It’s ALL in Our Heads ~ Studying the Consciousness to Better Understand …


The physical brain and the conceptual mind are linked in ways that we don’t fully understand. A new collaboration is getting us closer.

How does the brain give rise to the mind? This question lies at the interface between philosophy and biology. Researchers are starting to zero in on how brain activity translates into consciousness and how we experience the world around us. The results have broad implications for cognition, brain health, human nature, and artificial intelligence.

The Azrieli Program in Brain, Mind & Consciousness is a collaboration started by the Canadian Institute for Advanced Research, bringing together a team of neuroscientists to answer these big questions.

Watch the Video



But how is it possible to probe something like consciousness? Professors Adrian Owen, Melvyn Goodale, and Lisa Saksida are all fellows of the Azrieli Program working at Western University, and they look at brain activity at the boundaries between health and dysfunction.

Owen studies patients who are losing consciousness. Communicating with patients who will soon be in a vegetative state, Owen takes functional magnetic resonance imaging (fMRI) scans to observe transitions in the brain as they lose awareness, allowing a better understanding what types of brain activity are preserved or lost.


Along similar lines, Goodale looks at how brain damage impacts cognition, memory, sensory processing, and motor control. These insights illuminate how the brain solves problems and controls complex movement, which have implications not only in health, but also in computer science and artificial intelligence, says Goodale.

Saksida wants to understand how brain circuits are altered in Alzheimer’s Disease. Drug treatment for Alzheimer’s only treats symptoms. There is still no proven therapy that stops or reverses progression of Alzheimer’s. Saksida believes the key to effective treatments is to better understand the brain circuits involved so that they can be targeted to improve cognition.

While the mind remains a bit of a mystery, these studies are working to fill in the gaps. This understanding allows researchers to better understand how the mind emerges, how it can be damaged, and perhaps one day, how it can be imitated or repaired.

UC Berkeley: Magnetic nano-particle imaging Research May Lead to Early Cancer Detection


Magnetic particle imaging is a new, up-and-coming, safe and highly sensitive tracer imaging technique that works by detecting super-para-magnetic iron oxide nano-particles with high image contrast (that is, no background tissue signal). The technique, which does not use any ionizing radiation, can be used to image anywhere inside the body, which means that it could be promising for detecting and monitoring tumors. Researchers in the US are now the first to have used MPI to passively detect cancer by basically exploiting the abnormal leakiness of tumor blood vessels – a finding that bodes well for the early detection of cancers like breast cancer in patients at risk for the disease.

Biomedical imaging is important at every stage of diagnosing and treating cancer, beginning with initial screening, through to diagnosis, treatment planning and monitoring. The biggest challenge here is to be able to reliably distinguish tumour tissue from healthy tissue, something that is not as easy as it sounds.

“Conventional anatomical techniques, such as X-ray, X-ray computed tomography (CT), ultrasound and magnetic resonance imaging (MRI), are very useful for detecting the tissue architecture changes that generally accompany cancer, but the native contrast of tumours may not differ sufficiently from healthy tissue for a confident diagnosis, especially for metastatic or so-called diffuse tumours” explains lead author of the study Elaine Yu, who is completing her Bioengineering PhD in Steven Conolly’s lab at the University of California at Berkeley (UCB). “This is why exogenous contrast agents, such as iodine (for X-ray and CT) and gadolinium (for MRI) are often administered to highlight crucial vascular differences between normal and cancerous tissue for more precise screening.”

Exploiting the EPR effect

Contrast agents are all injected intravenously, but the way they highlight tumours differs considerably. Nanosized agents are better than conventional low molecular weight agents in one respect because they are not immediately excreted by the kidneys if designed to be large enough. They are thus able to circulate in the blood for extended periods of time. The naturally leaky vasculature of some tumours also allows nanosized particles to preferentially end up in tumour tissue, where they can be held. This is known as the enhanced permeability and retention (EPR) effect.

“Our work is the first to exploit the EPR effect with the high sensitivity and contrast afforded by magnetic particle imaging (MPI),” says Yu. “We have succeeded in imaging tumours in rats with vivid tumour-to-background contrast. “Thanks to its high sensitivity and good signal throughout the entire body, we were able to clearly capture the nanoparticle dynamics in the tumour: so-called rim enhancement, peak particle uptake at six hours after administration and eventual clearance beyond 48 hours.”

Synthesizing the SPIOscancer-shapeshiftin

The MPI-tailored superparamagnetic iron oxide nanoparticle (SPIO) tracers were synthesized by team members at LodeSpin Labs and by Kannan Krishnan’s lab at the University of Washington (UW), and were designed for optimal imaging resolution and long blood circulation time. “The iron oxide nanoparticles were made by thermolysis of iron III oleate in 1-octadcene, with subsequent oxidation to achieve the desired magnetic behaviour and coated with the biocompatible coating MPAO-PEG,” explains Yu.

The researchers injected the nanoparticles into the tail veins of rats and then performed a series of MPI scans as the nanoparticles travelled through the circulation. Thanks to the EPR effect, the particles preferentially accumulated in tumours and were retained there for up to six days.

Imaging the SPIO electronic moment

MPI was first developed by Philips Research in 2005 and is a tracer imaging technique that directly measures the location and concentration of SPIO nanoparticles in vivo. It images the SPIO electronic moment, which is 22 million times more intense than nuclear MRI moments. When a time-varying exciting field is applied, it causes the moments of the SPIOs to instantaneously “flip”, thereby inducing a signal in a receiver coil.

“The advantages of MPI are its superb contrast and sensitivity, which could very soon rival the dose-limited sensitivity of nuclear medicine techniques,” Conolly tells “This is very exciting, since MPI does not rely on ionizing radiation. The scanner and iron oxide tracer are also thought to be safe for humans. Indeed, some SPIO agents are already FDA or EU safety approved for human use in other clinical applications.”

MPI tracers are excreted through the liver

Importantly, the MPI tracers are excreted through the liver, rather than through the kidneys, and there is evidence that SPIOs could be safer than iodine and gadolinium for patients with chronic kidney disease. “Given all these advantages, we are very hopeful that MPI could play an important role in early-stage cancer detection. Indeed, we are particularly focusing on early-stage breast cancer detection in the subpopulation of women with radiologically dense breast tissue and who are at high risk for cancer (because of, for example, BRCA1 or BRCA2 defects, or family history of the disease).”

Conolly says that he and his colleagues are now working hard to improve MPI in terms of resolution and sensitivity. “We are also studying MPI for stem-cell tracking, detecting pulmonary embolism, brain perfusion to detect and monitor strokes or traumatic brain injuries, and T-cell immunotherapy studies in collaboration with researchers at Berkeley, the University of California at San Francisco, UW, Case Western, Harvard and Stanford. We would also like to follow up on several promising demonstrations of MPI-guided magnetic fluid hyperthermia exploiting the unique ‘focusing’ capabilities of MPI to selectively heat tumours or to release chemotherapeutic agents specifically into a tumour. We are doing this work with University of Florida collaborators.”

The new MPI cancer imaging study is described in Nano Letters DOI: 10.1021/acs.nanolett.6b04865.

“Your Heart (Organ) on-a-chip” ~ mimics heart’s biomechanical properties (w/video)

Posted: Feb 23, 2017

The human heart beats more than 2.5 billion times in an average lifetime. Now scientists at Vanderbilt University have created a three-dimensional organ-on-a-chip that can mimic the heart’s amazing biomechanical properties.

“We created the I-Wire Heart-on-a-Chip so that we can understand why cardiac cells behave the way they do by asking the cells questions, instead of just watching them,” said Gordon A. Cain University Professor John Wikswo, who heads up the project. 

“We believe it could prove invaluable in studying cardiac diseases, drug screening and drug development, and, in the future, in personalized medicine by identifying the cells taken from patients that can be used to patch damaged hearts effectively.”

The device and the results of initial experiments demonstrating that it faithfully reproduces the response of cardiac cells to two different drugs that affect heart function in humans are described in an article published last month in the journal Acta Biomaterialia ~

(“I-Wire Heart-on-a-Chip I: Three-dimensional cardiac tissue constructs for physiology and pharmacology”). 

A companion article in the same issue presents a biomechanical analysis of the I-Wire platform that can be used for characterizing biomaterials for cardiac regenerative medicine.

I-Wire device with cardiac fiber shown in magnification window. (Image: VIIBRE / Vanderbilt)

The unique aspect of the new device, which represents about two millionths of a human heart, is that it controls the mechanical force applied to cardiac cells. 

This allows the researchers to reproduce the mechanical conditions of the living heart, which is continually stretching and contracting, in addition to its electrical and biochemical environment.

“Heart tissue, along with muscle, skeletal and vascular tissue, represents a special class of mechanically active biomaterials,” said Wikswo. “Mechanical activity is an intrinsic property of these tissues so you can’t fully understand how they function and how they fail without taking this factor into account.”

“Currently, we don’t have many models for studying how the heart responds to stress. Without them, it is very difficult to develop new drugs that specifically address what goes wrong in these conditions,” commented Charles Hong, associate professor of cardiovascular medicine at Vanderbilt’s School of Medicine, who didn’t participate in the research but is familiar with it. 

“This provides us with a really amazing model for studying how hearts fail.”

The I-Wire device consists of a thin thread of human cardiac cells 0.014 inches thick (about the size of 20-pound monofilament fishing line) stretched between two perpendicular wire anchors. 

The amount of tension on the fiber can be varied by moving the anchors in and out, and the tension is measured with a flexible probe that pushes against the side of the fiber.

The fiber is supported by wires and a frame in an optically clear well that is filled with liquid medium like that which surrounds cardiac cells in the body. The apparatus is mounted on the stage of a powerful optical microscope that records the fiber’s physical changes. 
The microscope also acts as a spectroscope that can provide information about the chemical changes taking place in the fiber. 
A floating microelectrode also measures the cells’ electrical activity.

According to the researchers, the I-Wire system can be used to characterize how cardiac cells respond to electrical stimulation and mechanical loads and can be implemented at low cost, small size and low fluid volumes, which make it suitable for screening drugs and toxins. Because of its potential applications, Vanderbilt University has patented the device.

Video taken through a microscope shows I-Wire heart fiber. left, beating at different frequencies. The black circle, right, is the flexible cantilever that measures the force of the fiber’s contractions. (Veniamin Sidorov / VIIBRE /Vanderbilt)

Unlike other heart-on-a-chip designs, I-Wire allows the researchers to grow cardiac cells under controlled, time-varying tension similar to what they experience in living hearts. 

As a consequence, the heart cells in the fiber align themselves in alternating dark and light bands, called sarcomeres, which are characteristic of human muscle tissue. The cardiac cells in most other heart-on-a-chip designs do not exhibit this natural organization.

In addition, the researchers have determined that their heart-on-a-chip obeys the Frank-Starling law of the heart. The law, which was discovered by two physiologists in 1918, describes the relationship between the volume of blood filling the heart and the force with which cardiac cells contract. The I-Wire is one of the first heart-on-a-chip devices to do so.

To demonstrate the I-Wire’s value in determining the effects that different drugs have on the heart, the scientists tested its response with two drugs known to affect heart function in humans: isoproterenol and blebbistatin. Isoproterenol is a medication used to treat bradycardia (slow heart rate) and heart block (obstruction of the heart’s natural pacemaker). Blebbistatin inhibits contractions in all types of muscle tissue, including the heart.

According to Veniamin Sidorov, the research assistant professor at the Vanderbilt Institute for Integrative Biosystems Research and Education (VIIBRE) who led its development, the device faithfully reproduces the response of cardiac cells in a living heart.

“Cardiac tissue has two basic elements: an active, contractile element and a passive, elastic element,” said Sidorov. “By separating these two elements with blebbistatin, we successfully characterized the elasticity of the artificial tissue. By exposing it to isoproterenol, we tested its response to adrenergic stimulation, which is one of the main systems responsible for regulation of heart contractions. 
We found that the relationship between these two elements in the cardiac fiber is consistent with that seen in natural tissue. 

This confirms that our heart-on-a-chip model provides us with a new way to study the elastic response of cardiac muscle, which is extremely complicated and is implicated in heart failure, hypertension, cardiac hypertrophy and cardiomyopathy.”

Source: Vanderbilt University

MIT: New ‘Solar Skin’ Solar panels get a face-lift with custom Display Capabilities


Startup aims for wider U.S. solar adoption with photovoltaic panels that can display any image.

Founded at the MIT Sloan School of Management, Sistine Solar creates custom solar panels designed to mimic home facades and other environments, as well as display custom designs, with aims of enticing more homeowners to install photovoltaic systems. Courtesy of Sistine Solar

Residential solar power is on a sharp rise in the United States as photovoltaic systems become cheaper and more powerful for homeowners. A 2012 study by the U.S. Department of Energy (DOE) predicts that solar could reach 1 million to 3.8 million homes by 2020, a big leap from just 30,000 homes in 2006.

But that adoption rate could still use a boost, according to MIT spinout Sistine Solar. “If you look at the landscape today, less than 1 percent of U.S. households have gone solar, so it’s nowhere near mass adoption,” says co-founder Senthil Balasubramanian MBA ’13.

Founded at the MIT Sloan School of Management, Sistine creates custom solar panels designed to mimic home facades and other environments, with aims of enticing more homeowners to install photovoltaic systems.

Sistine’s novel technology, SolarSkin, is a layer that can be imprinted with any image and embedded into a solar panel without interfering with the panel’s efficacy. Homeowners can match their rooftop or a grassy lawn. Panels can also be fitted with business logos, advertisements, or even a country’s flag. SolarSkin systems cost about 10 percent more than traditional panel installations. But over the life of the system, a homeowner can still expect to save more than $30,000, according to the startup.

A winner of a 2013 MIT Clean Energy Prize, Sistine has recently garnered significant media attention as a rising “aesthetic solar” startup. Last summer, one of its pilot projects was featured on the Lifetime television series “Designing Spaces,” where the panels blended in with the shingle roof of a log cabin in Hubbardston, Massachusetts.

In December, the startup installed its first residential SolarSkin panels, in a 10-kilowatt system that matches a cedar pattern on a house in Norwell, Massachusetts. Now, the Cambridge-based startup says it has 200 homes seeking installations, primarily in Massachusetts and California, where solar is in high demand.

“We think SolarSkin is going to catch on like wildfire,” Balasubramanian says. “There is a tremendous desire by homeowners to cut utility bills, and solar is finding reception with them — and homeowners care a lot about aesthetics.”







Captivating people with solar – Who Said Solar Can’t Be Beautiful?

SolarSkin is the product of the co-founders’ unique vision, combined with MIT talent that helped make the product a reality.

Balasubramanian came to MIT Sloan in 2011, after several years in the solar-power industry, with hopes of starting his own solar-power startup — a passion shared by classmate and Sistine co-founder Ido Salama MBA ’13.

One day, the two were brainstorming at the Muddy Charles Pub, when a surprisingly overlooked issue popped up: Homeowners, they heard, don’t really like the look of solar panels. That began a nebulous business mission to “captivate people’s imaginations and connect people on an emotional level with solar,” Balasubramanian says.

Recruiting Jonathan Mailoa, then a PhD student in MIT’s Photovoltaic Research Laboratory, and Samantha Holmes, a mosaic artist trained in Italy who is still with the startup, the four designed solar panels that could be embedded on massive sculptures and other 3-D objects. They took the idea to 15.366 (Energy Ventures), where “it was drilled into our heads that you have to do a lot of market testing before you build a product,” Balasubramanian says.

That was a good thing, too, he adds, because they realized their product wasn’t scalable. “We didn’t want to make a few installations that people talk about. … We [wanted to] make solar so prevalent that within our lifetime we can see the entire world convert to 100 percent clean energy,” Balasubramanian says.

The team’s focus then shifted to manufacturing solar panels that could match building facades or street fixtures such as bus shelters and information kiosks. In 2013, the idea earned the team — then officially Sistine Solar — a modest DOE grant and a $20,000 prize from the MIT Clean Energy Prize competition, “which was a game-changer for us,” Balasubramanian says.

But, while trying to construct custom-designed panels, another idea struck: Why not just make a layer to embed into existing solar panels? Recruiting MIT mechanical engineering student Jody Fu, Sistine created the first SolarSkin prototype in 2015, leading to pilot projects for Microsoft, Starwood Hotels, and other companies in the region.

That summer, after earning another DOE grant for $1 million, Sistine recruited Anthony Occidentale, an MIT mechanical engineering student who has since helped further advance SolarSkin. “We benefited from the incredible talent at MIT,” Balasubramanian says. “Anthony is a shining example of someone who resonates with our vision and has all the tools to make this a reality.”

Imagination is the limit

SolarSkin is a layer that employs selective light filtration to display an image while still transmitting light to the underlying solar cells. The ad wraps displayed on bus windows offer a good analogy: The wraps reflect some light to display an image, while allowing the remaining light through so passengers inside the bus can see out. SolarSkin achieves a similar effect — “but the innovation lies in using a minute amount of light to reflect an image [and preserve] a high-efficiency solar module,” Balasubramanian says.

To achieve this, Occidentale and others at Sistine have developed undisclosed innovations in color science and human visual perception. “We’ve come up with a process where we color-correct the minimal information we have of the image on the panels to make that image appear, to the human eye, to be similar to the surrounding backdrop of roof shingles,” Occidentale says.

As for designs, Sistine has amassed a database of common rooftop patterns in the United States, such as asphalt shingles, clay tiles, and slate, in a wide variety of colors. “So if a homeowner says, for instance, ‘We have manufactured shingles in a barkwood pattern,’ we have a matching design for that,” he says. Custom designs aren’t as popular, but test projects include commercial prints for major companies, and even Occidentale’s face on a panel.

Currently, Sistine is testing SolarSkin for efficiency, durability, and longevity at the U.S. National Renewable Energy Laboratory under a DOE grant.

The field of aesthetic solar is still nascent, but it’s growing, with major companies such as Tesla designing entire solar-panel roofs. But, as far as Balasubramanian knows, Sistine is the only company that’s made a layer that can be integrated into any solar panel, and that can display any color as well as intricate patterns and actual images.

Companies could thus use SolarSkin solar panels to double as business signs. Municipalities could install light-powering solar panels on highways that blend in with the surrounding nature. Panels with changeable advertisements could be placed on bus shelters to charge cell phones, information kiosks, and other devices. “You can start putting solar in places you typically didn’t think of before,” Balasubramanian says. “Imagination is really the only limit with this technology.”

Switched-on DNA: Sparking nano-electronic applications

DNA, the stuff of life, may very well also pack quite the jolt for engineers trying to advance the development of tiny, low-cost electronic devices. Credit: ASU

Switched-on DNA

DNA, the stuff of life, may very well also pack quite the jolt for engineers trying to advance the development of tiny, low-cost electronic devices.

Much like flipping your light switch at home—-only on a scale 1,000 times smaller than a human hair—-an ASU-led team has now developed the first controllable DNA switch to regulate the flow of electricity within a single, atomic-sized molecule. 

The new study, led by ASU Biodesign Institute researcher Nongjian Tao, was published in the advanced online journal Nature Communications.

“It has been established that charge transport is possible in DNA, but for a useful device, one wants to be able to turn the charge transport on and off. We achieved this goal by chemically modifying DNA,” said Tao, who directs the Biodesign Center for Bioelectronics and Biosensors and is a professor in the Fulton Schools of Engineering. 

“Not only that, but we can also adapt the modified DNA as a probe to measure reactions at the single-molecule level. This provides a unique way for studying important reactions implicated in disease, or photosynthesis reactions for novel renewable energy applications.”

Engineers often think of electricity like water, and the research team’s new DNA switch acts to control the flow of electrons on and off, just like water coming out of a faucet.

Previously, Tao’s research group had made several discoveries to understand and manipulate DNA to more finely tune the flow of electricity through it. They found they could make DNA behave in different ways—and could cajole electrons to flow like waves according to quantum mechanics, or “hop” like rabbits in the way electricity in a copper wire works —creating an exciting new avenue for DNA-based, nano-electronic applications.

Tao assembled a multidisciplinary team for the project, including ASU postdoctoral student Limin Xiang and Li Yueqi performing bench experiments, Julio Palma working on the theoretical framework, with further help and oversight from collaborators Vladimiro Mujica (ASU) and Mark Ratner (Northwestern University).

Tao’s group, modified just one of DNA’s iconic double helix chemical letters, abbreviated as A, C, T or G, with another chemical group, called anthraquinone (Aq). Anthraquinone is a three-ringed carbon structure that can be inserted in …more

To accomplish their engineering feat, Tao’s group, modified just one of DNA’s iconic double helix chemical letters, abbreviated as A, C, T or G, with another chemical group, called anthraquinone (Aq). Anthraquinone is a three-ringed carbon structure that can be inserted in between DNA base pairs but contains what chemists call a redox group (short for reduction, or gaining electrons or oxidation, losing electrons).

These chemical groups are also the foundation for how our bodies’ convert chemical energy through switches that send all of the electrical pulses in our brains, our hearts and communicate signals within every cell that may be implicated in the most prevalent diseases.

The modified Aq-DNA helix could now help it perform the switch, slipping comfortably in between the rungs that make up the ladder of the DNA helix, and bestowing it with a new found ability to reversibly gain or lose electrons.

Through their studies, when they sandwiched the DNA between a pair of electrodes, they careful controlled their electrical field and measured the ability of the modified DNA to conduct electricity. This was performed using a staple of nano-electronics, a scanning tunneling microscope, which acts like the tip of an electrode to complete a connection, being repeatedly pulled in and out of contact with the DNA molecules in the solution like a finger touching a water droplet.

“We found the electron transport mechanism in the present anthraquinone-DNA system favors electron “hopping” via anthraquinone and stacked DNA bases,” said Tao. In addition, they found they could reversibly control the conductance states to make the DNA switch on (high-conductance) or switch-off (low conductance). 

When anthraquinone has gained the most electrons (its most-reduced state), it is far more conductive, and the team finely mapped out a 3-D picture to account for how anthraquinone controlled the electrical state of the DNA.

For their next project, they hope to extend their studies to get one step closer toward making DNA nano-devices a reality.

“We are particularly excited that the engineered DNA provides a nice tool to examine redox reaction kinetics, and thermodynamics the single molecule level,” said Tao.

 Explore further: Scientists engineer tunable DNA for electronics applications

More information: Gate-controlled conductance switching in DNA, Nature Communications, DOI: 10.1038/ncomms14471 

Journal reference: Nature Communications  

Provided by: Arizona State University  

Oregon St. University: New hydronium-ion battery show promise for sustainable energy storage


February 20, 2017

A new type of battery developed by scientists at Oregon State University shows promise for sustainable, high-power energy storage.

It’s the world’s first battery to use only hydronium ions as the charge carrier.
The new battery provides an additional option for researchers, particularly in the area of stationary storage.

Stationary storage refers to batteries in a permanent location that store grid power – including power generated from alternative energy sources such as wind turbines or solar cells – for use on a standby or emergency basis.

Hydronium, also known as H3O+, is a positively charged ion produced when a proton is added to a water molecule. Researchers in the OSU College of Science have demonstrated that hydronium ions can be reversibly stored in an electrode material consisting of perylenetetracarboxylic dianhydridem, or PTCDA.

This material is an organic, crystalline, molecular solid. The battery, created in the Department of Chemistry at Oregon State, uses dilute sulfuric acid as the electrolyte.
Graduate student Xingfeng Wang was the first author on the study, which has been published in the journal Angewandte Chemie International Edition, a publication of the German Chemical Society.

“This may provide a paradigm-shifting opportunity for more sustainable batteries,” said Xiulei Ji, assistant professor of chemistry at OSU and the corresponding author on the research. “It doesn’t use lithium or sodium or potassium to carry the charge, and just uses acid as the electrolyte. There’s a huge natural abundance of acid so it’s highly renewable and sustainable.” Ji points out that until now, cations – ions with a positive charge – that have been used in batteries have been alkali metal, alkaline earth metals or aluminum.
“No nonmetal cations were being considered seriously for batteries,” he said.
The study observed a big dilation of the PTCDA lattice structure during intercalation – the process of its receiving ions between the layers of its structure. That meant the electrode was being charged, and the PTCDA structure expanded, by hydronium ions, rather than extremely tiny protons, which are already used in some batteries.

“Organic solids are not typically contemplated as crystalline electrode materials, but many are very crystalline, arranged in a very ordered structure,” Ji said. “This PTCDA material has a lot of internal space between its molecule constituents so it provides an opportunity for storing big ions and good capacity.” The hydronium ions also migrate through the electrode structure with comparatively low “friction,” which translates to high power.
“It’s not going to power electric cars,” Ji said. “But it does provide an opportunity for battery researchers to go in a new direction as they look for new alternatives for energy storage, particularly for stationary grid storage.”

More information: Xingfeng Wang et al, Hydronium-Ion Batteries with Perylenetetracarboxylic Dianhydride Crystals as an Electrode, Angewandte Chemie International Edition (2017). DOI: 10.1002/anie.201700148
Provided by: Oregon State University

Energy-collecting Windows Dream One-Step Closer


Silicon-based luminescent solar concentrator. While most of the light concentrated to the edge of the silicon-based luminescent solar concentrator is actually invisible, we can better see the concentration effect by the naked eye when the slab is illuminated by a “black light” which is composed of mostly ultraviolet wavelengths. (image: Uwe Kortshagen, University of Minnesota)

February 20, 2017

Researchers at the University of Minnesota and University of Milano-Bicocca are bringing the dream of windows that can efficiently collect solar energy one step closer to reality thanks to high tech silicon nanoparticles.

The researchers developed technology to embed the silicon nanoparticles into what they call efficient luminescent solar concentrators (LSCs). These LSCs are the key element of windows that can efficiently collect solar energy. When light shines through the surface, the useful frequencies of light are trapped inside and concentrated to the edges where small solar cells can be put in place to capture the energy.

The research is published today in Nature Photonics (“Highly efficient luminescent solar concentrators based on Earth-abundant indirect-bandgap silicon quantum dots”).

Windows that can collect solar energy, called photovoltaic windows, are the next frontier in renewable energy technologies, as they have the potential to largely increase the surface of buildings suitable for energy generation without impacting their aesthetics—a crucial aspect, especially in metropolitan areas. LSC-based photovoltaic windows do not require any bulky structure to be applied onto their surface and since the photovoltaic cells are hidden in the window frame, they blend invisibly into the built environment.

The idea of solar concentrators and solar cells integrated into building design has been around for decades, but this study included one key difference—silicon nanoparticles. Until recently, the best results had been achieved using relatively complex nanostructures based either on potentially toxic elements, such as cadmium or lead, or on rare substances like indium, which is already massively utilized for other technologies. Silicon is abundant in the environment and non-toxic. It also works more efficiently by absorbing light at different wavelengths than it emits. However, silicon in its conventional bulk form, does not emit light or luminesce.

“In our lab, we ‘trick’ nature by shrinking the dimension of silicon crystals to a few nanometers, that is about one ten-thousandths of the diameter of human hair,” said University of Minnesota mechanical engineering professor Uwe Kortshagen, inventor of the process for creating silicon nanoparticles and one of the senior authors of the study. “At this size, silicon’s properties change and it becomes an efficient light emitter, with the important property not to re-absorb its own luminescence. This is the key feature that makes silicon nanoparticles ideally suited for LSC applications.”

Using the silicon nanoparticles opened up many new possibilities for the research team.

“Over the last few years, the LSC technology has experienced rapid acceleration, thanks also to pioneering studies conducted in Italy, but finding suitable materials for harvesting and concentrating solar light was still an open challenge,” said Sergio Brovelli, physics professor at the University of Milano-Bicocca, co-author of the study, and co-founder of the spin-off company Glass to Power that is industrializing LSCs for photovoltaic windows “Now, it is possible to replace these elements with silicon nanoparticles.”

Researchers say the optical features of silicon nanoparticles and their nearly perfect compatibility with the industrial process for producing the polymer LSCs create a clear path to creating efficient photovoltaic windows that can capture more than 5 percent of the sun’s energy at unprecedented low costs.

“This will make LSC-based photovoltaic windows a real technology for the building-integrated photovoltaic market without the potential limitations of other classes of nanoparticles based on relatively rare materials,” said Francesco Meinardi, physics professor at the University of Milano-Bicocca and one of the first authors of the paper.

The silicon nanoparticles are produced in a high-tech process using a plasma reactor and formed into a powder.

“Each particle is made up of less than two thousand silicon atoms,” said Samantha Ehrenberg, a University of Minnesota mechanical Ph.D. student and another first author of the study. “The powder is turned into an ink-like solution and then embedded into a polymer, either forming a sheet of flexible plastic material or coating a surface with a thin film.”

The University of Minnesota invented the process for creating silicon nanoparticles about a dozen years ago and holds a number of patents on this technology. In 2015, Kortshagen met Brovelli, who is an expert in LSC fabrication and had already demonstrated various successful approaches to efficient LSCs based on other nanoparticle systems. The potential of silicon nanoparticles for this technology was immediately clear and the partnership was born. The University of Minnesota produced the particles and researchers in Italy fabricated the LSCs by embedding them in polymers through an industrial based method, and it worked.

“This was truly a partnership where we gathered the best researchers in their fields to make an old idea truly successful,” Kortshagen said. “We had the expertise in making the silicon nanoparticles and our partners in Milano had expertise in fabricating the luminescent concentrators. When it all came together, we knew we had something special.”

Source: University of Minnesota


Materials for (ALL) the Ages ~ Nanomaterials and the (coming) Fourth Industrial Revolution

nano-vacince-28432767823_7110f5293b_oThis nano-vaccine can stimulate an anti-tumour response in patients with cancer. Brenda Melendez and Rita Serda, NIH Image Gallery/Flickr (CC BY-NC 2.0)


The kind of material used by a society has often served as a yardstick for how developed that society is. From the stone wheel to the iPhone, a bronze axe to a Boeing 747, materials technology has been our constant companion throughout the millennia, and a driving force for continued progress and societal change. Now it is believed that we may be on the cusp of another great materials revolution, this time powered by nanotechnology. With implications for fields ranging from clean energy to medicine, nanotechnology has the potential to have far-reaching impacts on many aspects of our lives, and may earn itself naming rights to the next age in the process.

Sticks and stones and metals

During the Stone Age, our ancestors used natural materials such as animal skins, plant fibres and, of course, stones. These materials were our bread and butter before bread or butter, until humans began to experiment with metalwork. Copper, alloyed with a bit of tin, had such superior properties to stone implements that if a society failed to use the new material, they found themselves in danger of being conquered. Thus, the Bronze Age was born. Bronze had its heyday for millennia, until bronze itself was surpassed by another stronger, more versatile metal.


Further advancement in metalwork allowed the production of iron tools and weapons, followed by ones crafted from steel. These implements were stronger and sharper than their bronze counterparts, without a significant increase in weight. There is actually some contention among historians about what constitutes the end of the Iron Age. A common demarcation uses an increase in the survival of written histories, which reduced the burden previously placed on archaeology. However, some believe the Iron Age may have never really ended as iron and steel still play a substantial role in contemporary society.


 Tools from the Stone age (left) gave way to those required for metal work in the Bronze and Iron ages (above). Patrick Gray/Flickr (CC BY 2.0) and Wikimedia Commons (public domain)

While naming time periods after their defining material has fallen somewhat out of vogue, the progression of society is still driven by advances in materials science and technology.

The industrial revolution, globalization and the Information Age

Coal and the steam engine literally and figuratively fueled the industrial revolution, moulding us into our modern consumer culture. Before the industrial revolution, a high percentage of the population had to farm the land to provide enough food for everyone to survive.

Mechanized farming practices reduced the burden on manpower, while also producing higher yields. As a result, few farmers were required to feed the growing urban populace. This freed up large sections of the population to pursue work in other fields, such as manufacturing, commerce and research. The importance of this transition is still evident today, including our tendency to group countries based on how industrialized they are.

Advances in lightweight materials, such as composites and light metals, facilitated the development of aircraft that fly us around an ever-shrinking globe, and allowed us to be propelled beyond our planet’s life-supporting atmosphere. In the final decades of the 20th century, the world got even smaller following the rapid development of silicon processing chips and personal electronics. The revolutionary impact these silicon products have had on modern society can’t be overstated. Indeed, this article was written, and is likely being read, on devices powered by what is effectively processed sand.

Much to the chagrin of silicon atoms everywhere, we are not currently in the silicon age, but the information or digital age. However, we are likely on the verge of another significant advance in materials technology.

The promises of the nanotechnology age

Scientists have been heralding the Nano Age, proclaiming “nanotechnology will become the most powerful tool the human species has ever used”. This is engineering on an atomic scale, the stuff of science fiction only decades ago. Now, some experts believe nanotechnology will prove to be the foundation of our wildest dreams (or darkest nightmares).
While such claims may seem sensational or outlandish, the inherent potential of nanotechnology is apparent in current research. The University of Queensland (UQ) boasts a nanomaterials research centre with a multidisciplinary team that is working to implement nanomaterials in three key research areas: energy, environment and health. If there can be consensus about issues that are integral to the survival of humanity, the shortlist must surely include these three.



Read About: Why Everyone Must Get Ready for the Fourth Industrial Revolution

Professor Lianzhou Wang is the director of the UQ Nanomaterials Centre, and his work is focused on the first two areas: energy and environment. Prof Wang’s group aims to use nanomaterials to improve the efficiency of solar cells. Due to Australia’s abundant sunshine, the country has a vested interest and solid track record in solar cell research. However, much of that research focuses on improving the efficiency of solar cells, and usually involves increasingly expensive materials and manufacturing techniques. Prof Wang has a more egalitarian approach and is focused on developing renewable energy technology that will be more accessible to the population at large. In his lab, nanomaterials such as metal oxides and quantum dots are used to create cheap, efficient solar cells with the hope of encouraging more widespread utilization of this green power source.


 Solar panels on rooftops allow residents to take advantage of the Australian sun. Wikimedia Commons (public domain)

Using nanotechnology, Prof Wang’s group can make solar cells that are cheaper than currently available commercial silicon and thin film solar cells. They are able to do this because nanomaterials have a much lower processing temperature than conventional materials, which corresponds to a decrease in manufacturing costs. Nanomaterials also impart flexibility during processing and design, as they can be printed on both flexible and rigid substrates.

“This is where nanomaterials can play a role: performance, of course, but also cost,” said Prof Wang. By reducing the cost of the solar cells, he hopes to lower the barrier to entry of the market and thereby introduce the technology to a greater proportion of the population. In the case of nanotechnology, it turns out that less really is more.

Solar Shades

 Flexible solar panels have greater utility than their rigid counterparts, and can be used in a wider variety of scenarios, such as on tents. Wikimedia Commons (public domain)

Flexible solar panels have greater utility than their rigid counterparts, and can be used in a wider variety of scenarios, such as on tents. Wikimedia Commons (public domain)
However, not content to call that a good day’s work, Prof Wang is also working toward a solution for another issue plaguing the green energy sector: power storage. Although not particularly nuanced, a common argument against green energies asks what happens when the sun isn’t shining or the wind isn’t blowing. As frustratingly reductive as this may seem, it still presents a serious challenge. The uptake of green energy sources, including solar, is severely limited by inadequate or expensive batteries. The inability to easily and effectively store unused power for a rainy day (pardon the pun) is a limiting factor for many renewable energy technologies.

In an effort to address this issue many research groups, including Prof Wang’s, intend to improve batteries with nanotechnology. As with solar cells, the advantage stems from their increased surface area. Nanoparticles, particularly nanocrystallites, have a higher surface area ratio than conventional battery materials, which allows shorter ion diffusion length and faster charge transfer. This not only increases the storage capacity of the battery, but also reduces charging time. Using this technique, Prof Wang’s group believe they have developed new cathode materials for lithium ion batteries that would potentially improve the mileage of electric cars from 450km/charge to 600-700km. “This is an increase of almost a third, and will make these cars competitive with most petrol-powered cars,” said Prof Wang.


 Electric cars such as the Tesla model S are only as good as their battery life, and nanomaterials have the potential to extend driving time on one charge. Wikimedia Commons (public domain)


Exploring how to harness nanomaterials for the betterment of the environment is another key research area for the UQ nanomaterials group. There are a variety of ways nanomaterials can assist in environmental management, but artificial photosynthesis is arguably one of the most innovative. Using nanoparticles as a photoactive catalyst, carbon dioxide in the atmosphere reacts with water to produce by-products including carbon monoxide, methane and hydrogen gas. Prof Wang sums up how remarkable this is: “We can not only remove the CO2 from the atmosphere, we [also] get something useful in the process.” All of the by-products mentioned (carbon monoxide, methane and hydrogen) are potential fuel or power sources. Consequently, artificial photosynthesis not only provides a useful tool for combating climate change, it also generates alternative fuel sources in the process.

Finally, nanotecnology may prove useful for health applications in fields as diverse as targeted drug delivery, gene therapy, diagnostics and tissue engineering, demonstrating its broad potential in medicine. It is thought by some that nanotechnology may hold the key to curing cancer at the genetic level, while also providing insights about immortality.


Whether the next great age of humanity is officially labelled the Nano Age or not, nanotechnology will almost certainly play an instrumental role in future innovations and will shape societies for decades to come. Whether it be tackling cancer or climate change, it appears that anything is possible, if we just think small enough.

MIT.nano ~ Inspiring Innovation at the ‘nano-scale’ … Making Our World Better – One Atom at a Time: Video



MIT-nanoMIT is constructing, at the heart of the campus, a new 200,000-square-foot center for nanoscience and nanotechnology. This advanced facility will be a place for tinkering with atoms, one by one—and for constructing, from these fantastically small building blocks, the innovations of the future. Watch the MIT Video then Read More …


Read More

“Science is not only the disciple of Reason, but also one of Romance and Passion ~ Stephen B. Hawking

Nanotechnology is so small it’s measured in billionths of meters, and it is revolutionizing every aspect of our lives … Dictionary Series - Science: nanotechnology

The past 70 years have seen the way we live and work transformed by two tiny inventions. The electronic transistor and the microchip are what make all modern electronics possible, and since their development in the 1940s they have been getting smaller. Today, one chip can contain as many as 5 billion transistors. If cars had followed the same development pathway, we would now be able to drive them at 300,000 mph and they would cost just $6.00 (US) each.AmorChem Nanotechnology-300x200

But to keep this progress going we need to be able to create circuits on the extremely small, nanometer scale. A nanometer (nm) is one billionth of a meter and so this kind of engineering involves manipulating individual atoms. We can do this, for example, by firing a beam of electrons at a material, or by vaporizing it and depositing the resulting gaseous atoms layer by layer onto a base.

Read More: Nanotechnology is Changing EVERYTHING … Health Care, Clean Energy, Clean Water, Quantum Computing …

Be sure to ‘Follow Us’ on Twitter for the Latest ‘Nano’ Updates, News and Research:

Twitter Icon 042616.jpgFollow Genesis Nanotech on Twitter

Stanford University: Solving the “Storage Problem” for Renewable Energies: A New Cost Effective Re-Chargeable Aluminum Battery


One of the biggest missing links in renewable energy is affordable and high performance energy storage, but a new type of battery developed at Stanford University could be the solution.

Solar energy generation works great when the sun is shining [duh…like taking a Space Mission to the Sun .. but only at night! :-)] and wind energy is awesome when it’s windy (double duh…), but neither is very helpful for the grid after dark and when the air is still. That’s long been one of the arguments against renewable energy, even if there are plenty of arguments for developing additional solar and wind energy installations without large-scale energy storage solutions in place. However, if low-cost and high performance batteries were readily available, it could go a long way toward a more sustainable and cleaner grid, and a pair of Stanford engineers have developed what could be a viable option for grid-scale energy storage.

With three relatively abundant and low-cost materials, namely aluminum, graphite, and urea, Stanford chemistry Professor Hongjie Dai and doctoral candidate Michael Angell have created a rechargeable battery that is nonflammable, very efficient, and has a long lifecycle.

“So essentially, what you have is a battery made with some of the cheapest and most abundant materials you can find on Earth. And it actually has good performance. Who would have thought you could take graphite, aluminum, urea, and actually make a battery that can cycle for a pretty long time?” – Dai

A previous version of this rechargeable aluminum battery was found to be efficient and to have a long life, but it also employed an expensive electrolyte, whereas the latest iteration of the aluminum battery uses urea as the base for the electrolyte, which is already produced in large quantities for fertilizer and other uses (it’s also a component of urine, but while a pee-based home battery might seem like just the ticket, it’s probably not going to happen any time soon).

According to Stanford, the new development marks the first time urea has been used in a battery, and because urea isn’t flammable (as lithium-ion batteries are), this makes it a great choice for home energy storage, where safety is of utmost importance. And the fact that the new battery is also efficient and affordable makes it a serious contender when it comes to large-scale energy storage applications as well.

“I would feel safe if my backup battery in my house is made of urea with little chance of causing fire.” – Dai

According to Angell, using the new battery as grid storage “is the main goal,” thanks to the high efficiency and long life cycle, coupled with the low cost of its components. By one metric of efficiency, called Coulombic efficiency, which measures the relationship between the unit of charge put into the battery and the output charge, the new battery is rated at 99.7%, which is high.WEF solarpowersavemoney-628x330

In order to meet the needs of a grid-scale energy storage system, a battery would need to last at least a decade, and while the current urea-based aluminum ion batteries have been able to last through about 1500 charge cycles, the team is still looking into improving its lifetime in its goal of developing a commercial version.

The team has published some of its results in the Proceedings of the National Academy of Sciences, under the title “High Coulombic efficiency aluminum-ion battery using an AlCl3-urea ionic liquid analog electrolyte.”


PNL Battery Storage Systems 042016 rd1604_batteriesGrid-scale energy storage to manage our electricity supply would benefit from batteries that can withstand repeated cycling of discharging and charging. Current lithium-ion batteries have lifetimes of only 1,000-3,000 cycles. Now a team of researchers from Stanford University, Taiwan, and China have made a research prototype of an inexpensive, safe aluminum-ion battery that can withstand 7,500 cycles. In the aluminum-ion battery, one electrode is made from affordable aluminum, and the other is composed of carbon in the form of graphite.

Read: A step towards new, faster-charging, and safer batteries


Reinvent the Future

Simplify, man

The Earth of Brain

Chinese, language, learn, speak, write, textbook, contract, beginner, advanced, intermediate, commercial, marketing, correspondence, characters, radicals, decomposition, business, numbers, numerals

Chinese Commercial Correspondence

Chinese, language, learn, speak, write, textbook, contract, beginner, advanced, intermediate, commercial, marketing, correspondence, characters, radicals, decomposition, business, numbers, numerals, contract


CAMP Technical Adventure Equipment


"The Wind and the Waves are Always on the side of the Ablest Navigators." - Edward Gibbon

Think Exponential

Leverage Technology Trends

Drexel News Blog

Stories from Drexel University's media relations team

Pangaea Ventures - Latest blog entries

"The Wind and the Waves are Always on the side of the Ablest Navigators." - Edward Gibbon

Great Things from Small Things .. Nanotechnology Innovation

"The Wind and the Waves are Always on the side of the Ablest Navigators." - Edward Gibbon

Funding Report

"The Wind and the Waves are Always on the side of the Ablest Navigators." - Edward Gibbon

Genesis Nano Technology

Great Things From Small Things .. "The winds and the waves are always on the side of the ablest navigators." - Edward Gibbon

Quantum Innovation Solutions

Accelerating Emerging Technologies in Emerging Nations

%d bloggers like this: