Ag Nanoparticles in Water Treatment: Cost-Effective Applications

Nano Ag

Image Credit: Irina Kozorog/

One of the main causes of water pollution is the contamination of water bodies by industrial effluents. The different types of water contaminants include organic and inorganic dyes that are used as colorants in many industries, such as food, cosmetics, paper, and textiles.

Nanomaterials are tiny particles whose size ranges from 1-100 nm and possess unique physical, chemical, electrical, optical, catalytic, and biological properties.

These particles have a high surface to area ratio and are applied in varied fields of science and technology. Silver (Ag) nanoparticles (NPs) are among the most widely used nanoparticles owing to their superior catalytic activity and antimicrobial properties.

Green Synthesis of Nanoparticles

Various methods are used to synthesize Ag NPs, such as chemical, radiation, electrochemical, and biological methods.

Green synthesis of Ag NPs is a biochemical-based process that utilizes living organisms (e.g., plant, bacteria, algae, or fungi) or their metabolites, as the reducing agent.

Typically, nanoparticles are produced by first reducing the salt containing the metal ion. Following this, the newly synthesized nanoparticles are stabilized via capping techniques.

Phytochemicals extracted from plants and secondary microbial metabolites are often used as reducing and capping agents.

The main advantage of the green synthesis of nanoparticles is that it does not use any hazardous chemicals and does not produce any harmful by-products.

Additionally, this method is cost-effective, eco-friendly, and does not require any stabilizers. Scientists have determined the metabolites, such as alkaloids, that are responsible for the conversion of metallic Ag to Ag nanoparticles.

Schematic diagram of the preparation method of phyto-capped Ag NPs.

Figure 1. Schematic diagram of the preparation method of phyto-capped Ag NPs.  © Kordy, M.G.M. et al. (2022)

Green Synthesis of Silver Nanoparticles – A New Study

Coffea arabica is one of the most popular plants, whose beans are used regularly to produce coffee.

In the new study, aqueous extracts of Arabic green coffee (GC) beans were used as the reducing and stabilizing agent for the synthesis of silver nanoparticles.

Researchers investigated the ability of these Ag NPs as antioxidants and catalysts for methylene blue dye reduction by sodium borohydride.

Previous studies have revealed that GC extracts contain many important phytoconstituents such as alkaloids, glycosides, and other phenolic compounds, that can convert metallic silver to silver nanoparticles.

The mechanisms behind the production of silver nanoparticles using GC extract are discussed in the following steps.

  1. The Ag atoms are formed by the reduction of Ag+ ion by GC extract, which nucleates to form Ag NPs.
  2. The size of the nanoparticles is controlled using electrostatic stabilizing agents via the capping process. This process requires a stabilizer that can adsorb onto the surface of the newly synthesized Ag NPs to be capped. The authors used the GC extract as a capping agent as well.

The results of this study are in line with previous studies where researchers have used various plant extracts such as Emblica officinalis (amla), Aloe vera, and Phyllanthus emblica (Indian gooseberry).

(A) HRTEM and (B) SEM images of the capped Ag NPs.

Figure 2. (A) HRTEM and (B) SEM images of the capped Ag NPs.  © Kordy, M.G.M. et al. (2022)

Characterization of Newly Synthesized Ag NPs

Scientists used various analytical tools such as SEM, EDX, FTIR, TEM, DLS, zeta potential, and XRD to characterize the biologically synthesized Ag NPs using GC extract.

Initially, the production of Ag NPs was determined by the color change of the reactants from pale yellow to dark brown.

The synthesis of Ag NPs was further determined by a UV-Visible spectrophotometer where the researchers detected the surface plasmon resonance (SPR) of GC-capped Ag NPs at 425 nm.

The difference in the FTIR spectrum of Ag NPs as well as GC extract signifies the participation of polyphenolic compounds in the reduction process.

FTIR analysis indicated the role of natural metabolites in the reduction of Ag+ and the stabilization of the green-produced Ag NPs. TEM and SEM analysis revealed that Ag NPs were poly-dispersed and were spherical or semi-spherical in shape.

The EDX spectrum also confirmed the presence of Ag signals at 2.983 keV. The crystalline nature of GC-capped Ag NPs was determined using XRD analysis.

The zeta potential of the colloidal sample determined the stability of the Ag NPs.

The antioxidant activity of GC-capped Ag NPs using different concentrations to determine the IC50 after linear fitting for experimental data.

Figure 3. The antioxidant activity of GC-capped Ag NPs using different concentrations to determine the IC50 after linear fitting for experimental data. © Kordy, M.G.M. et al. (2022)

Reduction of Methylene Blue Dye Using Ag NPs

In this study, scientists determined the potential of the newly developed Ag NPs as a reducing agent of methylene blue dye in the presence of sodium borohydride (NaBH4).

They reported a high degradation efficiency of 96% by GC-capped Ag NPs. Researchers revealed a catalytic reduction of 50 ppm of MB dye using 0.1 M of NaBH4.

Additionally, maximum catalytic activity was achieved in a record time of 12 minutes.

A robust antioxidant activity has been reported for the first time against 2,2-diphenyl-1-picrylhydrazyl (DPPH) free radicals.

Scientists are optimistic that GC-capped Ag NPs could be effectively applied in the treatment of contaminated water in the future.

Continue reading: How are Nanocatalysts Used for Environmental Applications?


Kordy, M.G.M. et al. (2022) Phyto-Capped Ag Nanoparticles: Green Synthesis, Characterization, and Catalytic and Antioxidant Activities. Nanomaterials. 12(3):373.

Contributed by Dr. Priyom Bose : AZ Nano: University of Madras

Will Quantum Computers be Able to Crack Bitcoin? In 10 Years? Less?

Quantum Computing CPU

A new study reveals whether quantum computers could crack the complex blockchain cryptography that makes Bitcoin possible, and the answer is… complicated.

Quantum computers could, in theory, crack Bitcoin, but probably not in the near future, as they would have to be about a million times larger than they are today, a report from NewScientist reveals.

So, in practice, the cryptocurrency likely won’t be at risk from quantum computer-wielding hackers for roughly a decade.

Quantum supremacy could put the Bitcoin network at risk

The Bitcoin network uses a series of increasingly complex computations in the blockchain to make transactions. The immense processing power required to make these computations is what keeps crypto wallets secure, but it’s also the reason behind climate concerns over cryptocurrencies. In February last year, for example, an analysis by the University of Cambridge showed that so-called Bitcoin miners use more energy worldwide than entire countries, including Argentina and the Netherlands.

While this energy-intensive process makes it practically impossible for ordinary computers to crack the code used by the Bitcoin network, quantum computers are expected to be orders of magnitude more powerful than today’s classical computers.

What’s more, several companies, including Google and IBM already claim to have achieved quantum supremacy, a term which refers to the successful achievement of a calculation that it would take thousands of years for a classical computer to achieve.

Cracking the Bitcoin code

These recent breakthroughs in quantum computing are the reason why a team from the University of Sussex, led by Mark Webber, Ph.D., set out to investigate the requirements one of the machines would need to crack the Bitcoin network. 

“The [Bitcoin] transactions get announced and there’s a key associated with that transaction,” Webber told NewScientist. “And there’s a finite window of time that that key is vulnerable and that varies, but it’s usually around 10 minutes to an hour, maybe a day.”

Webber and his team calculated that breaking Bitcoin’s code in this 10-minute window would require a quantum computer with 1.9 billion qubits. Cracking it in an hour would require 317 million qubits, while 13 million qubits would be required to crack it in a day. 

“This large physical qubit requirement implies that the Bitcoin network will be secure from quantum computing attacks for many years (potentially over a decade),” Webber wrote in a paperpublished in the journal AVS Quantum Science. While that is assuring for Bitcoin owners, it does also highlight the possibility that huge Bitcoin fortunes could become vulnerable in the not-too-distant future. 

IBM’s superconducting quantum computer has only 127 qubits, meaning it would have to be a million times larger to hack Bitcoin. However, the company aims to build a 1000-qubit quantum computing chip called Condor by 2024. The pace of innovation in quantum computing is difficult to predict, but you can bet a Bitcoin that hackers will be keeping an eye on the latest developments.

De-carbonization Tech from RMIT instantly converts CO2 to solid carbon

Graphical abstract. Credit: DOI: 10.1

Australian researchers have developed a smart and super-efficient new way of capturing carbon dioxide and converting it to solid carbon, to help advance the decarbonisation of heavy industries.

The carbon dioxide utilization technology from researchers at RMIT University in Melbourne, Australia, is designed to be smoothly integrated into existing industrial processes.

Decarbonisation is an immense technical challenge for heavy industries like cement and steel, which are not only energy-intensive but also directly emit CO2 as part of the production process.

The new technology offers a pathway for instantly converting carbon dioxideas it is produced and locking it permanently in a solid state, keeping CO2 out of the atmosphere.

The research is published in the journal Energy & Environmental Science.

Co-lead researcher Associate Professor Torben Daeneke said the work built on an earlier experimental approach that used liquid metals as a catalyst.

“Our new method still harnesses the power of liquid metals but the design has been modified for smoother integration into standard industrial processes,” Daeneke said.

“As well as being simpler to scale up, the new tech is radically more efficient and can break down CO2 to carbon in an instant.

“We hope this could be a significant new tool in the push towards decarbonisation, to help industries and governments deliver on their climate commitments and bring us radically closer to net zero.”

A provisional patent application has been filed for the technology and researchers have recently signed a $AUD2.6 million agreement with Australian environmental technology company ABR, who are commercializing technologies to decarbonise the cement and steel manufacturing industries.

Co-lead researcher Dr. Ken Chiang said the team was keen to hear from other companies to understand the challenges in difficult-to-decarbonise industries and identify other potential applications of the technology.

Increasing the capacity of the immune system to kill cancer cells

Graphical abstract. Credit: DOI: 10.1016/j.celrep.2021.110111

Awakening the immune system’s instinct for destroying cancer, using two molecules located on the surface of macrophages: that’s the promising avenue opening up from recent laboratory work of Dr. André Veillette.null

Director of the Molecular Oncology Research Unit of the Montreal Clinical Research Institute (IRCM) and a professor in the Department of Medicine at the Université de Montréal, Veillette recently published his findings in the journal Cell Reports.

His study unveils an innovative therapeutic way to treat cancer in line with the burgeoning field of precision medicine. For several years now, immunology and personalized medicine have brought new hope to physicians and patients in the fight against cancer.

These advanced therapies largely target cells of the immune system called T cells or T lymphocytes, whose role is to defend the body against harmful foreign agents such as viruses, bacteria and parasites, on the one hand, but also against cancer cells.

Among these “guardians of the body” are also macrophages, cells whose central role is to eliminate harmful agents by simply devouring them. There is a growing interest, among scientists and pharmaceutical companies, in targeting macrophages for therapeutic purposes.

In their lab, Dr. Veillette’s team discovered that macrophages are particularly good at destroying certain types of cancer cells. Even more, the team was able to greatly stimulate the appetite of these immune cells. In particular, they uncovered two molecules located on the surface of macrophages (CD11a and CD11c) which can be activated to increase their instinct to destroy macrophages.

In animal models and in human cell cultures in the lab, the stimulated macrophages turn into super-eaters of cancer cells.

“The ability to unleash the destructive power of macrophages is an important discovery that paves the way to some really exciting new possibilities in personalized medicine,” said Zhenghai Tang, co-first author of the study with Dominique Davidson. “In fact, added Davidson, “we help the body to protect itself better.”

This new use of the molecules to help the body cope better with cancer is an outgrowth of ongoing work in Dr. Veillette’s lab. He and his team have been studying the mechanisms that govern the functioning of the immune system for the past 30 years. In 2017, in a work published in the journal Nature, the team shed light on the SLAMF7 molecule, which also acts on the destructive capacity of macrophages.

“The more we know about the functioning of the immune system, the more we will be able to find effective and less toxic therapeutic solutions to fight diseases,” said Veillette. “Immune cells like macrophages are gaining a lot of interest in immunology research today, but also in the pharmaceutical industry, because this is truly the future of medicine for many deadly diseases.”

He added: “For our part, the next step will be to establish to what extent the molecules CD11a and CD11c can be used as biomarkers to identify patients who are most likely to respond to this type of therapy.”

One Step closer to Mainstream: Quantum computing in silicon hits 99 per cent accuracy: University of NSW: Video

Quantum Comp 99 percent

Australian researchers have proven that near error-free quantum computing is possible, paving the way to build silicon-based quantum devices compatible with current semiconductor manufacturing technology.

“Today’s publication shows our operations were 99 per cent error-free,” says Professor Andrea Morello of UNSW, who led the work with partners in the US, Japan, Egypt, and at UTS and the University of Melbourne.
“When the errors are so rare, it becomes possible to detect them and correct them when they occur. This shows that it is possible to build quantum computers that have enough scale, and enough power, to handle meaningful computation.”
The team’s goal is building what’s called a ‘universal quantum computer’ that won’t be specific to any one application.
“This piece of research is an important milestone on the journey that will get us there,” Prof. Morello says.
Quantum operations with 99% fidelity – the key to practical quantum computers.

Quantum computing in silicon hits the 99 per cent threshold

Prof. Morello’s paper is one of three published in Nature (“Precision tomography of a three-qubit donor quantum processor in silicon”) that independently confirm that robust, reliable quantum computing in silicon is now a reality. The breakthrough features on the front cover of the journal.
  • Morello et al achieved one-qubit operation fidelities up to 99.95 per cent, and two-qubit fidelity of 99.37 per cent with a three-qubit system comprising an electron and two phosphorous atoms, introduced in silicon via ion implantation.
  • A Delft team in the Netherlands led by Lieven Vandersypen achieved 99.87 per cent one-qubit and 99.65 per cent two-qubit fidelities using electron spins in quantum dots formed in a stack of silicon and silicon-germanium alloy (Si/SiGe).
  • A RIKEN team in Japan led by Seigo Tarucha similarly achieved 99.84 per cent one-qubit and 99.51 per cent two-qubit fidelities in a two-electron system using Si/SiGe quantum dots.
The UNSW and Delft teams certified the performance of their quantum processors using a sophisticated method called gate set tomography, developed at Sandia National Laboratories in the U.S. and made openly available to the research community.
Prof. Morello had previously demonstrated that he could preserve quantum information in silicon for 35 seconds, due to the extreme isolation of nuclear spins from their environment.
“In the quantum world, 35 seconds is an eternity,” says Prof. Morello. “To give a comparison, in the famous Google and IBM superconducting quantum computers the lifetime is about a hundred microseconds – nearly a million times shorter.”
But the trade-off was that isolating the qubits made it seemingly impossible for them to interact with each other, as necessary to perform actual computations.
A representation of the two phosphorous atoms sharing a single electron
An artist’s impression of quantum entanglement between three qubits in silicon: the two nuclear spins (red spheres) and one electron spin (shiny ellipse) which wraps around both nuclei. (Image: UNSW/Tony Melov)

Nuclear spins learn to interact accurately

Today’s paper describes how his team overcame this problem by using an electron encompassing two nuclei of phosphorus atoms.
“If you have two nuclei that are connected to the same electron, you can make them do a quantum operation,” says Mateusz Mądzik, one of the lead experimental authors.
“While you don’t operate the electron, those nuclei safely store their quantum information. But now you have the option of making them talk to each other via the electron, to realise universal quantum operations that can be adapted to any computational problem.”
“This really is an unlocking technology,” says Dr Serwan Asaad, another lead experimental author. “The nuclear spins are the core quantum processor. If you entangle them with the electron, then the electron can then be moved to another place and entangled with other qubit nuclei further afield, opening the way to making large arrays of qubits capable of robust and useful computations.”
Professor David Jamieson, research leader at the University of Melbourne, says: “The phosphorous atoms were introduced in the silicon chip using ion implantation, the same method used in all existing silicon computer chips. This ensures that our quantum breakthrough is compatible with the broader semiconductor industry.”
All existing computers deploy some form of error correction and data redundancy, but the laws of quantum physics pose severe restrictions on how the correction takes place in a quantum computer. Prof. Morello explains: “You typically need error rates below 1 per cent, in order to apply quantum error correction protocols. Having now achieved this goal, we can start designing silicon quantum processors that scale up and operate reliably for useful calculations.”

Global collaboration key to today’s trifecta

Semiconductor spin qubits in silicon are well-placed to become the platform of choice for reliable quantum computers. They are stable enough to hold quantum information for long periods and can be scaled up using techniques familiar from existing advanced semiconductor manufacturing technology.
“Until now, however, the challenge has been performing quantum logic operations with sufficiently high accuracy,” Prof. Morello says.
“Each of the three papers published today shows how this challenge can be overcome to such a degree that errors can be corrected faster than they appear.”
While the three papers report independent results, they illustrate the benefits that arise from free academic research, and the free circulation of ideas, people and materials. For instance, the silicon and silicon-germanium material used by the Delft and RIKEN groups was grown in Delft and shared between the two groups. The isotopically purified silicon material used by the UNSW group was provided by Professor Kohei Itoh, from Keio University in Japan.
The gate set tomography (GST) method, which was key to quantifying and improving the quantum gate fidelities in the UNSW and Delft papers, was developed at Sandia National Laboratories in the US, and made publicly available. The Sandia team worked directly with the UNSW group to develop methods specific for their nuclear spin system, but the Delft group was able to independently adopt it for its research too.
There has also been significant sharing of ideas through the movement of people between the teams, for example:
  • Dr Mateusz Mądzik, an author on the UNSW paper, is now a postdoctoral researcher with the Delft team.
  • Dr Serwan Asaad, an author on the UNSW paper, was formerly a student at Delft.
  • Prof. Lieven Vandersypen, the leader of the Delft team, spent a five-month sabbatical leave at UNSW in 2016, hosted by Prof. Andrea Morello.
  • The leader of the material growth team, Dr Giordano Scappucci, is a former UNSW researcher.
The UNSW-led paper is the result of a large collaboration, involving researchers from UNSW itself, University of Melbourne (for the ion implantation), University of Technology Sydney (for the initial application of the GST method), Sandia National Laboratories (Invention and refinement of the GST method), and Keio University (supply of the isotopically purified silicon material).
Source: University of New South Wales

EV’s Benefit from Intense Competition in the Silicon Anode for NextGen Batteries Market – $1.9 Billion in Start-Up Funding … So Far

Commercial interest in silicon anodes and investments into start-up companies has continued through 2021 – IDTechEx estimates that $1.9B of funding has now made its way into silicon anode start-ups.

Beyond investments, there has also been greater activity regarding companies beginning to license technologies, enter into supply relationships or commercialize technologies in early adopter markets, highlighting that the promise of silicon anode technology may soon be realized.

For example:• Enevate entered into a license agreement with batterymanufacturer EnerTech International• Enovix went public via a SPAC that valued the company at $1.1B• Elkem established a separate silicon anode company Vianode• Group 14 entered into a joint venture with SK materials for the supply of silane gas• Sila Nano launched their battery technology in the Whoop fitness wearable

IDTechEx estimates that cumulative funding for silicon anode start-ups has reached $1.9B. Source: IDTechEx – “Advanced Li-ion and Beyond Lithium Batteries 2022-2032: Technologies, Players, Trends, Markets

The above examples of commercial development and investment highlight the ongoing and significant interest in silicon anode technology. Much of this stems from the potential for silicon to significantly improve energy density. But beyond energy density, silicon anodes also have the potential to improve fast charge capability, cost, and safety.

In short, fast-charge capability is feasible due to the high porosity inherent to silicon anode solutions, cost can be reduced due to the high capacity of silicon material resulting in lower material requirements while safety improvements stem from the reduced risk of lithium plating and dendrite formation.

Though cycle and calendar life may need to be further demonstrated, improvements are being made. Combined, silicon anodes present a highly valuable proposition for electric vehicles and indeed the largest opportunity for silicon anode material lies in BEVs with the possibility of silicon being used as an additive or as the dominant active material.

Demand from other EV segments and consumer devices still represent a significant opportunity for silicon anode material and IDTechEx forecast that by 2032, demand for silicon anode material will reach $12.9B.

However, with nearly 30 start-up companies looking to commercialize silicon anode solutions, not to mention development at more established materials and battery players, competition in the silicon anode space is intensifying.

Start-ups and earlier stage companies find themselves in a race to lock in investments, partnerships, and orders. While the market is beginning to look increasingly crowded, the rewards for succeeding will be significant, and this competition will play a role in accelerating the commercialization of the better, cheaper, and more environmentally friendly batteries that are needed for better products and electric vehicles.

Watch GNT’s Short Presentation Video

Tenka Energy, Inc. Building Ultra-Thin Energy Dense SuperCaps and NexGen Nano-Enabled Pouch & Cylindrical Batteries – Energy Storage Made Small and POWERFUL!

Samsung and IBM Could Break the Nanosheet Threshold in Chips With ‘Vertically Stacked Transistors’ – IBM & Samsung Indicate This Could DOUBLE Processor Performance (MIT/ NTU)

This design can either double the performance of chips or reduce power use by 85%.

In May of 2021, we brought you a breakthrough in semiconductor materials that saw the creation of a chip that could push back the “end” of Moore’s Law and further widen the capability gap between China and U.S.-adjacent efforts in the field of 1-nanometer chips.

Now, IBM and Samsung claim they have also made a breakthrough in semiconductor design, revealing a new concept for stacking transistors vertically on a chip, according to a press release acquired by . It’s called Vertical Transport Field Effect Transistors (VTFET) and it sees transistors lie perpendicular to one another while current flows vertically.

The breakthrough was accomplished in a joint effort, involving the Massachusetts Institute of Technology (MIT), National Taiwan University (NTU), and the Taiwan Semiconductor Manufacturing Co (TSMC), which is the world’s largest contract manufacturer of advanced chips. At the core of the breakthrough was a process that employs semi-metal bismuth to allow for the manufacture of semiconductors below the 1-nanometer (nm) level.

This is a drastic change from today’s models where transistors lie flat on the surface of the silicon, and then electric current flows from side to side. By doing this, IBM and Samsung hope to extend Moore’s Law beyond the nanosheet threshold and waste less energy.

What will that look like in terms of processors? Well, IBM and Samsung state that these features will double the performance or use 85 percent less power than chips designed with FinFET transistors. But these two firms are not the only ones testing this type of technology.

Intel is also experimenting with chips stacked above each other, as reported by Reuters. “By stacking the devices directly on top of each other, we’re clearly saving area,” Paul Fischer, director and senior principal engineer of Intel’s Components Research Group told Reuters in an interview. “We’re reducing interconnect lengths and really saving energy, making this not only more cost efficient, but also better performing.”

All these advances are great for our cell phones who could one day go weeks without charging and for energy-intensive activities such as crypto mining. But then, we might also find ourselves in a Jevon’s paradox, which occurs when technological progress increases the efficiency with which a resource is used, but the rate of consumption of that resource also rises due to increasing demand. Isn’t that what’s going on with cryptocurrencies in a way?

The Rapid Cost Decline of lithium-ion batteries’ – Why?

Lithium-ion batteries, those marvels of lightweight power that have made possible today’s age of handheld electronics and electric vehicles, have plunged in cost since their introduction three decades ago at a rate similar to the drop in solar panel prices, as documented by a study published last March.

But what brought about such an astonishing cost decline, of about 97 percent?

Some of the researchers behind that earlier study have now analyzed what accounted for the extraordinary savings. They found that by far the biggest factor was work on research and development, particularly in chemistry and materials science. This outweighed the gains achieved through economies of scale, though that turned out to be the second-largest category of reductions.

The new findings are being published in the journal Energy and Environmental Science, in a paper by MIT postdoc Micah Ziegler, recent graduate student Juhyun Song Ph.D. ’19, and Jessika Trancik, a professor in MIT’s Institute for Data, Systems and Society.

The findings could be useful for policymakers and planners to help guide spending priorities in order to continue the pathway toward ever-lower costs for this and other crucial energy storage technologies, according to Trancik. Their work suggests that there is still considerable room for further improvement in electrochemical battery technologies, she says.

The analysis required digging through a variety of sources, since much of the relevant information consists of closely held proprietary business data. “The data collection effort was extensive,” Ziegler says. “We looked at academic articles, industry and government reports, press releases, and specification sheets. We even looked at some legal filings that came out. We had to piece together data from many different sources to get a sense of what was happening.” He says they collected “about 15,000 qualitative and quantitative data points, across 1,000 individual records from approximately 280 references.”

Data from the earliest times are hardest to access and can have the greatest uncertainties, Trancik says, but by comparing different data sources from the same period they have attempted to account for these uncertainties.

Overall, she says, “we estimate that the majority of the cost decline, more than 50 percent, came from research-and-development-related activities.” That included both private sector and government-funded research and development, and “the vast majority” of that cost decline within that R&D category came from chemistry and materials research.

That was an interesting finding, she says, because “there were so many variables that people were working on through very different kinds of efforts,” including the design of the battery cells themselves, their manufacturing systems, supply chains, and so on. “The cost improvement emerged from a diverse set of efforts and many people, and not from the work of only a few individuals.”

The findings about the importance of investment in R&D were especially significant, Ziegler says, because much of this investment happened after lithium-ion battery technology was commercialized, a stage at which some analysts thought the research contribution would become less significant. Over roughly a 20-year period starting five years after the batteries’ introduction in the early 1990s, he says, “most of the cost reduction still came from R&D. The R&D contribution didn’t end when commercialization began. In fact, it was still the biggest contributor to cost reduction.”

The study took advantage of an analytical approach that Trancik and her team initially developed to analyze the similarly precipitous drop in costs of silicon solar panels over the last few decades. They also applied the approach to understand the rising costs of nuclear energy. “This is really getting at the fundamental mechanisms of technological change,” she says. “And we can also develop these models looking forward in time, which allows us to uncover the levers that people could use to improve the technology in the future.”

One advantage of the methodology Trancik and her colleagues have developed, she says, is that it helps to sort out the relative importance of different factors when many variables are changing all at once, which typically happens as a technology improves. “It’s not simply adding up the cost effects of these variables,” she says, “because many of these variables affect many different cost components. There’s this kind of intricate web of dependencies.” But the team’s methodology makes it possible to “look at how that overall cost change can be attributed to those variables, by essentially mapping out that network of dependencies,” she says.

This can help provide guidance on public spending, private investments, and other incentives. “What are all the things that different decision makers could do?” she asks. “What decisions do they have agency over so that they could improve the technology, which is important in the case of low-carbon technologies, where we’re looking for solutions to climate change and we have limited time and limited resources? The new approach allows us to potentially be a bit more intentional about where we make those investments of time and money.”

David Chandler MIT Technology

More information: Determinants of lithium-ion battery technology cost decline, Energy and Environmental Science (2021). DOI: 10.1039/d1ee01313k

Journal information: Energy and Environmental Science

Provided by Massachusetts Institute of Technology

Cancer chemotherapy drug reverses Alzheimer’s symptoms in mice – Read More at GenesisNanotech Online

GenesisNanotech – “Great Things From Small Thing”

Read GenesisNanotech Online: Articles Like: “Cancer chemotherapy drug reverses Alzheimer’s symptoms in mice” (Link)

And … “Tiny bubbles can be future treatment for inflammation”

Scientists hope that tiny sacs of material excreted by cells—so-called extracellular vesicles—can be used to deliver drugs inside the body. (Link)

+More … Read The Latest Full Edition Here:

Iron-Flow Battery Technology Breakthrough Could Displace Lithium Batteries as ‘Top Choice’ for Renewable Energy Storage

iron-flow-batteries 2

Iron-flow technology from ESS is being deployed at scale in the U.S.

The world’s electric grids are creaking under the pressure of volatile fossil-fuel prices and the imperative of weaning the world off polluting energy sources. A solution may be at hand, thanks to an innovative battery that’s a cheaper alternative to lithium-ion technology.

SB Energy Corp., a U.S. renewable-energy firm that’s an arm of Japan’s SoftBank Group Corp., is making a record purchase of the batteries manufactured by ESS Inc. The Oregon company says it has new technology that can store renewable energy for longer and help overcome some of the reliability problems that have caused blackouts in California and record-high energy prices in Europe.

Battery Breakthrough May Help End Globe’s Grid Failures
ESS batteries Photographer: Tojo Andrianarivo/Bloomberg

The units, which rely on something called “iron-flow chemistry,” will be used in utility-scale solar projects dotted across the U.S., allowing those power plants to provide electricity for hours after the sun sets. SB Energy will buy enough batteries over the next five years to power 50,000 American homes for a day.

“Long-duration energy storage, like this iron-flow battery, are key to adding more renewables to the grid,” said Venkat Viswanathan, a battery expert and associate professor of mechanical engineering at Carnegie Mellon University.

Battery Breakthrough May Help End Globe’s Grid Failures
Founder: Craig Evans: Credit: Tojo Andrianarivo/Bloomberg

ESS was founded in 2011 by Craig Evans, now president, and Julia Song, the chief technology officer. They recognized that while lithium-ion batteries will play a key role in electrification of transport, longer duration grid-scale energy storage needed a different battery. That’s because while the price of lithium-ion batteries has declined 90% over the last decade, their ingredients, which sometimes include expensive metals such as cobalt and nickel, limit how low the price can fall.

The deal for 2 gigawatt-hours of batteries is worth at least $300 million, according to ESS. Rich Hossfeld, chief executive officer of SB Energy, said the genius of the units lies in their simplicity.

Battery Breakthrough May Help End Globe’s Grid Failures
Julia Song: Credit: Tojo Andrianarivo/Bloomberg

“The battery is made of iron salt and water,” said Hossfeld. “Unlike lithium-ion batteries, iron flow batteries are really cheap to manufacture.”

Every battery has four components: two electrodes between which charged particles shuffle as the battery is charged and discharged, electrolyte that allows the particles to flow smoothly and a separator that prevents the two electrodes from forming a short circuit.

Flow batteries, however, look nothing like the battery inside smartphones or electric cars. That’s because the electrolyte needs to be physically moved using pumps as the battery charges or discharges. That makes these batteries large, with ESS’s main product sold inside a shipping container.

What they take up in space, they can make up in cost. Lithium-ion batteries for grid-scale storage can cost as much as $350 per kilowatt-hour. But ESS says its battery could cost $200 per kWh or less by 2025.

Crucially, adding storage capacity to cover longer interruptions at a solar or wind plant may not require purchasing an entirely new battery. Flow batteries require only extra electrolyte, which in ESS’s case can cost as little as $20 per kilowatt hour.

“This is a big, big deal,” said Eric Toone, science lead at Breakthrough Energy Ventures, which has invested in ESS. “We’ve been talking about flow batteries forever and ever and now it’s actually happening.”

Battery Breakthrough May Help End Globe’s Grid Failures
A worker at the ESS facility in Wilsonville, OR Credit: Tojo Andrianarivo/Bloomberg

The U.S. National Aeronautics and Space Administration built a flow battery as early as 1980. Because these batteries used water, they presented a much safer option for space applications than lithium-ion batteries developed around that time, which were infamous for catching on fire. Hossfeld says he’s been able to get permits for ESS batteries, even in wildfire-prone California, that wouldn’t have been given to lithium-ion versions.

Still, there was a problem with iron flow batteries. During charging, the battery can produce a small amount of hydrogen, which is a symptom of reactions that, left unchecked, shorten the battery’s life. ESS’s main innovation, said Song, was a way of keeping any hydrogen produced within the system and thus hugely extending its life.

“As soon as you close the loop on hydrogen, you suddenly turn a lab prototype into a commercially viable battery option,” said Viswanathan. ESS’s iron-flow battery can endure more than 20 years of daily use without losing much performance, said Hossfeld.

Battery Breakthrough May Help End Globe’s Grid Failures
Plastic sheets are treated with plasma at the ESS manufacturing facility in Wilsonville, OR
Credit: Tojo Andrianarivo/Bloomberg

At the company’s factory near Portland, yellow robots cover plastic sheets with chemicals and glue them together to form the battery cores. Inside the shipping containers, vats full of electrolyte feed into each electrode through pumps — allowing the battery to do its job of absorbing renewable power when the sun shines and releasing it when it gets dark.

It’s a promising first step. ESS’s battery is a cheap solution that can currently provide about 12 hours of storage, but utilities will eventually need batteries that can last much longer as more renewables are added to the grid. Earlier this month, for example, the lack of storage contributed to a record spike in power prices across the U.K. when wind speeds remained low for weeks. Startups such as Form Energy Inc. are also using iron, an abundant and cheap material, to build newer forms of batteries that could beat ESS on price.

So far, ESS has commercially deployed 8 megawatt-hours of iron flow batteries. Last week, after a six-month evaluation, Spanish utility Enel Green Power SpA signed a single deal for ESS to build an equivalent amount. SB Energy’s Hossfeld, who also sits on ESS’s board, said the company would likely buy still more battery capacity from ESS in the next five years.

Even as its order books fill up, ESS faces a challenging road ahead. Bringing new batteries to market is notoriously difficult and the sector is littered with failed startups. Crucially, lithium-ion technology got a head start and customers are more familiar with its pros and cons. ESS will have to prove that its batteries can meet the rigorous demands of power plant operators.

The new order should help ESS as it looks to go public within weeks through a special-purpose acquisition company at a valuation of $1.07 billion. The listing will net the company $465 million, which it plans to use to scale up its operations.

Contributions by Tom Metcalf