Carbon Nanotube Second Skin Protects First Responders and Warfighters against Chem, Bio Agents – Lawrence Livermore National Laboratory

Published 8 May 2020

Recent events such as the COVID-19 pandemic and the use of chemical weapons in the Syria conflict have provided a stark reminder of the plethora of chemical and biological threats that soldiers, medical personnel and first responders face during routine and emergency operations. Researchers have developed a smart, breathable fabric designed to protect the wearer against biological and chemical warfare agents. Material of this type could be used in clinical and medical settings as well.

Recent events such as the COVID-19 pandemic and the use of chemical weapons in the Syria conflict have provided a stark reminder of the plethora of chemical and biological threats that soldiers, medical personnel and first responders face during routine and emergency operations.

Personnel safety relies on protective equipment which, unfortunately, still leaves much to be desired. For example, high breathability (i.e., the transfer of water vapor from the wearer’s body to the outside world) is critical in protective military uniforms to prevent heat-stress and exhaustion when soldiers are engaged in missions in contaminated environments.

The same materials (adsorbents or barrier layers) that provide protection in current garments also detrimentally inhibit breathability.

To tackle these challenges, a multi-institutional team of researchers led by Lawrence Livermore National Laboratory (LLNL) scientist Francesco Fornasiero has developed a smart, breathable fabric designed to protect the wearer against biological and chemical warfare agents. Material of this type could be used in clinical and medical settings as well.

The work was recently published online in Advanced Functional Materials and represents the successful completion of Phase I of the project, which is funded by the Defense Threat Reduction Agency through the Dynamic Multifunctional Materials for a Second Skin “D[MS]“ program.

“We demonstrated a smart material that is both breathable and protective by successfully combining two key elements: a base membrane layer comprising trillions of aligned carbon nanotube pores and a threat-responsive polymer layer grafted onto the membrane surface,” Fornasiero said.

LLNL notes that these carbon nanotubes (graphitic cylinders with diameters more than 5,000 times smaller than a human hair) could easily transport water molecules through their interiors while also blocking all biological threats, which cannot fit through the tiny pores.

This key finding was previously published in Advanced Materials.

The team has shown that the moisture vapor transport rate through carbon nanotubes increases with decreasing tube diameter and, for the smallest pore sizes considered in the study, is so fast that it approaches what one would measure in the bulk gas phase.

This trend is surprising and implies that single‐walled carbon nanotubes (SWCNTs) as moisture conductive pores overcome a limiting breathability/protection trade-off displayed by conventional porous materials, according to Fornasiero. Thus, size-sieving selectivity and water-vapor permeability can be simultaneously enhanced by decreasing SWCNT diameters.

Contrary to biological agents, chemical threats are smaller and can fit through the nanotube pores. To add protection against chemical hazards, a layer of polymer chains is grown on the material surface, which reversibly collapses in contact with the threat, thus temporarily blocking the pores.

“This dynamic layer allows the material to be ‘smart’ in that it provides protection only when and where it is needed,” said Timothy Swager, a collaborator at the Massachusetts Institute of Technology who developed the responsive polymer. These polymers were designed to transition from an extended to a collapsed state in contact with organophosphate threats, such as sarin. “We confirmed that both simulants and live agents trigger the desired volume change,” Swager added.

The team showed that the responsive membranes have enough breathability in their open-pore state to meet the sponsor requirements. In the closed state, the threat permeation through the material is dramatically reduced by two orders of magnitude. The demonstrated breathability and smart protection properties of this material are expected to translate in a significantly improved thermal comfort for the user and enable to greatly extend the wear time of protective gears, whether in a hospital or battlefield.

“The safety of warfighters, medical personnel and first responders during prolonged operations in hazardous environments relies on personal protective equipment that not only protects but also can breathe,” said Kendra McCoy, the DTRA program manager overseeing the project.

“DTRA Second Skin program is designed to address this need by supporting the development of new materials that adapt autonomously to the environment and maximize both comfort and protection for many hours.”

In the next phase of the project, the team will aim to incorporate on-demand protection against additional chemical threats and make the material stretchable for a better body fit, thus more closely mimicking the human skin.

‘Artificial leaf’ concept inspires research into solar-powered fuel production: Rice University

A schematic and electron microscope cross-section show the structure of an integrated, solar-powered catalyst to split water into hydrogen fuel and oxygen. The module developed at Rice University can be immersed into water directly to produce fuel when exposed to sunlight. Credit: Jia Liang/Rice University

Rice University researchers have created an efficient, low-cost device that splits water to produce hydrogen fuel.

The platform developed by the Brown School of Engineering lab of Rice materials scientist Jun Lou integrates catalytic electrodes and  that, when triggered by sunlight, produce electricity. The current flows to the catalysts that turn water into hydrogen and oxygen, with a sunlight-to-hydrogen efficiency as high as 6.7%.

This sort of catalysis isn’t new, but the lab packaged a  layer and the electrodes into a single module that, when dropped into water and placed in sunlight, produces hydrogen with no further input.

The  introduced by Lou, lead author and Rice postdoctoral fellow Jia Liang and their colleagues in the American Chemical Society journal ACS Nano is a self-sustaining producer of  that, they say, should be simple to produce in bulk.

“The concept is broadly similar to an artificial leaf,” Lou said. “What we have is an integrated module that turns sunlight into electricity that drives an electrochemical reaction. It utilizes water and sunlight to get chemical fuels.”

Perovskites are crystals with cubelike lattices that are known to harvest light. The most efficient perovskite  produced so far achieve an efficiency above 25%, but the materials are expensive and tend to be stressed by light, humidity and heat.

“Jia has replaced the more expensive components, like platinum, in perovskite solar cells with alternatives like carbon,” Lou said. “That lowers the entry barrier for commercial adoption. Integrated devices like this are promising because they create a system that is sustainable. This does not require any external power to keep the module running.”

Liang said the key component may not be the perovskite but the polymer that encapsulates it, protecting the module and allowing to be immersed for long periods.

“Others have developed catalytic systems that connect the solar cell outside the water to immersed electrodes with a wire,” he said. “We simplify the system by encapsulating the perovskite layer with a Surlyn (polymer) film.”

The patterned film allows sunlight to reach the solar cell while protecting it and serves as an insulator between the cells and the electrodes, Liang said.

“With a clever system design, you can potentially make a self-sustaining loop,” Lou said. “Even when there’s no sunlight, you can use stored energy in the form of chemical fuel. You can put the hydrogen and oxygen products in separate tanks and incorporate another module like a fuel cell to turn those fuels back into electricity.”

The researchers said they will continue to improve the encapsulation technique as well as the solar themselves to raise the efficiency of the modules.

More information: Jia Liang et al, A Low-Cost and High-Efficiency Integrated Device toward Solar-Driven Water Splitting, ACS Nano (2020). DOI: 10.1021/acsnano.9b09053

Journal information: ACS Nano

Provided by Rice University

Breathable’ Electronics Pave the Way for More Functional Wearable Tech

This sleeve incorporates the new electronic material, allowing it to function as a video game controller.

Engineering researchers have created ultrathin, stretchable electronic material that is gas permeable, allowing the material to “breathe.” The material was designed specifically for use in biomedical or wearable technologies, since the gas permeability allows sweat and volatile organic compounds to evaporate away from the skin, making it more comfortable for users – especially for long-term wear.

“The gas permeability is the big advance over earlier stretchable electronics,” says Yong Zhu, co-corresponding author of a paper on the work and a professor of mechanical and aerospace engineering at North Carolina State University. “But the method we used for creating the material is also important because it’s a simple process that would be easy to scale up.”

Specifically, the researchers used a technique called the breath figure method to create a stretchable polymer film featuring an even distribution of holes. The film is coated by dipping it in a solution that contains silver nanowires. The researchers then heat-press the material to seal the nanowires in place.

“The resulting film shows an excellent combination of electric conductivity, optical transmittance and water-vapor permeability,” Zhu says. “And because the silver nanowires are embedded just below the surface of the polymer, the material also exhibits excellent stability in the presence of sweat and after long-term wear.”

“The end result is extremely thin – only a few micrometers thick,” says Shanshan Yao, co-author of the paper and a former postdoctoral researcher at NC State who is now on faculty at Stony Brook University. “This allows for better contact with the skin, giving the electronics a better signal-to-noise ratio.

“And gas permeability of wearable electronics is important for more than just comfort,” Yao says. “If a wearable device is not gas permeable, it can also cause skin irritation.”

To demonstrate the material’s potential for use in wearable electronics, the researchers developed and tested prototypes for two representative applications.

The first prototype consisted of skin-mountable, dry electrodes for use as electrophysiologic sensors. These have multiple potential applications, such as measuring electrocardiography (ECG) and electromyography (EMG) signals.

“These sensors were able to record signals with excellent quality, on par with commercially available electrodes,” Zhu says.

The second prototype demonstrated textile-integrated touch sensing for human-machine interfaces. The authors used a wearable textile sleeve integrated with the porous electrodes to play computer games such as Tetris. Related video can be seen at

“If we want to develop wearable sensors or user interfaces that can be worn for a significant period of time, we need gas-permeable electronic materials,” Zhu says. “So this is a significant step forward.”

The paper, “Gas-Permeable, Ultrathin, Stretchable Epidermal Electronics with Porous Electrodes,” is published in the journal ACS Nano. First author of the paper is Weixin Zhou, a Ph.D. student at Nanjing University of Posts and Telecommunications (NUPT) who worked on the project while a visiting scholar at NC State.

The paper was co-authored by Hongyu Wang, a Ph.D. student at NC State, and by Qingchuan Du of NUPT. Co-corresponding author of the paper is Yanwen Ma, a professor at NUPT.

The work was done with support from the National Science Foundation, under grant number CMMI-1728370.


Note to Editors: The study abstract follows.

“Gas-Permeable, Ultrathin, Stretchable Epidermal Electronics with Porous Electrodes”

Authors: Weixin Zhou, Qingchuan Du and Yanwen Ma, Nanjing University of Posts and Telecommunications; Shanshan Yao, North Carolina State University and Stony Brook University; and Hongyu Wang and Yong Zhu, North Carolina State University

Published: April 29, ACS Nano

DOI: 10.1021/acsnano.0c00906

Abstract: We present gas-permeable, ultrathin, and stretchable electrodes enabled by self-assembled porous substrates and conductive nanostructures. Efficient and scalable breath figure method is employed to introduce the porous skeleton and then silver nanowires (AgNWs) are dip-coated and heat-pressed to offer electric conductivity.

The resulting film has a transmittance of 61%, sheet resistance of 7.3 Ω/sq, and water vapor permeability of 23 mg cm-2 h-1. With AgNWs embedded below the surface of the polymer, the electrode exhibits excellent stability with the presence of sweat and after long-term wear.

We demonstrate the promising potential of the electrode for wearable electronics in two representative applications – skin-mountable biopotential sensing for healthcare and textile-integrated touch sensing for human-machine interfaces.

The electrode can form conformal contact with human skin, leading to low skin-electrode impedance and high quality biopotential signals. In addition, the textile electrode can be used in a self-capacitance wireless touch sensing system.