!

gnt-new-thumbnail-2016

Remember to ‘Follow Us on Twitter’ @Genesisnanotech

 

(Cadmium) Telluride Promising Alternative to Silicon: Crystalline fault lines provide pathway for solar cell current (w/video) [U Conn and Brookhaven NL]


telluride-id44636

** From Brookhaven National Laboratory & Nanowerk  

A team of scientists studying solar cells made from cadmium telluride, a promising alternative to silicon, has discovered that microscopic “fault lines” within and between crystals of the material act as conductive pathways that ease the flow of electric current. This research—conducted at the University of Connecticut and the U.S. Department of Energy’s Brookhaven National Laboratory, and described in the journal Nature Energy (“Charge transport in CdTe solar cells revealed by conductive tomographic atomic force microscopy”), may help explain how a common processing technique turns cadmium telluride into an excellent material for transforming sunlight into electricity, and suggests a strategy for engineering more efficient solar devices that surpass the performance of silicon.

“If you look at semiconductors like silicon, defects in the crystals are usually bad,” said co-author Eric Stach, a physicist at Brookhaven Lab’s Center for Functional Nanomaterials (CFN). As Stach explained, misplaced atoms or slight shifts in their alignment often act as traps for the particles that carry electric current—negatively charged electrons or the positively charged “holes” left behind when electrons are knocked loose by photons of sunlight, making them more mobile. The idea behind solar cells is to separate the positive and negative charges and run them through a circuit so the current can be used to power houses, satellites, or even cities. Defects interrupt this flow of charges and keep the solar cell from being as efficient as it could be.
But in the case of cadmium telluride, the scientists found that boundaries between individual crystals and “planar defects”—fault-like misalignments in the arrangement of atoms—create pathways for conductivity, not traps.
CTAFM Image
These CTAFM images show a cadmium telluride solar cell from the top (above) and side profile (bottom) with bright spots representing areas of higher electron conductivity. The images reveal that the conductive pathways coincide with crystal grain boundaries. (Image: University of Connecticut)
 

Members of Bryan Huey’s group at the Institute of Materials Science at the University of Connecticut were the first to notice the surprising connection. In an effort to understand the effects of a chloride solution treatment that greatly enhances cadmium telluride’s conductive properties, Justin Luria and Yasemin Kutes studied solar cells before and after treatment. But they did so in a unique way.

Several groups around the world had looked at the surfaces of such solar cells before, often with a tool known as a conducting atomic force microscope. The microscope has a fine probe many times sharper than the head of a pin that scans across the material’s surface to track the topographic features—the hills and valleys of the surface structure—while simultaneously measuring location-specific conductivity. Scientists use this technique to explore how the surface features relate to solar cell performance at the nanoscale.
But no one had devised a way to make measurements beneath the surface, the most important part of the solar cell. This is where the UConn team made an important breakthrough. They used an approach developed and perfected by Kutes and Luria over the last two years to acquire hundreds of sequential images, each time intentionally removing a nanoscale layer of the material, so they could scan through the entire thickness of the sample. They then used these layer-by-layer images to build up a three-dimensional, high-resolution ‘tomographic’ map of the solar cell—somewhat like a computed tomography (CT) brain scan.
Assembling the layer-by-layer CTAFM scans into a side-profile video file reveals the relationship between conductivity and planar defects throughout the entire thickness of the cadmium telluride crystal, including how the defects appear to line up to form continuous pathways of conductivity. (Video: University of Connecticut)

 

“Everyone using these microscopes basically takes pictures of the ‘ground,’ and interprets what is beneath,” Huey said. “It may look like there’s a cave, or a rock shelf, or a building foundation down there. But we can only really know once we carefully dig, like archeologists, keeping track of exactly what we find every step of the way—though, of course, at a much, much smaller scale.”
The resulting CT-AFM maps uniquely revealed current flowing most freely along the crystal boundaries and fault-like defects in the cadmium telluride solar cells. The samples that had been treated with the chloride solution had more defects overall, a higher density of these defects, and what appeared to be a high degree of connectivity among them, while the untreated samples had few defects, no evidence of connectivity, and much lower conductivity.
Huey’s team suspected that the defects were so-called planar defects, usually caused by shifts in atomic alignments or stacking arrangements within the crystals. But the CTAFM system is not designed to reveal such atomic-scale structural details. To get that information, the UConn team turned to Stach, head of the electron microscopy group at the CFN, a DOE Office of Science User Facility.
“Having previously shared ideas with Eric, it was a natural extension of our discovery to work with his group,” Huey said.
Said Stach, “This is the exact type of problem the CFN is set up to handle, providing expertise and equipment that university researchers may not have to help drive science from hypothesis to discovery.”
CFN staff physicist Lihua Zhang used a transmission electron microscope (TEM) and UConn’s results as a guide to meticulously study how atomic scale features of chloride-treated cadmium telluride related to the conductivity maps. The TEM images revealed the atomic structure of the defects, confirming that they were due to specific changes in the stacking sequence of atoms in the material. The images also showed clearly that these planar defects connected different grains in the crystal, leading to high-conductivity pathways for the movement of electrons and holes.
“When we looked at the regions with good conductivity, the planar defects linked from one crystal grain to another, forming continuous pathways of conductance through the entire thickness of the material,” said Zhang. “So the regions that had the best conductivity were the ones that had a high degree of connectivity among these defects.”
stacking pattern of individual atoms
These transmission electron microscopy images taken at Brookhaven’s CFN reveals how the stacking pattern of individual atoms (bright spots) shifts. The images confirmed that the bright spots of high conductivity observed with CTAFM imaging at UConn occurred at the interfaces between two different atomic alignments (left) and that these “planar defects” were continuous between individual crystals, creating pathways of conductivity (right). The labels WZ and ZB refer to the two atomic stacking sequences “wurtzite” and “zinc blende,” which are the two types of crystal structures cadmium telluride can form. (click on image to enlarge)
 

The authors say it’s possible that the chloride treatment helps to create the connectivity, not just more defects, but that more research is needed to definitively determine the most significant effects of the chloride solution treatment.

In any case, Stach says that combining the CTAFM technique and electron microscopy, yields a “clear winner” in the search for more efficient, cost-competitive alternatives to silicon solar cells, which have nearly reached their limit for efficiency.
“There is already a billion-dollar-a-year industry making cadmium telluride solar cells, and lots of work exploring other alternatives to silicon. But all of these alternatives, because of their crystal structure, have a higher tendency to form defects,” he said. “This work gives us a systematic method we can use to understand if the defects are good or bad in terms of conductivity. It can also be used to explore the effects of different processing methods or chemicals to control how defects form. In the case of cadmium telluride, we may want to find ways to make more of these defects, or look for other materials in which defects improve performance.”
Source: Brookhaven National Laboratory

 

From start-up to scale-up: what it takes to become a successful entrepreneur — World Economic Forum | Agenda


entrepren-climbing-mtn-090116-aaeaaqaaaaaaaairaaaajdm5ode1yznlltu4njutngmzyy1hztm3ltgznmnimtvjzwfioa

 

Ellen Olafsen of the World Bank on how to turn start-ups into successful firms.

via From start-up to scale-up: what it takes to become a successful entrepreneur — World Economic Forum | Agenda

What do you think of when you hear the term “entrepreneur”? What about “growth entrepreneur”? Do Elon Musk and Tesla come to mind? Travis Kalanick and Garrett Camp of Uber? Jack Ma of Alibaba?

Forget for a moment the immense scale that these few, highly successful tech giants have achieved. Such cases will always be outliers. Instead, imagine the potential collective impact of companies in developing countries growing from a $50,000 to a $1 million company, or from a $1 million to a $10 million company. Imagine how this could help generate dynamism in the local economy and ultimately increase competitiveness, incomes and jobs.

 

fourth-ir-051416-aaeaaqaaaaaaaatfaaaajgezy2e0nwvilwu4ogitndzkzi1hymzilta1yty1nzczngqznaAlso Read: Nanotechnology and the ‘Fourth Industrial Revolution’ ~ Solving the World’s Biggest Challenges with the ‘Smallest of Things’

 

** Please leave us your Comments, we appreciate your Input and Feedback! **

University of Waterloo: Opening Access to Energy: 4 Interconnected Research Areas Helping to Power a Global Revolution (with Videos)


E5_UWaterlooTHE WATERLOO RESEARCHERS HELPING POWER A GLOBAL REVOLUTION

There is no magic bullet, no single solution that will address the massive global energy inequities that leave billions of people with little or no access to electricity. Instead, change will come from connecting the ideas, innovations and experience of some of the world’s top minds.

Affordable Energy for Humanity (AE4H) focuses on four broad areas of research with the greatest opportunity to create meaningful, sustainable energy change.

RESEARCH AREA 1

Generation, Devices And Advanced Materials

Promise and potential: Next-generation batteries

Watch the Video

Next-generation batteries are an emerging market with unlimited potential — and Waterloo chemistry professor Linda Nazar is eager to see her team’s extraordinary labours pay off.

Nazar, who was recently named an Officer of the Order of Canada for her advancements in battery systems and clean-energy storage, is contributing to breakthroughs in the design of rechargeable batteries for grid storage, electric vehicles and other clean-energy technology.

“Our research team and others at the University of Waterloo are working on a lot of different battery technologies where we’re starting to see the hard efforts that we’ve put in over the last decade really paying off in terms of making batteries that have higher energy density, that are safer and also have longer cycle life,” says Nazar, who along with colleagues at the Waterloo Institute for Nanotechnology, Zhongwei Chen and Michel Pope, are planning to launch an Electrochemical Energy Research Centre at the University.

Their work could have huge ramifications for energy-poor developing countries.

“In impoverished countries where there’s an abundance of sunshine, it’s critical to be able to store renewable energy in affordable energy storage systems to allow for load leveling and also for storage at night or even off-season storage,” Nazar says.

“That allows communities that are limited in their electrical resources to have a cheap, abundant source of energy to power activity in the evening and when the sun isn’t shining.”

RESEARCH AREA 2

Information And Communication Technologies
For Energy System Convergence

Reducing the carbon footprint, improving energy efficiency

Watch the Video

Energy poverty is one of the biggest challenges facing humanity, according to Waterloo computer science professor Srinivasan Keshav.

“More than one billion around the world don’t have access to good forms of energy,” Keshav says. “The only energy they have is their own human labour, so if they want to dig a trench they have to do it by hand. How much firewood they can carry determines what they’re going to cook. That’s really what it comes down to.”

Keshav and his research team are focusing on greener, more efficient sources of energy that will ultimately help address these inequities.

“The work I’m doing in this lab is focused on two things,” Keshav explains. “One is to reduce the carbon footprint. The other is to improve the energy efficiency of systems that generate, transmit and consume energy — everything from power plants to the solar panels on your roof.

“Solar efficiency is going up and the costs are coming down at the same rate as costs have gone down for electronics. The same thing is happening with lighting. The technology is now coming into place which allows us to put a panel on the roof, [add] storage and efficient lighting — and you have the ability to transform lives.

“At some level the changes come not just from technology but from policy, not from research but from imagination. We make it possible for somebody to imagine a different future — and that perhaps is the biggest thing we do.”

A smart grid for smarter energy

Watch the Video

Just as smartphone technology has come to dominate the way we communicate, the future of 21st-century electricity may well belong to the smart grid.

The smart grid is an intelligent infrastructure that uses information technology — sensors, communications, automation and computers — to improve the way electricity is delivered. It also allows for renewables such as wind and solar power to be part of the equation.

“A lot of people do not have access to the electrical grid the way we do,” says Catherine Rosenberg, a professor of engineering and Canada Research Chair in the Future Internet at Waterloo. “There are two types of technologies that can have a major impact on the smart grid. The first technology is renewables — solar, wind. The second is energy storage.”

Rosenberg, who is collaborating with computer science professor Srinivasan Keshav, says that having access to renewable energy — solar panels, for example — and some storage would allow communities without grid access or with poor grid access to be self-sufficient.

Just as importantly, access must be affordable, and Rosenberg is optimistic that storage will become cost-efficient in the near future.

“Because there are more and more needs for energy storage— for example for electric vehicles — the price of energy storage is going to decrease,” she says. “We are in the business of designing systems by integrating many technologies and showing how those systems should be operated in a cost-efficient manner.”

fourth-ir-051416-aaeaaqaaaaaaaatfaaaajgezy2e0nwvilwu4ogitndzkzi1hymzilta1yty1nzczngqznaAlso Read: Nanotechnology and the ‘Fourth Industrial Revolution’: Solving Our Biggest Challenges with the Smallest of Things

RESEARCH AREA 3

Environmental and Human Dimensions Of Energy Transitions

Energy and sustainability: Lessons from the North

Watch the Video

Energy poverty is not confined to the developing world. There are nearly 300 remote communities across northern Canada — about 170 of them First Nations — and most rely on diesel generators with fuel flown in or trucked in via ice road.

It’s not only environmentally damaging, it’s also incredibly expensive — up to $1 per kilowatt hour — so building capacity to get energy from renewable sources is the preferred option. Renewable Energy Pix

“In our First Nations communities, we see both huge need and huge opportunity,” says Paul Parker, a professor in the Faculty of Environment. “We are here to work with communities to achieve what they want. The first question is, ‘What future do you want?’ And then it’s, ‘How do we design, evaluate and implement it?’

“The University of Waterloo is probably most famous for its technical capacity, but we also realize that technical capacity needs to have social context. We need the social scientists to work with our engineers and technicians in the North. Our students are fantastic. We’ve trained economic developers for communities across the North where they look and they see an opportunity and they say, ‘Let’s take those solutions to as many communities as possible,’ ” Parker says.

“We already have the technology to make these things happen, so [it’s about] the implementation. And what we are learning in Canada has [global implications] in other parts of the world that experience energy poverty.” 

wef-end-of-an-era-jm0hpnwopjfmrubpbirem_j4cbxunbwppi2pn_zjn1aAlso Read: WEF: Are We at the End of an Economic Era? Smart Decisions for a Changing World: What’s Next

RESEARCH AREA 4

Mirogrids For Dispersed Power

Microgrids and the power of decentralization

Watch the Video

As flaws in centralized power grids become apparent — their vulnerability to disruption and dependence on planet-warming fossil fuels — the time has come for renewable energy microgrids to take centre stage.

“Here at Waterloo we have a lot of expertise to provide in microgrids, not only to Canada but to the world, from simulation and modelling to hardware and social interactions withcommunities,” says Claudio Cañizares, a professor of electrical and computer engineering at Waterloo.

Scientists are trying to transform microgrids — which can operate independently or in conjunction with main power grids — into renewable energy-based systems by introducing solar and wind power. Challenges being addressed by research at Waterloo include making the systems economically feasible, and learning to manage the variability inherent to renewable energy sources like wind and solar. Cañizares and his fellow researchers are doing both theoretical work — simulation, modeling, optimization — and applied science so they can understand how the controls work in different environments.

“One of the main motivations for our work here is to try to improve or facilitate the introduction of these renewable sources and to move away from diesel in the remote, mostly indigenous, communities in Canada,” Cañizares says.

Ultimately, Cañizares believes the impact of affordable energy access will change lives.

His research partners in northern Chile, for example, are seeing young people who had left their communities return once affordable energy sources are introduced, and business opportunities cropping up that didn’t exist before.

“We have come a long way,” he says. “We believe Waterloo is particularly well-positioned … people are paying attention.”


Video: Matt Regehr and Light Imaging


Research and responsibility — what’s the right balance? And are we doing enough? Share your thoughts with us in our “Comments” section of our Blog.

GNT Thumbnail Alt 3 2015-page-001

Genesis Nanotechnology, Inc.  

Facebook 042616.jpgFollow and ‘Like’ Us on Facebook: https://www.facebook.com/GenesisNanoTech/

 

Twitter Icon 042616.jpgFollow Us On Twitter: https://twitter.com/GenesisNanoTech

 

LinkedIn IconA 042316.jpg“Join the Conversation” on Our LinkedIn ‘Nano Network’ Group: https://www.linkedin.com/groups/3935461

 

Website Icon 042616Connect To Our Website: http://genesisnanotech.com/

 

YouTube small 050516Watch Our YouTube Video: https://youtu.be/Y1618kgUSXI

 

Blog Pic cropped-microbots-waterFollow Our ‘Top Ten’ Blog: “Great Things from Small Things”: https://genesisnanotech.wordpress.com/

 

 

What Happens When You Change the World and No One Notices?


orville-wright-i-9

Wilbur and Orville Wright conquered flight on December 17th, 1903. Few inventions were as transformational over the next century. It took four days to travel from New York to Los Angeles in 1900, by train. By the 1930s it could be done in 17 hours, by air. By 1950, six hours.

Also Read:  Supersonic jet will travel from New York to London in 3 hours at half the price of the Concorde

But here’s the most amazing part of the story: Hardly anyone paid attention at the time.

Unlike, say, mapping the genome, a lay person could instantly grasp the marvel of human flight. A guy sat in a box and turned into a bird.

But days, months, even years after the Wright’s first flight, hardly anyone noticed.

Here’s the front page of The New York Times the day after the first flight. Not a word about the Wrights:

1

 

 

 

 

 

 

 

Two days after. Again, nothing:

2

 

 

 

 

 

 

 

Three days later, when the Wrights were on their fourth flight, one of which lasted nearly a minute. Nothing:

3

This goes on. Four days. Five days, six days, six weeks, six months … no mention of the men who conquered the sky for the first time in human history.

The Library of Congress, where I found these papers, reveals two amazing details. One, the first passing mention of the Wrights in The New York Times came in 1906, three years after their first flight. Two, in 1904, the Times asked a hot-air-balloon tycoon whether humans may fly someday. He answered:

Count

That was a year after the Wright’s first flight.

In his 1952 book on American history, Frederick Lewis Allen wrote:

Several years went by before the public grasped what the Wrights were doing; people were so convinced that flying was impossible that most of those who saw them flying about Dayton [Ohio] in 1905 decided that what they had seen must be some trick without significance – somewhat as most people today would regard a demonstration of, say, telepathy. It was not until May, 1908 – nearly four and a half years after the Wright’s first flight – that experienced reporters were sent to observe what they were doing, experienced editors gave full credence to these reporters’ excited dispatches, and the world at last woke up to the fact that human flight had been successfully accomplished.

 

So .. What’s the Point?

The Wrights’ story shows something more common than we realize: There’s often a big gap between changing the world and convincing people that you changed the world.

Jeff Bezos once said:

“Invention requires a long-term willingness to be misunderstood. You do something that you genuinely believe in, that you have conviction about, but for a long period of time, well-meaning people may criticize that effort … if you really have conviction that they’re not right, you need to have that long-term willingness to be misunderstood. It’s a key part of invention.”

It’s such an important message. Things that are instantly adored are usually just slight variations over existing products. We love them because they’re familiar. The most innovative products – the ones that truly change the world – are almost never understood at first, even by really smart people.nano-and-four-ways-051416-aaeaaqaaaaaaaas7aaaajdgyy2flngq1lwuzy2etndqzns04odkwltrmm2mxnwi4ymi1ma

It happened with the telephone. Alexander Graham Bell tried to sell his invention to Western Union, which quickly replied:

This `telephone’ has too many shortcomings to be seriously considered as a practical form of communication. The device is inherently of no value to us. What use could this company make of an electrical toy?

It happened with the car. Twenty years before Henry Ford convinced the world he was onto something, Congress published a memo, warning:

Horseless carriages propelled by gasoline might attain speeds of 14 or even 20 miles per hour. The menace to our people of vehicles of this type hurtling through our streets and along our roads and poisoning the atmosphere would call for prompt legislative action. The cost of producing gasoline is far beyond the financial capacity of private industry… In addition the development of this new power may displace the use of horses, which would wreck our agriculture.

nano-and-fourth-ir-051416-aaeaaqaaaaaaaatfaaaajgezy2e0nwvilwu4ogitndzkzi1hymzilta1yty1nzczngqzna

 

Also read: How Nanotechnology and the ‘Fourth Industrial Revolution’ Will Change Everything

 

It happened with the index fund – easily the most important financial innovation of the last half-century. John Bogle launched the first index fund in 1975. No one paid much attention to for next two decades. It started to gain popularity, an inch at a time, in the 1990s. Then, three decades after inception, the idea spread like wildfire.

VG

It’s happening now, too. 3D printing has taken off over the last five years. But it’s hardly a new invention. Check out this interview with the CEO of 3D Systems in … 1989. 3D printing, like so many innovations, had a multi-decade lag between invention and adoption. Solar is similar. Photovoltaics were discovered in 1876. They were commercially available by the 1950s, and Jimmy Carter put solar panels on the White House in the 1970s. But they didn’t take off – really take off – until the late 2000s.

Big breakthroughs typically follow a seven-step path:

  • First, no one’s heard of you.
  • Then they’ve heard of you but think you’re nuts.
  • Then they understand your product, but think it has no opportunity.
  • Then they view your product as a toy.
  • Then they see it as an amazing toy.
  • Then they start using it.
  • Then they couldn’t imagine life without it.

This process can take decades. It rarely takes less than several years.

Three points arise from this.

1. It takes a brilliance to change the world. It takes something else entirely to wait patiently for people to notice. “Zen-like patience” isn’t a typical trait associated with entrepreneurs. But it’s often required, especially for the most transformative products.

2. When innovation is measured generationally, results shouldn’t be measured quarterly. History is the true story of how long, messy, and chaotic change can be. The stock market is the hilarious story of millions of people expecting current companies to perform quickly, orderly, and cleanly. The gap between reality and expectations explains untold frustration.

3. Invention is only the first step of innovation. Stanford professor Paul Saffo put it this way:

It takes 30 years for a new idea to seep into the culture. Technology does not drive change. It is our collective response to the options and opportunities presented by technology that drives change.

Re-Posted from MORGAN HOUSEL

GNT Thumbnail Alt 3 2015-page-001

Genesis Nanotechnology, Inc. 

Facebook 042616.jpgFollow and ‘Like’ Us on Facebook: https://www.facebook.com/GenesisNanoTech/

 

Twitter Icon 042616.jpgFollow Us On Twitter: https://twitter.com/GenesisNanoTech

 

LinkedIn IconA 042316.jpg“Join the Conversation” on Our LinkedIn ‘Nano Network’ Group: https://www.linkedin.com/groups/3935461

 

Website Icon 042616Connect To Our Website: http://genesisnanotech.com/

 

YouTube small 050516Watch Our YouTube Video: https://youtu.be/Y1618kgUSXI

 

Blog Pic cropped-microbots-waterFollow Our ‘Top Ten’ Blog: “Great Things from Small Things”: https://genesisnanotech.wordpress.com/

 

U of Alberta awarded $75 million for energy research – Including ‘Low-Cost’ Solar on Par with Hydrocarbons


 

Government of Canada investment establishes the Future Energy Systems Research Institute.

The University of Alberta will launch a new institute aimed at reducing the environmental footprint of fossil fuels and developing new low-carbon energy systems, thanks to a $75-million federal grant.

The U of A’s Future Energy Systems Research Institute will bring together researchers across disciplines to improve energy systems related to unconventional hydrocarbon resources—tailings ponds, greenhouse emissions, water use, land reclamation, and safe, efficient energy transportation.

The institute will also build on U of A strengths in advanced materials, smart electrical grids and bioprocessing to help move Canada to a low-carbon energy economy.

The $75-million federal investment is part of the Canada First Excellence Research Fund to strategically invest in areas where post-secondary research institutions have a competitive advantage and can become global leaders.

“I thank the Government of Canada’s historic investment in the Canada First Excellence Research Fund. This funding marks a major step forward for Canada and our collective ability to provide global leadership in response to a diverse set of grand challenges,” said U of A President David Turpin.UniversityOfAlberta_UglyLogo_1-796768

Turpin said the Future Energy Systems Research Institute pushes Canadian energy and environment research “onto a new level.”

“We will build on our broad historic strengths in these areas and spearhead provincial, national and international research partnerships and projects that envision and deliver solutions to the world’s most urgent energy challenges—reducing the environmental footprint of today’s energy system and making the transition to a cleaner, safer and more abundant low-carbon energy future.”

Kirsty Duncan, Canada’s minister of science, unveiled the latest round of investments Sept. 6 at the University of Waterloo. In total, the Government of Canada invested $900 million in 13 Canadian research universities.

“The Canada First Research Excellence Fund will equip Canada to respond to some of the most pressing issues it will face in the future: brain health, sustainable food and water supplies, environmental concerns, future energy supplies. The research supported through this fund will make the country stronger,” Duncan said.

Low-cost solar on par with hydrocarbons

Jillian Buriak’s work toward low-cost solar cells is the kind of innovative energy research that will benefit from $75 million in new federal funding announced today.

U of A chemistry professor Jillian Buriak represents the type of research innovator who could apply for funding through the new institute. Buriak is developing low-cost solar cells, including a version that uses a spray-coating technology.

Buriak said some estimates predict energy use by humans will double by 2050 and triple by 2100. The sun is the largest source of power we can access, and the cost of solar power is now on par with hydrocarbons, making it an increasingly viable alternative, she said.

“A clean, low-carbon source of plentiful energy is needed to maintain the social and economic security of humanity. From climate change to escalating conflict over energy and resources, our future is at risk unless we transition to a low-carbon future,” said Buriak. “The Canada First Excellence Research Fund allows the University of Alberta to pioneer a made-in-Alberta solution to help solve the world’s energy challenges, helping us to transition to a low-carbon economy.”

The U of A will work collaboratively with the University of Calgary, which also received $75 million for its Global Research Initiative in Low Carbon Unconventional Resources. The U of C’s initiative aims to transform the extraction of unconventional energy resources such as the oil-sands to improve efficiency and reduce Canada’s carbon footprint.

 

MIT: Key flow mechanisms, crucial to carbon sequestration, Oil recovery and fuel-cell operation, have been visualized.


MIT-Multiphase-Flow_0 Wetability 082616

Lab experiments carried out by an MIT and Oxford University team provide detailed information about how a liquid moves through spaces in a porous material, revealing the key role of a characteristic called wettability.

Courtesy of the researchers

One of the most promising approaches to curbing the flow of human-made greenhouse gases into the atmosphere is to capture these gases at major sources, such as fossil-fuel-burning power plants, and then inject them into deep, water-saturated rocks where they can remain stably trapped for centuries or millennia.

This is just one example of fluid-fluid displacement in a porous material, which also applies to a wide variety of natural and industrial processes — for example, when rainwater penetrates into soil by displacing air, or when oil recovery is enhanced by displacing the oil with injected water.

Now, a new set of detailed lab experiments has provided fresh insight into the physics of this phenomenon, under an unprecedented range of conditions. These results should help researchers understand what happens when carbon dioxide flows through deep saltwater reservoirs, and could shed light on similar interactions such as those inside fuel cells being used to produce electricity without burning hydrocarbons.

The new findings are being published this week in the journal PNAS, in a paper by Ruben Juanes, MIT’s ARCO Associate Professor in Energy Studies; Benzhong Zhao, an MIT graduate student; and Chris MacMinn, an associate professor at Oxford University.

A crucial aspect of fluid-fluid displacement is the displacement efficiency, which measures how much of the pre-existing fluid can be pushed out of the pore space. High displacement efficiency means that most of the pre-existing fluid is pushed out, which is usually a good thing — with oil recovery, for example, it means that more oil would be captured and less would be left behind. Unfortunately, displacement efficiency has been very difficult to predict.

A key factor in determining displacement efficiency, Juanes says, is a characteristic called wettability. Wettability is a material property that measures a preference by the solid to be in contact with one of the fluids more than the other. The team found that the stronger the preference for the injected fluid, the more effective the displacement of the pre-existing fluid from the pores of the material — up to a point. But if the preference for the injected fluid increases beyond that optimal point, the trend reverses, and the displacement becomes much less efficient. The discovery of the existence of this ideal degree of wettability is one of the significant findings of the new research.

The work was partly motivated by recent advances in scanning techniques that make it possible to “directly characterize the wettability of real reservoir rocks under in-situ conditions,” says Zhao. But just being able to characterize the wettability was not sufficient, he explains. The key question was “Do we understand the physics of fluid-fluid displacement in a porous medium under different wettability conditions?” And now, after their detailed analysis, “We do have a fundamental understanding” of the process, Zhao says. MacMinn adds that “it comes from the design of a novel system that really allowed us to look in detail at what is happening at the pore scale, and in three dimensions.”

This GIF shows the way fluid distribution through pore spaces varies under different injection rates of water. The colors show the degree of saturation of the invading water. At low rates (left), the water advances in rapid bursts followed by quiet periods. At intermediate rates (center), the invading fluid advances by sequentially coating the walls of posts used to simulate pores in the team’s microfluidic cell. At high rates (right), the water advances in thin films along the solid surfaces.

 

 

 

 

 

 

 

In order to clearly define the physics behind these flows, the researchers did a series of lab experiments in which they used different porous materials with a wide range of wetting characteristics, and studied how the flows varied.

In natural environments such as aquifers or oil reservoirs, the wettability of the material is predetermined. But even so, Juanes says, “there are ways you can modify the wettability in the field,” such as by adding specific chemical compounds like surfactants (similar to soap) to the injected fluid.

By making it possible to understand just what degree of wettability is desirable for a particular situation, the new findings “in principle, could be very advantageous” for designing carbon sequestration or enhanced oil recovery schemes for a specific geological setting.

The same principles apply to some polymer electrolyte fuel cells, where water vapor condenses at the fuel cell’s cathode and has to migrate through a porous membrane. Depending on the exact mix of gas and liquid, these flows can be detrimental to the performance of the fuel cell, so controlling and predicting the way these flows work can be important in designing such cells.

In addition, the same process of liquid and gas interacting in pore spaces also applies to the way freshwater aquifers get recharged by rainfall, as the water percolates into the ground and displaces air in the soil. A better understanding of this process could be important for management of ever-scarcer water resources, the team says.

“This is a very interesting study of pore-scale multiphase fluid flow in two-dimensional micromodels,” says David Weitz, a professor of physics and applied physics at Harvard University, who was not involved in this work. “The advantage of this work is that the authors look in more detail at the mechanisms of wetting and displacement of the fluid in the pores,” he says. “This is a very important aspect of fluid flow in porous media.”

This research was supported by the U.S. Department of Energy and the MIT Energy Initiative.

University of Wisconsin: Simulating complex catalysts key to making cheap, powerful fuel cells


Cheap Fuel Cells 081016 id44194Using a unique combination of advanced computational methods, University of Wisconsin-Madison chemical engineers have demystified some of the complex catalytic chemistry in fuel cells — an advance that brings cost-effective fuel cells closer to reality.

“Understanding reaction mechanisms is the first step toward eventually replacing expensive platinum in fuel cells with a cheaper material,” says Manos Mavrikakis, a UW-Madison professor of chemical and biological engineering.
Mavrikakis and colleagues at Osaka University in Japan published details of the advance Monday, Aug. 8, in the journal Proceedings of the National Academy of Sciences (“Ab initio molecular dynamics of solvation effects on reactivity at electrified interfaces”).

 

Methanol Molecules
Modeling how methanol interacts with platinum catalysts inside fuel cells in realistic environments becomes even more complicated because distances between the atoms can change as molecules dance near the charged surface. (Image: Manos Mavrikakis)
 

Fuel cells generate electricity by combining electrons and protons — provided by a chemical fuel such as methanol — with oxygen from the air. To make the reaction that generates protons faster, fuel cells typically contain catalysts. With the right catalyst and enough fuel and air, fuel cells could provide power very efficiently.

 

Someday, fuel cells could make laptop batteries obsolete. Mere tablespoons of methanol could potentially provide up to 20 hours of continuous power. But alternatives to the expensive platinum catalyst in today’s fuel cells haven’t emerged because scientists still don’t fully understand the complicated chemistry required to produce protons and electrons from fuels.

 

And finding a good catalyst is no trivial task.

 

“People arrived at using platinum for a catalyst largely by trial and error, without understanding how the reaction takes place,” says Mavrikakis. “Our efforts developed a big picture of how the reaction is happening, and we hope to do the same analysis with other materials to help find a cheaper alternative.”

 

At first glance, the chemistry sounds straightforward: Methanol molecules awash in a watery milieu settle down on a platinum surface and give up one of their four hydrogen atoms. The movement of those electrons from that hydrogen atom make an electric current.

 

In reality, the situation is not so simple.

 

“All of these molecules, the water and the methanol, are actually dancing around the surface of the catalyst and fluctuating continuously,” says Mavrikakis. “Following the dynamics of these fluctuating motions all the time, and in the presence of an externally applied electric potential, is really very complicated.”

 

The water molecules are not wallflowers, sitting on the sidelines of the methanol molecules reacting with platinum; rather, they occasionally cut in to the chemical dance. And varying voltage on the electrified surface of the platinum catalyst tangles the reaction’s tempo even further.

 

Previously, chemists only simulated simplified scenarios — fuel cells without any water in the mix, or catalytic surfaces that didn’t crackle with electricity. Unsurprisingly, conclusions based on such oversimplifications failed to fully capture the enormous complexity of real-world reactions.

 

Mavrikakis and colleagues combined their expertise in two powerful computational techniques to create a more accurate description of a very complex real environment.
They first used density functional theory to solve for quantum mechanical forces and energies between individual atoms, then built a scheme upon those results using molecular dynamics methods to simulate large ensembles of water and methanol molecules interacting among themselves and with the platinum surface.
The detailed simulations revealed that the presence of water in a fuel cell plays a huge role in dictating which hydrogen atom breaks free from methanol first — a result that simpler methods could never have captured. Electric charge also determined the order in which methanol breaks down, surprisingly switching the preferred first step at the positive electrode.

 

This type of information enables scientists to predict which byproducts might accumulate in a reaction mixture, and select better ingredients for future fuel cells.
“Modeling enables you to come up with an informed materials design,” says Mavrikakis, whose work was supported by the Department of Energy and the National Science Foundation. “We plan to investigate alternative fuels, and a range of promising and cheaper catalytic materials.”

 

The results represent the culmination of six years of effort across two continents. Jeffrey Herron, the first author on the paper, started developing the methodologies during a summer visit to work under the paper’s second author, Professor Yoshitada Morikawa in the Division of Precision Science & Technology and Applied Physics at Osaka University.
Herron, who completed his doctorate in 2015 and is now a senior engineer for The Dow Chemical Company, further refined these approaches under Mavrikakis’ guidance over several subsequent years in Madison.
“A lot of work over many years went into this paper,” says Mavrikakis. “The world needs fuel cells, but without understanding how the reaction takes place, there is no rational way to improve.”
Source: University of Wisconsin-Madison

Read more: Simulating complex catalysts key to making cheap, powerful fuel cells