New Battery Could Power Electric Cars 620 Miles (@ 1,000km) on Single Charge



The average American drives about 30 miles (48 kilometers) per day, according to AAA, yet many people are still reluctant to buy electric cars that can travel three times that distance on a single charge. 

This so-called range anxiety is one reason gasoline-powered vehicles still rule the road, but a team of scientists is working to ease those fears.

Mareike Wolter, Project Manager of Mobile Energy Storage Systems at Fraunhofer-Gesellschaft in Dresden, Germany, is working with a team on a new battery that would give electric cars a range of about 620 miles (1,000 km) on a single charge.



Wolter said the project began about three years ago when researchers from Fraunhofer as well as ThyssenKrupp System Engineering and IAV Automotive Engineering started brainstorming about how they could improve the energy density of automotive lithium batteries. 



They turned to the popular all-electric car, the Tesla, as a starting point. Tesla’s latest vehicle, the Model S 100D has a 100-kilowatt-hour battery pack, which reportedly gives it a range of 335 miles (540 km). 

The pack is large, about 16 feet long, 6 feet wide and 4 inches thick. It contains more than 8,000 lithium-ion battery cells, each one individually packaged inside a cylinder housing that measures about 2 to 3 inches (6 to 7 centimeters) high and about 0.8 inches (2 cm) across.

“We thought if we could use the same space as the battery in the Tesla, but improve the energy density and finally drive 1,000 km, this would be nice,” Wolter told Live Science.

One way of doing this would be to refine the materials inside the battery so that it could store more energy, she said. But another way would be to improve the system’s design as a whole, Wolter said. 

Nearly 50 percent of each cell is devoted to components such as the housing, the anode (the battery’s negative terminal), the cathode (the battery’s positive terminal) and the electrolyte, the liquid that transports the charged particles. 

Additional space is needed inside the car to wire the battery packs to the vehicle’s electrical system.

“It’s a lot of wasted space,” Wolter said. “You have a lot of inactive components in the system, and that’s a problem from our point of view.”

The scientists decided to reimagine the entire design, they said.


An illustration that shows how the new electric battery is stacked like a ream of paper. Credit: Fraunhofer IKTS

To do so, they got rid of the housings that encase individual batteries and turned to a thin, sheet-like design instead of a cylinder. 

Their metallic sheet is coated with an energy-storage material made from powdered ceramic mixed with a polymer binder. One side serves as the cathode, and other side serves as the anode.

The researchers stacked several of these so-called bipolar electrodes one on top of the other, like sheets of paper in a ream, separating the electrodes by thin layers of electrolyte and a material that prevents electrical charges from shorting out the whole system.

The “ream” is sealed within a package measuring about 10 square feet (1square meter), and contacts on the top and bottom connect to the car’s electrical system.

The goal is to build a battery system that fits in the same space as the one used by Tesla’s vehicles or other electric vehicles, the researchers said.

“We can put more electrodes storing the energy in the same space,” Wolter said.

She added that the researchers aim to have such a system ready to test in cars by 2020.

Original article on Live Science.

MIT: Tesla Not the Only Battery Game in Town ~ Electric Cars Could Be Cheaper Than Internal Combustion by 2030


German chancellor Angela Merkel visits Accumotive’s plant in Kamenz, Germany.

Tesla gets the headlines, but big battery factories are being built all over the world, driving down prices.

Battery production is booming, and Tesla is far from the only game in town.

According to Bloomberg New Energy Finance, global battery production is forecast to more than double between now and 2021. The expansion is in turn driving prices down, good news both for the budding electric-car industry and for energy companies looking to build out grid-scale storage to back up renewable forms of energy.


While Tesla gets tons of attention for its “gigafactories”—one in Nevada that will produce batteries, and another in New York that will produce solar panels
—the fact is, the company has a lot of battery-building competition.

Exhibit A is a new battery plant in Kamenz, Germany, run by Accumotive. The half-billion-euro facility broke ground on Monday with a visit from German chancellor Angela Merkel and will supply batteries to its parent company, Daimler, which is betting heavily on the burgeoning electric-vehicle market.

But the lion’s share of growth is expected to be in Asia. BYD, Samsung, LG, and Panasonic (which has partnered with Tesla) are all among the world’s top battery producers, and nine of the world’s largest new battery factories are under construction in China (paywall), according to Benchmark Minerals.

That competition means the steady downward trend in battery prices is going to continue. On a per-kilowatt-hour basis, costs have fallen from $542 in 2012 to around $139 today, according to analysis by Benchmark.

That makes for a huge difference in the cost of an electric car, of which 40 percent is usually down to the battery itself.


Bloomberg’s analysts have already said that the 2020s could be the decade in which electric cars take off—and one even went so far as to say that by 2030, electric cars could be cheaper than those powered by internal combustion.

Those watching the industry might worry that a flood of cheap batteries could end up hurting profitability for producers, as happened in the solar-panel business.

That could happen, but India and China, two huge rising automotive markets, are bullish about using electric cars to help solve problems like traffic congestion and air pollution. So even as supply ramps up, there is likely to be plenty of demand to go around.

MIT Technology Review: M. Reilly Sr. Editor

Are Electric Vehicles Poised for Their ‘Model T’ Moment?



When automobiles first debuted in the United States, they faced a classic “chicken and egg” problem. On one hand, autos were custom-made luxury items, affordable only to a niche market of affluent individuals. 

On the other hand, there was little incentive for most people to buy automobiles in the first place, as the system of roads in America was woefully underdeveloped.

Henry Ford managed to solve the “chicken and egg” problem with the Model T, the first product of its kind to reach the mass market. But today, there’s also another auto industry visionary facing a similar challenge in the 21st century: Elon Musk and his company, Tesla.

SIMILAR TRACKS

Ford’s assembly line and uncomplicated design allowed for cheaper pricing, which helped Ford sales to take off. With many new Model Ts hitting the road, the United States government was able to generate enough revenue from gasoline taxes to enable the sustainable development of roads in the United States.

More roads meant a renewed desire for more Model Ts to populate those roads, and so on. This was the start of a trend that sees 253 million cars on American roads a century later.



COST AND INFRASTRUCTURE: DUELING PRIORITIES

Fast-forward to today, and vehicle buyers have concerns not unlike those of early automobile adopters at the turn of the 20th century. Aside from the price of purchasing a new vehicle, most prospective buyers of electric vehicles cite charging availability and maximum travelling range as their biggest challenges.


Fortunately, EV prices are already falling due to advancements in the production of one of their key components: the lithium-ion battery packs that power them.

At one point, battery packs made up one-third of the costs for a new vehicle, but battery costs have dropped precipitously since 2010. That said, automakers like Tesla will need to continue to make progress here if they hope to match the growth and saturation of their forebears at the turn of the 20th century.

CHARGING AHEAD OF DEMAND
A study by the National Science Foundation’s INSPIRE Project found that the current amount of money disbursed as tax credits to new electric vehicle buyers (currently up to $7,500 per vehicle) would have been sufficient to build 60,000 new charging points nationwide.

The growth of charging station infrastructure is already astonishing. New public outlets have been added at a 65.3% CAGR between 2011 and 2016, and further growth will open even more roads to long-distance EV travel and network effects.

According to the math of the study, new charge stations would have a bigger effect on the EV market than the tax credits, and could have increased EV sales by five times the amount.

In short, charging stations will be to Tesla what roads were to Ford: the means by which they can reach lofty new heights of market dominance. Infrastructure development may be the “push” that electric vehicles need to get them over the early adoption barrier and into the mainstream. Combined with falling costs and improved efficiency, electric vehicles could create a Ford-like transformation within the automotive industry in a very short time.

** Article by C. Matel of the Visual Capitalist 

Ginseng nanoparticles for cancer treatment



A recent editorial in Nanomedicine (“Ginseng nanoparticles: a budding tool for cancer treatment”) by scientists in Korea states that use of ginsenoside nanoconjugates could be a promising candidate against cancer and various other diseases, such as inflammation, osteoporosis and obesity in the future.

Researchers have found that nanoparticles of ginsenoside by various nanocarriers, such as, polymers, proteins, micelles and liposomes result in an increased water solubility and anticancer activity.

In addition, the cytotoxicity of the conjugates is often similar or superior compared with bare ginsenosides in cancer cells with relatively low cytotoxicity in normal cells.


Ginseng

Ginseng has been considered one of the highly valued medicinal plants in traditional Chinese medicine for more than thousands of years.

Ginseng phytochemicals, such as, ginsenoside (unique triterpenoid saponins), phenols and acidic polysaccharides have been known to exhibit numerous pharmacological efficacies including anticancer, anti-inflammatory, antidiabetic, antiaging, enhanced immunization and liver functions and protective effects against Alzheimer’s disease. Their administration often results in adaptogenic effects.

Regular intake of ginseng products has been demonstrated to prevent the occurrence of various cancers, ameliorate cancer-related fatigue and enhance life span.

Among ginseng phytochemicals, ginsenosides have been thoroughly researched and scrutinized over the years to flaunt various pharmacological activities.

As the scientists point out, though, there are considerable limitation sto these benefits: After oral administration, crude and major ginsenosides are mainly converted into minor ginsenosides due to hydrolysis of glucose molecules by intestinal microbiota.

Biomolecular conjugations of ginsenosides and drug delivery techniques play significant roles to solve these problematic issues.

Most reported nanodrug delivery carriers, such as, polymer–drug conjugates, nanoparticles, liposomes and metal nanoparticles are designed to increase solubility, improve lipid membrane penetration, enhance anticancer efficacy, ameliorate sustainability in gastrointestinal environment and reduce or eliminate loss during oral administration.

Polymer–ginsenoside nanoconjugates have been recently studied as a potential drug carrier to tumor sites owing to the improved solubility and efficient drug-release mechanisms.

The enhanced oral bioavailability, oncogene MDM2 targeting and anticancer activities were reported in both in vitro and in vivo of PEG-PLGA loaded 25–OCH3–PPD nanoparticles than nonloaded drug.

The phytochemicals in plant extracts have a direct relationship in the efficacy of tailor-made nanoparticles used as drug delivery and as therapeutic agents.

The phytochemicals in ginseng provide binary functions in the nanoparticle synthesis as competent reducing agents to convert macrosized salts into nanosized metal nanoparticles as well as stabilizers to cater a potent coating on the metal nanoparticles.

Source: Future Medicine

How The Tesla Battery Will Benefit Marijuana Growers (Legally)


Tesla for Grow Ops 1233543378925322670

A medium-sized commercial weed grow with around 50 lights stands to save about $13,500 in electricity costs a year with the use of two Tesla Batteries. Those will also protect the plants in case of power outages while making the operation less visible to law enforcement. Elon Musk just made growing weed easier. 

Unveiled last night, the Tesla Battery gives home owners and businesses an easy, slick, affordable way to store electricity at home. The 10kWh battery costs just $3,500 and can be “stacked” in sets of up to nine units. Larger capacity batteries of infinitely-scaleable capacity will be available to large businesses and governments. There’s three general use cases for the battery:

  1. Storing electricity purchased during cheaper, Off-peak hours for use during high-demand periods;
  2. Storing electricity generated by solar power or other renewable sources for use around the clock; and
  3. As a backup power source for when the grid goes down.

Know who uses an awful lot of electricity? Weed growers. We just called one and put him on the phone with a commercial energy use management expert to figure out how the Tesla Battery will benefit his home operation and others like it.

Our friend’s operation is small, but profitable. With eight to ten grow lights running 16-20 hours a day in his garage, as well as air-conditioning during hotter parts of the year, his monthly electricity bill is around $2,100, including his home use.

SolarEdge-Tesla-PowerwallAs a domestic consumer of electricity, he’s currently purchasing flat-rate power. In that current arrangement, the Tesla Battery would not save him money day-to-day. Where it would help would be during a power outage, where it would enable him to keep at least some of his lights on, part of the time. In total, those lights alone are using up to 250kWh of power a day, so even two 10kWh batteries could only keep some of the lights on part time.

But, that could be enough to prevent a large financial loss. “The plants start to get angry after about 72 hours without power,” the grower explains. “They won’t die, but the plants in veg will think it’s time to flower and switch over.”

In the lifecycle of a marijuana plant, the vegetative state is where the plants are growing. Depending on the individual plants and the method with which they’re being grown, this stage can last from two weeks to two months. Premature flowering would lead to smaller plants producing fewer, smaller buds and therefore a smaller crop.

The point in the plant lifecycle at which a power outage occurs, its duration and the amount of marijuana being grown will combine to determine the financial loss, but it’s safe to say that the Tesla Battery could throw growers a lifeline during extreme weather or natural disasters.

We’ve all heard stories about growers being outed by the energy intensive nature of their work. Roofs over grow rooms free of snow during winters or insanely high electricity bills have all, in those stories at least, tipped off the cops.

“It doesn’t work that way,” the grower explains. “The cops have to present a warrant to the electricity company to get your bill and, for that, they need probable cause. No, the electricity companies don’t always demand that warrant, but generally, this isn’t how it works. They’re not going through every power bill, looking for suspiciously high ones.”

One of the other touted benefits of the Battery is its ability to facilitate off-grid living. By hooking it up to solar panels, the Battery can store energy during the day, then keep your house powered throughout the night. Or your off-grid grow, maybe?

“I haven’t seen any solar-powered indoor grows yet,” says our guy. “I suspect the costs of the panels are still way too high.”

He’s right. The most powerful solar panel kit currently available at Home Depot costs $12,388 and produces only 3,800 to 8,900kWh a year. Best case scenario, that yearly total is only enough to power our buddy’s 8-10 lights for a little over a month. Look at it from a cost perspective and 10 times the price of his monthly electricity bill (lights only) nets him about 1/10th the power. And that’s before buying any batteries, Tesla or otherwise.

At this point, the real savings possible with the Tesla Battery come with scale. But not that much more.

Tesal Battery Marijuana 1233543378987063726

Our commercial energy consumption management expert sat down and ran the numbers assuming a medium-sized, 50-light commercial operation running its A/C during the day. These numbers are based on commercial electricity rates here in California, where the company is paying a premium during high-demand hours.

With two 10kWh Tesla Batteries giving this commercial grow the ability to shift some of its load to off-peak hours, savings in demand charges alone would total $8,000 a year, while use charges would lower by $5,500, for a total savings of $13,500.

Of course, even just at 50 lights, we’re talking about a multi-million dollar operation, making this sound like relative chump change. Worthwhile — the batteries would be paid for in just over 6 months of savings — but hardly revolutionary.

“Where these batteries might start to make sense for small growers is when LEDs are optimized for herb,” says our grower. He’s skeptical of the light quality produced by current LED grow lights, but sees that technology being optimized for marijuana in the near future. When it is, it could drastically lower the energy consumption of growing, reducing electricity used by the lights alone by 60 percent or more. Lower outright energy consumption will reduce the cost of growing, of course, but it also shifts the amount of consumption into a range that could be more easily handled by Tesla Batteries.

Given the current pace of marijuana legalization, the need for clandestine home grows may largely be eliminated by the time dipping energy consumption and increasing battery capacity meet in a home solar power sweet zone, but as a massive electricity consumer, it does look like the marjiuana industry is going to profit from the same Tesla Battery benefits everyone else will — reduced peak demand and increased stability during outages.

Are there ‘soon to be coming to market – more energy dense batteries’ available?

Watch this short Presentation Video

Indefinitely Wild is a new publication about adventure travel in the outdoors, the vehicles and gear that get us there and the people we meet along the way. Follow us on Facebook, Twitter, and Instagram.

“Holey” graphene improves battery electrodes – May be ‘The Holy Grail’ of Next Generation Batteries 



May 12, 2017

Electrodes containing porous graphene and a niobia composite could help improve electrochemical energy storage in batteries. This is the new finding from researchers at the University of California at Los Angeles who say that the nanopores in the carbon material facilitate charge transport in a battery.

By fine tuning the size of these pores, they can not only optimize this charge transport but also increase the amount of active material in the device, which is an important step forward towards practical applications.


Niobia and holey graphene composite with tailored nanopores

Batteries and supercapacitors are two complementary electrochemical energy-storage technologies. They typically contain positive and negative electrodes with the active electrode materials coated on a metal current collector (normally copper or aluminium foil), a separator between the two electrodes, and an electrolyte that facilitates ion transport.

The electrode materials actively participate in charge (energy) storage, whereas the other components are passive but nevertheless compulsory for making the device work.

Batteries offer high energy density but low power density while supercapacitors provide high power density with low energy density.

Although lithium-ion batteries are the most widely employed batteries today for powering consumer electronics, there is a growing demand for more rapid energy storage (high power) and higher energy density. Researchers are thus looking to create materials that combine the high-energy density of battery materials with the short charging times and long cycle life of supercapacitors.

Such materials need to store a large number of charges (such as Li ions) and have an electrode architecture that can quickly deliver charges (electrons and ions) during a given charge/discharge cycle.

Increasing the mass loading of niobia in electrodes

Nanostructured materials fit the bill here, but unfortunately only for electrodes with low areal mass loading of the active materials (around 1 mg/cm2). “This is much lower than the mass of the passive components (around 10 mg/cm2 or greater),” explains team leader Xiangfeng Duan. “As a result, in spite of the high intrinsic capacity or rate capability of these new nanostructured materials, the scaled area capacity or areal current density of nanostructured electrodes rarely exceeds those of today’s Li-ion batteries.

Thus, these electrodes have not been able to deliver their extraordinary promise in practical commercial devices.

“To take full advantage of these new materials, we must increase the mass loading to a level comparable to or higher than the mass of the passive components. To satisfy the energy storage requirement of an electrode with 10 times higher mass loading requires the rapid delivery of 10 times more charge over a distance that is 10 times greater within a given time. This is a rather challenging task and has proven to be a critical roadblock for new electrode materials.

“We have now addressed this very issue of how we can increase the mass loading of niobia (Nb2O5) in electrode structures without compromising its merit for ultrahigh-rate energy storage,” he continues. “Electrodes with intrinsically high capacity or high rate capability in practical devices require a new architecture that can efficiently deliver sufficient electrons or ions.

We have designed a 3D holey-graphene-Nb2O5 composite with excellent electron and ion transport properties for ultrahigh-rate energy storage at practical levels of mass loading (greater than 10 mg/cm2).”

Porous structure facilitates rapid ion transport

“The highly interconnected graphene network in the 3D architecture provides excellent electron transport properties and its hierarchical porous structure facilitates rapid ion transport,” he adds. “What is more, by systematically tailoring the porosity in the holey graphene backbone, we optimize charge transport in the composite architecture to simultaneously deliver areal capacity and high-rate capability at practical levels of mass loading – something that is a critical step forward towards commercial applications.”

The researchers made their mechanically strong 3D porous composites in a two-step synthesis technique. “We uniformly decorate Nb2O5

Decreasing the fraction of inactive materials

The in-plane pores in the holey graphene sheet function as ion transport “shortcuts” in the hierarchical porous structure to facilitate rapid ion transport throughout the entire 3D electrode and so greatly improve ion transport kinetics and access to ions on the surface of the electrode, Duan tells nanotechweb.org.

Spurred on by these results, the researchers say they will now try to incorporate high-capacity active materials such as silicon and tin oxide to further increase output energy levels in electrochemical cells. “Extremely high mass-loaded electrodes (for example, five times that of practical mass loading, or 50 mg/cm2) could also help decrease the fraction of inactive materials in a device and so simplify the process to make these cells.”


So What’s Next?

Team GNT writes: For the Researchers to take ‘the next step’ further exploration of best outcome and integration of new structured  materials must be completed. And then …

  • Proof of Concept
  • Proof of Scalability 
  • Competitive Market Integration Analysis
  • Manufacturing Platform and Market Distribution 

A lot of hard work! But work that will be well worth the effort if the emerging technology can meet all of the required. Milestones! The current rechargeable battery market is a $112 Billion Market!



The research is detailed in Science DOI: 10.1126/science.aam5852.
Belle Dumé is contributing editor at nanotechweb.org

Long-lasting flow battery could run for more than a decade with minimum upkeep – Harvard Paulson School of Engineering 


Battery stores energy in nontoxic, noncorrosive aqueous solutions

Researchers from the Harvard John A. Paulson School of Engineering and Applied Sciences (SEAS) have developed a new flow battery that stores energy in organic molecules dissolved in neutral pH water.

This new chemistry allows for a non-toxic, non-corrosive battery with an exceptionally long lifetime and offers the potential to significantly decrease the costs of production.

The research, published in ACS Energy Letters, was led by Michael Aziz, the Gene and Tracy Sykes Professor of Materials and Energy Technologies and Roy Gordon, the Thomas Dudley Cabot Professor of Chemistry and Professor of Materials Science.

Flow batteries store energy in liquid solutions in external tanks — the bigger the tanks, the more energy they store.


Flow batteries are a promising storage solution for renewable, intermittent energy like wind and solar but today’s flow batteries often suffer degraded energy storage capacity after many charge-discharge cycles, requiring periodic maintenance of the electrolyte to restore the capacity.




By modifying the structures of molecules used in the positive and negative electrolyte solutions, and making them water soluble, the Harvard team was able to engineer a battery that loses only one percent of its capacity per 1000 cycles.


“Lithium ion batteries don’t even survive 1000 complete charge/discharge cycles,” said Aziz.

“Because we were able to dissolve the electrolytes in neutral water, this is a long-lasting battery that you could put in your basement,” said Gordon.

 

 

“If it spilled on the floor, it wouldn’t eat the concrete and since the medium is noncorrosive, you can use cheaper materials to build the components of the batteries, like the tanks and pumps.”

This reduction of cost is important. The Department of Energy (DOE) has set a goal of building a battery that can store energy for less than $100 per kilowatt-hour, which would make stored wind and solar energy competitive with energy produced from traditional power plants.


“If you can get anywhere near this cost target then you change the world,” said Aziz. “It becomes cost effective to put batteries in so many places. This research puts us one step closer to reaching that target.”

“If you can get anywhere near this cost target then you change the world,” said Aziz. “It becomes cost effective to put batteries in so many places. This research puts us one step closer to reaching that target.”

“This work on aqueous soluble organic electrolytes is of high significance in pointing the way towards future batteries with vastly improved cycle life and considerably lower cost,” said Imre Gyuk, Director of Energy Storage Research at the Office of Electricity of the DOE.

“I expect that efficient, long duration flow batteries will become standard as part of the infrastructure of the electric grid.”

The key to designing the battery was to first figure out why previous molecules were degrading so quickly in neutral solutions, said Eugene Beh, a postdoctoral fellow and first author of the paper.

By first identifying how the molecule viologen in the negative electrolyte was decomposing, Beh was able to modify its molecular structure to make it more resilient.

Next, the team turned to ferrocene, a molecule well known for its electrochemical properties, for the positive electrolyte.

“Ferrocene is great for storing charge but is completely insoluble in water,” said Beh. “It has been used in other batteries with organic solvents, which are flammable and expensive.”

But by functionalizing ferrocene molecules the same way as the viologen, the team was able to turn an insoluble molecule into a highly soluble one that could be cycled stably.

“Aqueous soluble ferrocenes represent a whole new class of molecules for flow batteries,” said Aziz.

The neutral pH should be especially helpful in lowering the cost of the ion-selective membrane that separates the two sides of the battery.

Most flow batteries today use expensive polymers that can withstand the aggressive chemistry inside the battery. They can account for up to one-third of the total cost of the device. 


With essentially salt water on both sides of the membrane, expensive polymers can be replaced by cheap hydrocarbons. 

This research was coauthored by Diana De Porcellinis, Rebecca Gracia, and Kay Xia. It was supported by the Office of Electricity Delivery and Energy Reliability of the DOE and by the DOE’s Advanced Research Projects Agency-Energy.

With assistance from Harvard’s Office of Technology Development (OTD), the researchers are working with several companies to scale up the technology for industrial applications and to optimize the interactions between the membrane and the electrolyte.

Harvard OTD has filed a portfolio of pending patents on innovations in flow battery technology.

New battery technology that could run for more than a decade could revolutionize renewable energy – Harvard University


Harvard Battery Research aziz_650

The race is on to build the next-generation battery that could help the world switch over to clean energy. But as Bill Gates explained in his blog last year: “storing energy turns out to be surprisingly hard and expensive”.

 

Now Harvard researchers have developed a cheap, non-toxic battery that lasts more than 10 years, which they say could be a game changer for renewable energy storage.

Solar installers from Baker Electric place solar panels on the roof of a residential home in Scripps Ranch, San Diego, California, U.S. October 14, 2016.  Picture taken October 14, 2016.      REUTERS/Mike Blake - RTX2QGWW

Image: REUTERS/Mike Blake

The researchers from the John A. Paulson School of Engineering and Applied Sciences published a paper in the journal ACS Energy Letters saying that they have developed a breakthrough technology.

 

Their new type of battery stores energy in organic molecules dissolved in neutral pH water. This makes the battery non-toxic and cheaper. It’s suitable for home storage and lasts for more than a decade. “This is a long-lasting battery you could put in your basement,” Roy Gordon, a lead researcher and the Thomas Dudley Cabot Professor of Chemistry and Professor of Materials Science, said in a Harvard news article.

“If it spilled on the floor, it wouldn’t eat the concrete and since the medium is non-corrosive, you can use cheaper materials to build the components of the batteries, like the tanks and pumps.”

 

The energy storage problem

There’s a big problem with renewable energy sources: Intermittency. In other words, how to keep the lights on when the sun isn’t shining or the wind isn’t blowing.

 Image 2

 Image: International Energy Agency

In recent years, universities and the tech sector have been working on better batteries that they hope could help solve the energy storage problem. Despite significant improvements though, batteries are riddled with issues such as high cost, toxicity and short lifespan.

 

Solar power customers usually have two options to store power: lithium-ion batteries such as the ones found in electronics, which are still very expensive; or lead-acid batteries. These cost half as much, but need a lot of maintenance and contain toxic materials.

 Image 3

Image: Bloomberg New Energy Finance

In one emerging and promising technology is the “v-flow” battery, which uses vanadium in large external tanks of corrosive acids. 

The bigger the tanks, the more energy they store. But there’s a catch: vanadium is an expensive metal and like all other battery technologies, v-flow batteries lose capacity after a few years.

The quest for the next-generation battery

The US Department of Energy has set a goal of building a battery that can store energy for less than $100 per kilowatt-hour, which would make stored wind and solar energy competitive with energy produced from traditional power plants.

 

The Harvard researchers say their breakthrough puts them within sight of this goal.

“If you can get anywhere near this cost target then you change the world,” said Michael Aziz, lead researcher and professor of Materials and Energy Technologies at Harvard. “It becomes cost effective to put batteries in so many places. This research puts us one step closer to reaching that target.”

 

energy_storage_2013-042216-_11-13-1

Video: Next Generation Silicon-Nanowire Batteries

 

A new company has been formed to exploit and commercialize the Next Generation Super-Capacitors and Batteries. The opportunity is based on Technology & Exclusive IP Licensing Rights from Rice University, discovered/ curated by Dr. James M. Tour, named “One of the Fifty (50) most influential scientists in the World today”

The Porous Silicon Nanowires & Lithium Cobalt Oxide technology has been advanced to provide a New Generation Battery that is:

 Energy Dense
 High Specific Power
 Affordable Cost
 Low Manufacturing Cost
 Rapid Charge/ Re-Charge
 Flexible Form Factor
 Long Warranty Life
 Non-Toxic
 Highly Scalable

Key Markets & Commercial Applications

 Motor Cycle/ EV Batteries
 Marine and Drone Batteries
 Medical Devices and
 Power Banks
 Estimated $112 Billion Market for Rechargeable Batteries by 2025

 

 

Battery-free implantable medical device powered by human body – A biological supercapacitor


battery-free-medical-implants-1

 

Researchers from UCLA and the University of Connecticut have designed a new biofriendly energy storage system called a biological supercapacitor, which operates using charged particles, or ions, from fluids in the human body. The device is harmless to the body’s biological systems, and it could lead to longer-lasting cardiac pacemakers and other implantable medical devices.   The UCLA team was led by Richard Kaner, a distinguished professor of chemistry and biochemistry, and of materials science and engineering, and the Connecticut researchers were led by James Rusling, a professor of chemistry and cell biology.

A paper about their design was published this week in the journal Advanced Energy Materials.   Pacemakers — which help regulate abnormal heart rhythms — and other implantable devices have saved countless lives. But they’re powered by traditional batteries that eventually run out of power and must be replaced, meaning another painful surgery and the accompanying risk of infection. In addition, batteries contain toxic materials that could endanger the patient if they leak.

The researchers propose storing energy in those devices without a battery. The supercapacitor they invented charges using electrolytes from biological fluids like blood serum and urine, and it would work with another device called an energy harvester, which converts heat and motion from the human body into electricity — in much the same way that self-winding watches are powered by the wearer’s body movements. That electricity is then captured by the supercapacitor.   “Combining energy harvesters with supercapacitors can provide endless power for lifelong implantable devices that may never need to be replaced,” said Maher El-Kady, a UCLA postdoctoral researcher and a co-author of the study.

Modern pacemakers are typically about 6 to 8 millimeters thick, and about the same diameter as a 50-cent coin; about half of that space is usually occupied by the battery. The new supercapacitor is only 1 micrometer thick — much smaller than the thickness of a human hair — meaning that it could improve implantable devices’ energy efficiency. It also can maintain its performance for a long time, bend and twist inside the body without any mechanical damage, and store more charge than the energy lithium film batteries of comparable size that are currently used in pacemakers.   “Unlike batteries that use chemical reactions that involve toxic chemicals and electrolytes to store energy, this new class of biosupercapacitors stores energy by utilizing readily available ions, or charged molecules, from the blood serum,” said Islam Mosa, a Connecticut graduate student and first author of the study.

The new biosupercapacitor comprises a carbon nanomaterial called graphene layered with modified human proteins as an electrode, a conductor through which electricity from the energy harvester can enter or leave. The new platform could eventually also be used to develop next-generation implantable devices to speed up bone growth, promote healing or stimulate the brain, Kaner said.

Although supercapacitors have not yet been widely used in medical devices, the study shows that they may be viable for that purpose.   “In order to be effective, battery-free pacemakers must have supercapacitors that can capture, store and transport energy, and commercial supercapacitors are too slow to make it work,” El-Kady said. “Our research focused on custom-designing our supercapacitor to capture energy effectively, and finding a way to make it compatible with the human body.”   Among the paper’s other authors are the University of Connecticut’s Challa Kumar, Ashis Basu and Karteek Kadimisetty. The research was supported by the National Institute of Health’s National Institute of Biomedical Imaging and Bioengineering, the NIH’s National Institute of Environmental Health Sciences, and a National Science Foundation EAGER grant.   Source and top image: UCLA Engineering

 

An EV Battery That Charges Fully In 5 Minutes? Commercialization Step-Up Could Come Soon


storedot-ev-battery-21-889x592 (1)

Electric vehicles now comprise a substantial part of the automotive market. But the fact remains that despite the increasing number of charging stations, it is still inconvenient to charge a car in comparison to getting a tank full of gas.

StoreDot, an Israeli startup, might have the solution to the woes of electric vehicle (EV) owners, with a new battery it claims can fully charge in five minutes and drive the EV 300 miles on a single charge.

StoreDot aa8b81a83f20b19b089ceb4e4a25e036

 

Read About the Company: Enabling the Future of Charging

The battery is made of nano-materials in a layered structure, made of special organic compounds manufactured by the company. This, the company said, is a massive improvement over traditional lithium-ion battery.

The company first demonstrated the technology at Microsoft Think Next in 2015. The company says the batteries are in the “advanced stages of development” and might be integrated into electric vehicles in the next three years. It also says that its chemical compound is not flammable and has a higher level of combustion, reducing the level of resistance in the batteries making it safe for use in cars.

The batteries won’t be too difficult to manufacture either — the company estimates that 80 percent of the manufacturing process is the same as regular lithium-ion batteries.

StoreDot specializes in battery technology. Last year, it showcased a smartphone battery capable of fully charging within 30 seconds. The EV battery is a scaled up version of this battery which has multi-function electrodes, a combination of polymer and metal oxide.

Watch the Video

 

Read More

 

An electric car battery that could charge in just five minutes ~ Where is the Israeli Start-Up “+StoreDot” One Year Later? +Video

storedot-ev-battery-21-889x592 (1)