Lithium leader S Korea funds 4MWh vanadium trial that targets doubled energy density


Protean/KORID’s V-KOR vanadium redox flow battery (VRFB) stack. Image: Protean Energy.

With a view to creating a mass market design for vanadium flow batteries, Australia’s Protean Energy will deploy a 4MWh battery energy storage project in South Korea that will be researched over eight years of operation.

The ASX-listed company is involved both with vanadium resources as well as creating energy storage systems using vanadium pentoxide electrolyte, producing its own stack technology, V-KOR.

V-KOR ‘stacks’ individual vanadium redox flow battery (VRFB) cells within a main system stack, unlike most vanadium flow battery designs in which the whole system is one large ‘cell’. Protean claims this lowers manufacturing costs and improves battery performance. The company connected its first project to the grid in Australia in August, a 100kWh system in Western Australia.

Protean, via its’ 50%-owned Korean subsidiary, KORID ENERGY, has been awarded AU$3 Million in funding towards a trial 1MW/4MWh system by the Korean Institute of Energy Technology Evaluation and Planning (KETEP).

KETEP’s various areas of research and development include extensive focus on renewables and advancing energy technologies overall including the Energy Storage System (ESS) Technology Development Program.

The award to Protean is part of a wider AU$9 million project in this area.

The institute selected the provider through a competitive process for the project, which is anticipated to run for 96 months. It is hoped the trial will double the energy density of vanadium electrolyte, in turn reducing the physical footprint of Protean’s V-KOR battery.

South Korea is best known as home to some of the world’s biggest lithium battery suppliers including Samsung SDI, LG Chem and SK Innovation but this project aims to develop a mass production VRFB through lowering costs and improving manufacturing processes for Protean’s 25kW V-KOR stack.

Protean said KORID’s commercialisation strategy will include targeting the market for large-scale commercial and industrial (C&I) projects.

South Korean chemical company Chemtros will manufacture and supply electrolytes, while other partners are:

Electrolyte chemistry – UniPlus

Power conditioning equipment – EKOS

System development – H2

Sungkyunkwan University

Read Long Time Coming, a feature article published across two quarterly editions of PV Tech Power, looking at the tech, the ambitions and strategies of four flow battery makers, here on the site, or download it as a free PDF from ‘Resources’ to keep and carry (subscription details required).

Advertisements

Read Genesis Nanotech News Online: Our Latest Edition


Genesis Nanotech News Online: Our Latest Edition with Articles Like –

Australian researchers design a rapid nano-filter that cleans dirty water 100X faster than current technology

Zombie Brain Cells Found in Mice

Energy Storage Technologies vie for Investmemt and Market Share

… AND …

Breakthrough Discovery: How groups of cells are able to build our tissues and organs while we are still embryos +

… 15 More Contributing Authors & Articles

Read Genesis Nanotech Online Here

#greatthingsfromsmallthings

Energy Storage Technologies vie for Investment and Market Share – “And the Winners Are” …


One of the conveniences that makes fossil fuels hard to phase out is the relative ease of storing them, something that many of the talks at Advanced Energy Materials 2018 aimed to tackle as they laid out some of the advances in alternatives for energy storage.

Max Lu during the inaugural address at AEM 2018

“Energy is the biggest business in the world,” Max Lu, president and vice-chancellor of the University of Surrey, told attendees of Advanced Energy Materials 2018 at Surrey University earlier this month. But as

Lu, who has held numerous positions on senior academic boards and government councils, pointed out, the shear scale of the business means it takes time for one technology to replace another.

“Even if solar power were now cheaper than fossil fuel, it would be another 30 years before it replaced fossil fuel,” said Lu. And for any alternative technology to replace fossil fuels, some means of storing it is crucial.

Batteries beyond lithium ion cells

Lithium ion batteries have become ubiquitous for powering small portable devices.

But as Daniel ShuPing Lau, professor and head at Hong Kong Polytechnic University, and director of the University Research Facility in Materials pointed out, lithium is rare and high-cost, prompting the search for alternatives.

He described work on sodium ion batteries, where one of the key challenges has been the MnO2 electrode commonly used, which is prone to acid attack and disproportionation redox reactions.

Lau described work by his group and colleagues to get around the electrode stability issues using environmentally friendly K-birnessite MnO2 (K0.3MnO2) nanosheets, which they can inkjet print on paper as well as steel.

Their sodium ion batteries challenge the state of the art for energy storage devices with a working voltage of 2.5 V, maximum energy and power densities of 587 W h kgcathode−1 and 75 kW kgcathode−1, respectively, and a 99.5% capacity retention for 500 cycles at 1 A g−1.

Metal air batteries are another alternative to lithium-ion batteries, and Tan Wai Kan from Toyohashi University of Technology in Japan described the potential of using a carbon paper decorated with Fe2O3 nanoparticles in a metal air battery.

They increase the surface area of the electrode with a mesh structure to improve the efficiency, while using solid electrolyte KOHZrO2 instead of a liquid helped mitigate against the stability risks of hydrogen evolution for greater reliability and efficiency.

A winning write off for pseudosupercapacitors

Other challenges aside, when it comes to stability, supercapacitors leave most batteries far behind.

Because there is no mass movement, just charge, they tend to stay stable for not just hundreds but hundreds of thousands of cycles

They are already in use in the Shanghai bus system and the emergency doors on some aircraft as Robert Slade emeritus professor of inorganic and materials chemistry at the University of Surrey pointed out.

He described work on “pseudocapacitance”, a term popularised in the 1980s and 1990s to to describe a charge storage process that is by nature faradaic – that is, charge transport through redox processes – but where aspects of the behaviour is capacitive.

MnO2 is well known to impart pseudocapacitance in alkaline solutions but Slade and his colleagues focused on MoO3.

Although MnO3 is a lousy conductor, it accepts protons in acids to form HMoO, and exploiting the additional surface area of nanostructures further helps give access to the pseudocapacitance, so that the team were able to demonstrate a charge-discharge rate of 20 A g-1 for over 10,000 cycles.

This is competitive with MnO2 alkaline systems. “So don’t write off materials that other people have written off, such as MoO3, because a bit of “chemical trickery” can make them useful,” he concluded.

Down but not out for solid oxide fuel cells

But do we gain from the proliferation of so many different alternatives to fossil fuels? According to John Zhu, professor in the School of Chemical Engineering at the University of Queensland in Australia, “yes.”

For clean energy we need more than one solution,” was his response when queried on the point after his talk.

In particular he had a number of virtues to espouse with respect to solid oxide fuel cells (SOFCs), which had been the topic of his own presentation.

Besides the advantage of potential 24-7 operation, SOFCs generate the energy they store. As Zhu pointed out, “With a battery energy the source may still be dirty – so you are just moving the pollution from a high population density area to a low one.”

In contrast, an SOFC plant generates electricity directly from oxidizing a fuel, while at the same time it halves the CO2 emission of a coal-based counterpart, and achieves an efficiency of more than 60%.

If combined with hot water generation more than 80% efficiency is possible, which is double the efficiency of a conventional coal plant. All this is achieved with cheap materials as no noble metals are needed.

Too good to be true? It seemed so at one point as promising corporate ventures plummeted, one example being Ceramic Fuel Cells Ltd, which was formed in 1992 by the Commonwealth Scientific and Industrial Research Organisation (CSIRO) and a consortium of energy and industrial companies.

After becoming ASX listed in 2004, and opening production facilities in Australia and Germany, it eventually filed voluntary bankruptcy in 2015.

So “Are SOFCs going to die?” asked Zhu.

So long as funding is the lifeline of research apparently not, with the field continuing to attract investment from the US Department of Energy – including $6million for Fuel Cell Energy Inc. Share prices for GE Global Research and Bloom Energy have also doubled in the two months since July 2018, but Zhu highlights challenges that remain.

At €25,000 to install a 2 kW system he suggests that cost is not the issue so much as durability. While an SOFC plant’s lifetime should exceed 10 years, most don’t largely due to the high operating temperatures of 800–1000 °C, which lead to thermal degradation and seal failure. Lower operating temperatures would also allow faster start up and the use of cheaper materials.

The limiting factor for reducing temperatures is the cathode material, as its resistance is too high in cooler conditions. Possible alternative cathode materials do exist and include – 3D heterostructured electrodes La3MiO4 decorated Ba0.5Sr0.3Ce0.8Fe0.3O3 (BSCF with LN shell).

Photocatalysts all wrapped up

Other routes for energy on demand have looked at water splitting and CO2 reduction.

As Lu pointed out in his opening remarks, the success of these approaches hinge on engineering better catalysts, and here Somnath Roy from the Indian Institute of Technology Madras, in India, had some progress to report.

“TiO2 is to catalysis what silicon is to microelectronics,” he told attendees of his talk during the graphene energy materials session. However the photocatalytic activity of TiO2 peaks in the UV, and there have been many efforts to shift this closer to the visible as a result.

Building on previous work with composites of graphene and TiO2 he and his colleagues developed a process to produce well separated (to allow reaction space) TiO2 nanotubes wrapped in graphene.

Although they did not notice a wavelength shift in the peak catalytic activity to the visible due to the graphene, the catalysis did improve due to the effect on hole and electron transport.

There was no shortage of ideas at AEM 2018, but as Lu told attendees,

“Ultimately uptake does not depend on the best technology but the best return on investment.”

Speaking to Physics World  he added,

“The route to market for any energy materials will require systematic assessment of the technical advantages, market demand and a number of iterations of property-performance-system optimization, and open innovation and collaboration will be the name of the game for successful translation of materials to product or processes.”

Whatever technologies do eventually stick, time is of the essence. Most estimates place the tipping point for catastrophic global warming at 2050.

Allowing 30 years for the infrastructure overhaul that could allow alternative energies to totally replace fossil fuels leaves little more than a year for those technologies to pitch “the best return on investment”.

Little wonder advanced energy materials research is teaming.

Read More: Learn About:

Tenka Energy, Inc. Building Ultra-Thin Energy Dense SuperCaps and NexGen Nano-Enabled Pouch & Cylindrical Batteries – Energy Storage Made Small and POWERFUL!

Watch the YouTube Video:

Discovery: How groups of cells are able to build our tissues and organs while we are still embryos – Understanding ‘how’ may help us treat Cancer more effectively


 

stemcell-collage2-feature-1170x400

Ever wondered how groups of cells managed to build your tissues and organs while you were just an embryo?

Using state-of-the-art techniques he developed, UC Santa Barbara researcher Otger Campàs and his group have cracked this longstanding mystery, revealing the astonishing inner-workings of how embryos are physically constructed.

Not only does it bring a century-old hypothesis into the modern age, the study and its techniques provide the researchers a foundation to study other questions key to human health, such as how cancers form and spread or how to engineer organs.

“In a nutshell, we discovered a fundamental physical mechanism that cells use to mold embryonic tissues into their functional 3D shapes,” said Campàs, a professor of mechanical engineering in UCSB’s College of Engineering who holds the Duncan & Suzanne Mellichamp Chair in Systems Biology. His group investigates how living systems self organize to build the remarkable structures and shapes found in nature.

cell biology UC Santa B download

Cells coordinate by exchanging biochemical signals, but they also hold to and push on each other to build the body structures we need to live, such as the eyes, lungs and heart. And, as it turns out, sculpting the embryo is not far from glass molding or 3D printing. In their new work,”A fluid-to-solid jamming transition underlies vertebrate body axis elongation,” published in the journal Nature, Campàs and colleagues reveal that cell collectives switch from fluid to solid states in a controlled manner to build the vertebrate embryo, in a way similar to how we mold glass into vases or 3D print our favorite items. Or, if you like, we 3D print ourselves, from the inside.

Most objects begin as fluids. From metallic structures to gelatin desserts, their shape is made by pouring the molten original materials into molds, then cooling them to get the solid objects we use.

img_0735

A fluid-to-solid jamming transition underlies vertebrate body axis elongation

As in a Chihuly glass sculpture, made by carefully melting portions of glass to slowly reshape it into life, cells in certain regions of the embryo are more active and ‘melt’ the tissue into a fluid state that can be restructured. Once done, cells ‘cool down’ to settle the tissue shape, Campàs explained.

“The transition from fluid to solid tissue states that we observed is known in physics as ‘jamming’,” Campàs said. “Jamming transitions are a very general phenomena that happens when particles in disordered systems, such as foams, emulsions or glasses, are forced together or cooled down.”

This discovery was enabled by techniques previously developed by Campàs and his group to measure the forces between cells inside embryos, and also to exert miniscule forces on the cells as they build tissues and organs. Using zebrafish embryos, favored for their optical transparency but developing much like their human counterparts, the researchers placed tiny droplets of a specially engineered ferromagnetic fluid between the cells of the growing tissue.

The spherical droplets deform as the cells around them push and pull, allowing researchers to see the forces that cells apply on each other. And, by making these droplets magnetic, they also could exert tiny stresses on surrounding cells to see how the tissue would respond.

“We were able to measure physical quantities that couldn’t be measured before, due to the challenge of inserting miniaturized probes in tiny developing embryos,” said postdoctoral fellow Alessandro Mongera, who is the lead author of the paper.

“Zebrafish, like other vertebrates, start off from a largely shapeless bunch of cells and need to transform the body into an elongated shape, with the head at one end and tail at the other,” Campàs said.

UC Santa B II Lemaire

The physical reorganization of the cells behind this process had always been something of a mystery. Surprisingly, researchers found that the cell collectives making the tissue were physically like a foam (yes, as in beer froth) that jammed during development to ‘freeze’ the tissue architecture and set its shape.

These observations confirm a remarkable intuition made by Victorian-era Scottish mathematician D’Arcy Thompson 100 years ago in his seminal work “On Growth and Form.”

Darcy Thompson Ms48534_13Read About: D’Arcy Wentworth Thompson

“He was convinced that some of the physical mechanisms that give shapes to inert materials were also at play to shape living organisms. Remarkably, he compared groups of cells to foams and even the shaping of cells and tissues to glassblowing,” Campàs said. A century ago, there were no instruments that could directly test the ideas Thompson proposed, Campàs added, though Thompson’s work continues to be cited to this day.

The new Nature paper also provides a jumping-off point from which the Campàs Group researchers can begin to address other processes of embryonic development and related fields, such as how tumors physically invade surrounding tissues and how to engineer organs with specific 3D shapes.

“One of the hallmarks of cancer is the transition between two different tissue architectures. This transition can in principle be explained as an anomalous switch from a solid-like to a fluid-like tissue state,” Mongera explained. “The present study can help elucidate the mechanisms underlying this switch and highlight some of the potential druggable targets to hinder it.”

Alessandro Mongera, Payam Rowghanian, Hannah J. Gustafson, Elijah Shelton, David A. Kealhofer, Emmet K. Carn, Friedhelm Serwane, Adam A. Lucio, James Giammona & Otger Campàs

Nature (2018)

DOI: 10.1038%2Fs41586-018-0479-2

MIT: New battery technology gobbles up carbon dioxide – Ultimately may help reduce the emission of the greenhouse gas to the atmosphere + Could Carbon Dioxide Capture Batteries Replace Phone and EV Batteries?


MIT-CO2_0

This scanning electron microscope image shows the carbon cathode of a carbon-dioxide-based battery made by MIT researchers, after the battery was discharged. It shows the buildup of carbon compounds on the surface, composed of carbonate material that could be derived from power plant emissions, compared to the original pristine surface (inset) Courtesy of the researchers

Lithium-based battery could make use of greenhouse gas before it ever gets into the atmosphere.

A new type of battery developed by researchers at MIT could be made partly from carbon dioxide captured from power plants. Rather than attempting to convert carbon dioxide to specialized chemicals using metal catalysts, which is currently highly challenging, this battery could continuously convert carbon dioxide into a solid mineral carbonate as it discharges.

convertingat

While still based on early-stage research and far from commercial deployment, the new battery formulation could open up new avenues for tailoring electrochemical carbon dioxide conversion reactions, which may ultimately help reduce the emission of the greenhouse gas to the atmosphere.

battery-atmosphereRead Also:  Scientists Have Created Batteries Using Carbon Dioxide From The Atmosphere Which Could Replace Phone And Electric Car Batteries

 

 

 

The battery is made from lithium metal, carbon, and an electrolyte that the researchers designed. The findings are described today in the journal Joule, in a paper by assistant professor of mechanical engineering Betar Gallant, doctoral student Aliza Khurram, and postdoc Mingfu He.

Currently, power plants equipped with carbon capture systems generally use up to 30 percent of the electricity they generate just to power the capture, release, and storage of carbon dioxide. Anything that can reduce the cost of that capture process, or that can result in an end product that has value, could significantly change the economics of such systems, the researchers say.

However, “carbon dioxide is not very reactive,” Gallant explains, so “trying to find new reaction pathways is important.” Generally, the only way to get carbon dioxide to exhibit significant activity under electrochemical conditions is with large energy inputs in the form of high voltages, which can be an expensive and inefficient process. Ideally, the gas would undergo reactions that produce something worthwhile, such as a useful chemical or a fuel. However, efforts at electrochemical conversion, usually conducted in water, remain hindered by high energy inputs and poor selectivity of the chemicals produced.

Gallant and her co-workers, whose expertise has to do with nonaqueous (not water-based) electrochemical reactions such as those that underlie lithium-based batteries, looked into whether carbon-dioxide-capture chemistry could be put to use to make carbon-dioxide-loaded electrolytes — one of the three essential parts of a battery — where the captured gas could then be used during the discharge of the battery to provide a power output.

This approach is different from releasing the carbon dioxide back to the gas phase for long-term storage, as is now used in carbon capture and sequestration, or CCS. That field generally looks at ways of capturing carbon dioxide from a power plant through a chemical absorption process and then either storing it in underground formations or chemically altering it into a fuel or a chemical feedstock.

Instead, this team developed a new approach that could potentially be used right in the power plant waste stream to make material for one of the main components of a battery.

While interest has grown recently in the development of lithium-carbon-dioxide batteries, which use the gas as a reactant during discharge, the low reactivity of carbon dioxide has typically required the use of metal catalysts. Not only are these expensive, but their function remains poorly understood, and reactions are difficult to control.

By incorporating the gas in a liquid state, however, Gallant and her co-workers found a way to achieve electrochemical carbon dioxide conversion using only a carbon electrode. The key is to pre-activate the carbon dioxide by incorporating it into an amine solution.

“What we’ve shown for the first time is that this technique activates the carbon dioxide for more facile electrochemistry,” Gallant says. “These two chemistries — aqueous amines and nonaqueous battery electrolytes — are not normally used together, but we found that their combination imparts new and interesting behaviors that can increase the discharge voltage and allow for sustained conversion of carbon dioxide.”

They showed through a series of experiments that this approach does work, and can produce a lithium-carbon dioxide battery with voltage and capacity that are competitive with that of state-of-the-art lithium-gas batteries. Moreover, the amine acts as a molecular promoter that is not consumed in the reaction.

The key was developing the right electrolyte system, Khurram explains. In this initial proof-of-concept study, they decided to use a nonaqueous electrolyte because it would limit the available reaction pathways and therefore make it easier to characterize the reaction and determine its viability. The amine material they chose is currently used for CCS applications, but had not previously been applied to batteries.

factory-air-pollution-environment-smoke-shutterstock_130778315-34gj4r8xdrgg8mj9r25a0wThis early system has not yet been optimized and will require further development, the researchers say. For one thing, the cycle life of the battery is limited to 10 charge-discharge cycles, so more research is needed to improve rechargeability and prevent degradation of the cell components. “Lithium-carbon dioxide batteries are years away” as a viable product, Gallant says, as this research covers just one of several needed advances to make them practical.

But the concept offers great potential, according to Gallant. Carbon capture is widely considered essential to meeting worldwide goals for reducing greenhouse gas emissions, but there are not yet proven, long-term ways of disposing of or using all the resulting carbon dioxide. Underground geological disposal is still the leading contender, but this approach remains somewhat unproven and may be limited in how much it can accommodate. It also requires extra energy for drilling and pumping.

The researchers are also investigating the possibility of developing a continuous-operation version of the process, which would use a steady stream of carbon dioxide under pressure with the amine material, rather than a preloaded supply the material, thus allowing it to deliver a steady power output as long as the battery is supplied with carbon dioxide. Ultimately, they hope to make this into an integrated system that will carry out both the capture of carbon dioxide from a power plant’s emissions stream, and its conversion into an electrochemical material that could then be used in batteries. “It’s one way to sequester it as a useful product,” Gallant says.

“It was interesting that Gallant and co-workers cleverly combined the prior knowledge from two different areas, metal-gas battery electrochemistry and carbon-dioxide capture chemistry, and succeeded in increasing both the energy density of the battery and the efficiency of the carbon-dioxide capture,” says Kisuk Kang, a professor at Seoul National University in South Korea, who was not associated with this research.

“Even though more precise understanding of the product formation from carbon dioxide may be needed in the future, this kind of interdisciplinary approach is very exciting and often offers unexpected results, as the authors elegantly demonstrated here,” Kang adds.

MIT’s Department of Mechanical Engineering provided support for the project.

Using one quantum dot to sense changes in another: Applications for developing advanced electronic and photonic devices


twoquantumdo
Scanning electron micrograph of InAs self-assembled quantum dot transistor device. Credit: Osaka University

Quantum dots are nanometer-sized boxes that have attracted much scientific interest for use in nanotechnology because their properties obey quantum mechanics and are requisites to developing advanced electronic and photonic devices.

Quantum dots that self-assemble during their formation are particularly attractive as tunable light emitters in nanoelectronic devices and for studying quantum physics because of their quantized transport behavior. It is important to develop a way to measure the charge in a single self-assembled quantum dot to achieve quantum information processing; however, this is difficult because the metal electrodes needed for the measurement can screen out the very small charge of the quantum dot.

Researchers at Osaka University have recently developed the first device based on two self-assembled quantum dots that can measure the single-electron charge of one quantum dot using a second as a sensor.

The device was fabricated using two indium arsenide (InAs)  connected to electrodes that were deliberately narrowed to minimize the undesirable screening effect.

“The two  dots in the device showed significant capacitive coupling,” says Haruki Kiyama. “As a result, the single-electron charging of one dot was detected as a change in the current of the other dot.”

The current response of the sensor quantum dot depended on the number of electrons in the target dot. Hence the device can be used for real-time detection of single-electron tunneling in a quantum dot. The tunneling events of single electrons in and out of the target quantum dot were detected as switching between high and low current states in the sensor quantum dot. Detection of such tunneling events is important for the measurement of single spins towards electron spin qubits.

“Sensing single charges in self-assembled quantum dots is exciting for a number of reasons,” explains Akira Oiwa. “The ability to achieve electrical readout of single electron states can be combined with photonics and used in quantum communications. In addition, our device concept can be extended to different materials and systems to study the physics of self-assembled quantum dots.”

Two quantum dots are better than one: Using one dot to sense changes in another
Real-time traces of the charge sensor quantum dot (QD1) current. Changes in the charge sensor current indicate the increase and decrease of electron number in the adjacent quantum dot (QD2). Credit: Osaka University

An electronic device using self-assembled quantum dots to detect single-electron events is a novel strategy for increasing our understanding of the physics of quantum dots and to aid the development of advanced nanoelectronics and quantum computing.

 Explore further: Simultaneous detection of multiple spin states in a single quantum dot

More information: Haruki Kiyama et al, Single-electron charge sensing in self-assembled quantum dots, Scientific Reports (2018). DOI: 10.1038/s41598-018-31268-x

 

Rapid Nano-filter for clean water: Australian researchers design a rapid nano-filter that cleans dirty water 100X faster than current technology


quickandnots
The new technology can filter drinking water 100 times faster than current tech. Credit: Free stock photo 

Australian researchers have designed a rapid nano-filter that can clean dirty water over 100 times faster than current technology.

Simple to make and simple to scale up, the technology harnesses naturally occurring nano-structures that grow on .

The RMIT University and University of New South Wales (UNSW) researchers behind the innovation have shown it can filter both heavy metals and oils from water at extraordinary speed.

RMIT researcher Dr. Ali Zavabeti said water contamination remains a significant challenge globally—1 in 9 people have no clean water close to home.

“Heavy  contamination causes serious health problems and children are particularly vulnerable,” Zavabeti said.

“Our new nano-filter is sustainable, environmentally-friendly, scalable and low cost.

“We’ve shown it works to remove lead and oil from water but we also know it has potential to target other common contaminants.

“Previous research has already shown the materials we used are effective in absorbing contaminants like mercury, sulfates and phosphates.

“With further development and commercial support, this new nano-filter could be a cheap and ultra-fast solution to the problem of .”

Quick and not-so-dirty: A rapid nano-filter for clean water
A liquid metal droplet with flakes of aluminium oxide compounds grown on its surface. Each 0.03mm flake is made up of about 20,000 nano-sheets stacked together. Credit: RMIT University

The liquid metal chemistry process developed by the researchers has potential applications across a range of industries including electronics, membranes, optics and catalysis.

“The technique is potentially of significant industrial value, since it can be readily upscaled, the liquid metal can be reused, and the process requires only short reaction times and low temperatures,” Zavabeti said.

Project leader Professor Kourosh Kalantar-zadeh, Honorary Professor at RMIT, Australian Research Council Laureate Fellow and Professor of Chemical Engineering at UNSW, said the liquid metal chemistry used in the process enabled differently shaped nano-structures to be grown, either as the atomically thin sheets used for the nano-filter or as nano-fibrous structures.

“Growing these materials conventionally is power intensive, requires high temperatures, extensive processing times and uses toxic metals. Liquid metal chemistry avoids all these issues so it’s an outstanding alternative.”

How it works

The groundbreaking technology is sustainable, environmentally-friendly, scalable and low-cost.

The researchers created an alloy by combining gallium-based liquid metals with aluminium.

When this alloy is exposed to water, nano-thin sheets of  compounds grow naturally on the surface.

These atomically thin layers—100,000 times thinner than a human hair—restack in a wrinkled fashion, making them highly porous.

Quick and not-so-dirty: A rapid nano-filter for clean water
Microscope image of nano-sheets, magnified over 11,900 times. Credit: RMIT University

This enables water to pass through rapidly while the aluminium oxide compounds absorbs the contaminants.

Experiments showed the nano-filter made of stacked atomically thin sheets was efficient at removing lead from water that had been contaminated at over 13 times safe drinking levels, and was highly effective in separating oil from water.

The process generates no waste and requires just aluminium and , with the liquid metals reused for each new batch of nano-structures.

The method developed by the researchers can be used to grow nano-structured materials as ultra-thin sheets and also as nano-fibres.

These different shapes have different characteristics—the ultra-thin sheets used in the nano-filter experiments have high mechanical stiffness, while the nano-fibres are highly translucent.

The ability to grow materials with different characteristics offers opportunities to tailor the shapes to enhance their different properties for applications in electronics, membranes, optics and catalysis.

The research is funded by the Australian Research Council Centre for Future Low-Energy Electronics Technologies (FLEET).

The findings are published in the journal Advanced Functional Materials.

 Explore further: Liquid metal discovery ushers in new wave of chemistry and electronics

More information: Advanced Functional Materials (2018). DOI: 10.1002/adfm.201804057

 

NREL: Envisioning Net-Zero Emission Energy Systems


NREL researchers contribute to a major journal article describing pathways to net-zero emissions for particularly difficult-to-decarbonize economic sectors

As global energy consumption continues to grow—by some projections, more than doubling by 2100—all sectors of the economy will need to find ways to drastically reduce their carbon dioxide emissions if average global temperatures are to be held under international climate targets. Two NREL authors contributed to a recently published article in Science that examined potential barriers and opportunities to decarbonizing certain energy systems that are essential to modern civilization but remain stubbornly reliant on carbon-emitting processes.

Difficult to Decarbonize Energy Sectors Contribute 27% of Carbon Emissions

Many sectors of the economy, such as light-duty transportation, heating, cooling, and lighting, could be straightforward to decarbonize through electrification and use of low- or net-zero-emitting energy sources. However, some energy uses, such as aviation, long-distance transport and shipping, steel and cement production, and a highly reliable electricity supply, will be more difficult to decarbonize. Together, these sectors contribute 27% of global carbon emissions today. With global demand for many of these sectors growing rapidly, solutions are urgently needed, the article’s authors write.

“The timeframes and economic costs of any energy transition are enormous. Most technologies installed today will have a lifetime of perhaps 30 to 50 years and the transition from research to actual deployment can also be quite lengthy,” said Bri-Mathias Hodge, an author on the paper and manager of the Power Systems Design and Studies Group at NREL. “Because of this we need to be able to identify the most pertinent issues that will need to be solved fairly far in the future and get started now, before we find ourselves heavily invested in even more carbon-intensive, long-term infrastructure.”

Diverse Expert Perspectives Informed Study

Discussion of the article’s underlying issues began at an Aspen Global Change Institute meeting in July 2016. “The diversity and depth of expertise at the workshop—and contributing to the paper—were outstanding,” said Doug Arent, the other NREL researcher to contribute to the paper and deputy associate lab director for Scientific Computing and Energy Analysis. “It was great to hear the different perspectives and learn about new areas that are related to our work at NREL, but that I don’t get to hear about every day at NREL,” added Hodge.

Considering demographic trends, institutional barriers, and economic and technological constraints, the group of researchers concluded that future net-zero emission systems will depend critically on integration of now-discrete energy industries. Although a range of existing low or net zero emitting energy technologies exist for these energy services, they may only be able to fully meet future energy demands through cross-sector coordination. Collaboration could speed research and development of new technologies and coordinating operations across sectors could better utilize capital-intensive assets, create broader markets, and streamline regulations.

Research Should Pursue Technologies and Integration to Decarbonize These Sectors

The article’s authors suggest two broad research thrusts: research in technologies and processes that could decarbonize these energy services, and research in systems integration to provide these energy services in a more reliable and cost-effective way.

The Science article concludes by stating, “if we want to achieve a robust, reliable, affordable, net-zero emissions energy system later this century, we must be researching, developing, demonstrating, and deploying those candidate technologies now.”

Lucid Motors Signs $1bn+ Investment Agreement with Public Investment Fund of Saudi Arabia – SA Enters the EV Race with “Lucid’s Air”


A Major Milestone on the Path to Production of the Lucid Air

Lucid Motors announced today that it has executed a $1bn+ (USD) investment agreement with the Public Investment Fund of Saudi Arabia, through a special-purpose vehicle wholly owned by PIF.

Under the terms of the agreement, the parties made binding undertakings to carry out the transaction subject to regulatory approvals and customary closing conditions.

The transaction represents a major milestone for Lucid and will provide the company with the necessary funding to commercially launch its first electric vehicle, the Lucid Air, in 2020. Lucid plans to use the funding to complete engineering development and testing of the Lucid Air, construct its factory in Casa Grande, Arizona, begin the global rollout of its retail strategy starting in North America, and enter production for the Lucid Air.

Lucid’s mission is to inspire the adoption of sustainable energy by creating the most captivating luxury electric vehicles, centered around the human experience. “The convergence of new technologies is reshaping the automobile, but the benefits have yet to be truly realized. This is inhibiting the pace at which sustainable mobility and energy are adopted. At Lucid, we will demonstrate the full potential of the electric connected vehicle in order to push the industry forward,” said Peter Rawlinson, Chief Technology Officer of Lucid.

Lucid and PIF are strongly aligned around the vision to create a global luxury electric car company based in the heart of Silicon Valley with world-class engineering talent. Lucid will work closely with PIF to ensure a strategic focus on quickly bringing its products to market at a time of rapid change in the automotive industry.

A spokesperson for PIF said, “By investing in the rapidly expanding electric vehicle market, PIF is gaining exposure to long-term growth opportunities, supporting innovation and technological development, and driving revenue and sectoral diversification for the Kingdom of Saudi Arabia.”

The spokesperson added, “PIF’s international investment strategy aims to strengthen PIF’s performance as an active contributor in the international economy, an investor in the industries of the future and the partner of choice for international investment opportunities. Our investment in Lucid is a strong example of these objectives.”

MIT Study: Adding power choices reduces cost and risk of carbon-free electricity


52377624-renewable-energy-sources-vector-infographics-solar-wind-tidal-hydroelectric-geothermal-power-biofuel

New MIT research shows that, unless steady, continuous carbon-free sources of electricity are included in the mix, costs of decarbonizing the electrical system could be prohibitive and end up derailing attempts to mitigate the most severe effects of global climate change. Image: Chelsea Turner

To curb greenhouse gas emissions, nations, states, and cities should aim for a mix of fuel-saving, flexible, and highly reliable sources.

In major legislation passed at the end of August, California committed to creating a 100 percent carbon-free electricity grid — once again leading other nations, states, and cities in setting aggressive policies for slashing greenhouse gas emissions. Now, a study by MIT researchers provides guidelines for cost-effective and reliable ways to build such a zero-carbon electricity system.

MIT-Energy-Mix-01_0The best way to tackle emissions from electricity, the study finds, is to use the most inclusive mix of low-carbon electricity sources.

Costs have declined rapidly for wind power, solar power, and energy storage batteries in recent years, leading some researchers, politicians, and advocates to suggest that these sources alone can power a carbon-free grid. But the new study finds that across a wide range of scenarios and locations, pairing these sources with steady carbon-free resources that can be counted on to meet demand in all seasons and over long periods — such as nuclear, geothermal, bioenergy, and natural gas with carbon capture — is a less costly and lower-risk route to a carbon-free grid.

The new findings are described in a paper published today in the journal Joule, by MIT doctoral student Nestor Sepulveda, Jesse Jenkins PhD ’18, Fernando de Sisternes PhD ’14, and professor of nuclear science and engineering and Associate Provost Richard Lester.

The need for cost effectiveness

“In this paper, we’re looking for robust strategies to get us to a zero-carbon electricity supply, which is the linchpin in overall efforts to mitigate climate change risk across the economy,” Jenkins says. To achieve that, “we need not only to get to zero emissions in the electricity sector, but we also have to do so at a low enough cost that electricity is an attractive substitute for oil, natural gas, and coal in the transportation, heat, and industrial sectors, where decarbonization is typically even more challenging than in electricity. ”

Sepulveda also emphasizes the importance of cost-effective paths to carbon-free electricity, adding that in today’s world, “we have so many problems, and climate change is a very complex and important one, but not the only one. So every extra dollar we spend addressing climate change is also another dollar we can’t use to tackle other pressing societal problems, such as eliminating poverty or disease.” Thus, it’s important for research not only to identify technically achievable options to decarbonize electricity, but also to find ways to achieve carbon reductions at the most reasonable possible cost.

To evaluate the costs of different strategies for deep decarbonization of electricity generation, the team looked at nearly 1,000 different scenarios involving different assumptions about the availability and cost of low-carbon technologies, geographical variations in the availability of renewable resources, and different policies on their use.

Regarding the policies, the team compared two different approaches. The “restrictive” approach permitted only the use of solar and wind generation plus battery storage, augmented by measures to reduce and shift the timing of demand for electricity, as well as long-distance transmission lines to help smooth out local and regional variations. The  “inclusive” approach used all of those technologies but also permitted the option of using  continual carbon-free sources, such as nuclear power, bioenergy, and natural gas with a system for capturing and storing carbon emissions. Under every case the team studied, the broader mix of sources was found to be more affordable.

The cost savings of the more inclusive approach relative to the more restricted case were substantial. Including continual, or “firm,” low-carbon resources in a zero-carbon resource mix lowered costs anywhere from 10 percent to as much as 62 percent, across the many scenarios analyzed. That’s important to know, the authors stress, because in many cases existing and proposed regulations and economic incentives favor, or even mandate, a more restricted range of energy resources.

“The results of this research challenge what has become conventional wisdom on both sides of the climate change debate,” Lester says. “Contrary to fears that effective climate mitigation efforts will be cripplingly expensive, our work shows that even deep decarbonization of the electric power sector is achievable at relatively modest additional cost. But contrary to beliefs that carbon-free electricity can be generated easily and cheaply with wind, solar energy, and storage batteries alone, our analysis makes clear that the societal cost of achieving deep decarbonization that way will likely be far more expensive than is necessary.”

Light bulb RE images

A new taxonomy for electricity sources

In looking at options for new power generation in different scenarios, the team found that the traditional way of describing different types of power sources in the electrical industry — “baseload,” “load following,” and “peaking” resources — is outdated and no longer useful, given the way new resources are being used.

Rather, they suggest, it’s more appropriate to think of power sources in three new categories: “fuel-saving” resources, which include solar, wind and run-of-the-river (that is, without dams) hydropower; “fast-burst” resources, providing rapid but short-duration responses to fluctuations in electricity demand and supply, including battery storage and technologies and pricing strategies to enhance the responsiveness of demand; and “firm” resources, such as nuclear, hydro with large reservoirs, biogas, and geothermal.

“Because we can’t know with certainty the future cost and availability of many of these resources,” Sepulveda notes, “the cases studied covered a wide range of possibilities, in order to make the overall conclusions of the study robust across that range of uncertainties.”

Range of scenarios

The group used a range of projections, made by agencies such as the National Renewable Energy Laboratory, as to the expected costs of different power sources over the coming decades, including costs similar to today’s and anticipated cost reductions as new or improved systems are developed and brought online. For each technology, the researchers chose a projected mid-range cost, along with a low-end and high-end cost estimate, and then studied many combinations of these possible future costs.

Under every scenario, cases that were restricted to using fuel-saving and fast-burst technologies had a higher overall cost of electricity than cases using firm low-carbon sources as well, “even with the most optimistic set of assumptions about future cost reductions,” Sepulveda says.

That’s true, Jenkins adds, “even when we assume, for example, that nuclear remains as expensive as it is today, and wind and solar and batteries get much cheaper.”

The authors also found that across all of the wind-solar-batteries-only cases, the cost of electricity rises rapidly as systems move toward zero emissions, but when firm power sources are also available, electricity costs increase much more gradually as emissions decline to zero.

“If we decide to pursue decarbonization primarily with wind, solar, and batteries,” Jenkins says, “we are effectively ‘going all in’ and betting the planet on achieving very low costs for all of these resources,” as well as the ability to build out continental-scale  high-voltage transmission lines and to induce much more flexible electricity demand.

In contrast, “an electricity system that uses firm low-carbon resources together with solar, wind, and storage can achieve zero emissions with only modest increases in cost even under pessimistic assumptions about how cheap these carbon-free resources become or our ability to unlock flexible demand or expand the grid,” says Jenkins. This shows how the addition of firm low-carbon resources “is an effective hedging strategy that reduces both the cost and risk” for fully decarbonizing power systems, he says.

Even though a fully carbon-free electricity supply is years away in most regions, it is important to do this analysis today, Sepulveda says, because decisions made now about power plant construction, research investments, or climate policies have impacts that can last for decades.

“If we don’t start now” in developing and deploying the widest range of carbon-free alternatives, he says, “that could substantially reduce the likelihood of getting to zero emissions.”

David Victor, a professor of international relations at the University of California at San Diego, who was not involved in this study, says, “After decades of ignoring the problem of climate change, finally policymakers are grappling with how they might make deep cuts in emissions. This new paper in Joule shows that deep decarbonization must include a big role for reliable, firm sources of electric power. The study, one of the few rigorous numerical analyses of how the grid might actually operate with low-emission technologies, offers some sobering news for policymakers who think they can decarbonize the economy with wind and solar alone.”

The research received support from the MIT Energy Initiative, the Martin Family Trust, and the Chilean Navy.