What’s Next for Energy Storage


Advertisements

Fisker claims solid-state battery ‘breakthrough’ for electric cars with ‘500 miles range and 1 minute charging’


Fisker battery prototype 6a00d8341c4fbe53ef01b8d2be0382970c-550wi

Representation of the three-dimensional electrodes:

When Henrik Fisker relaunched its electric car startup last year, he announced that their first car will be powered by a new graphene-based hybrid supercapacitor technology, but he later announced that they put those plans on the backburner and instead will use more traditional li-ion batteries.

Now the company is announcing a “breakthrough” in solid-state batteries to power their next-generation electric cars and they are filing for patents to protect their IP.

Get ready for some crazy claims here.

Solid-state batteries are thought to be a lot safer than common li-ion cells and could have more potential for higher energy density, but they also have limitations, like temperature ranges, electrode current density, and we have yet to see a company capable of producing it in large-scale and at an attractive price point competitive with li-ion.

Now Fisker announced that they are patenting a new solid-state electrode structure that would enable a viable battery with some unbelievable specs.

Here’s what they claim (via GreenCarCongress):

“Fisker’s solid-state batteries will feature three-dimensional electrodes with 2.5 times the energy density of lithium-ion batteries. Fisker claims that this technology will enable ranges of more than 500 miles on a single charge and charging times as low as one minute—faster than filling up a gas tank.”

 

 

Fisker has been all over the place with its new Emotion electric car and we have highlighted that in our look at Fisker’s unbelievable claims.

But its latest solid-state project is led by Dr. Fabio Albano, VP of battery systems at Fisker and the co-founder of Sakti3, which adds credibility to the effort.

fisker-emotion

Albano commented on the announcement:

“This breakthrough marks the beginning of a new era in solid-state materials and manufacturing technologies. We are addressing all of the hurdles that solid-state batteries have encountered on the path to commercialization, such as performance in cold temperatures; the use of low cost and scalable manufacturing methods; and the ability to form bulk solid-state electrodes with significant thickness and high active material loadings. We are excited to build on this foundation and move the needle in energy storage.”

Electrek’s Take

Like any battery breakthrough announcement, it should be taken with a grain of salt. Most of those announcements never result in any kind of commercialization.

For this particular technology, Fisker says that it will be automotive production grade ready around 2023.

A lot of things can happen over the next 5 years.

In the meantime, Fisker plans to launch its Emotion electric car at CES 2018 in just 2 months.

 

Fisker has filed patents for solid-state batteries

Henry Fisker download

It seems that we’re on the cusp of a solid-state battery revolution. The latest company to announce progress in developing the new type of battery is Fisker. It has filed patents for solid-state lithium-ion batteries and it expects the batteries to be produced on a mass scale around 2023.

Though Fisker is a very small car company that is currently taking deposits for its upcoming EMotion electric sedan, there are reasons to believe that the company could fulfill this promise. One of the members of the battery-development team was a co-founder of Sakti3a company that formed to develop new batteries and announced its research into solid-state technology back in 2011That company was purchased by Dyson, the vacuum cleaner company, which also intends on producing electric carsthat AutoExpress reports will feature solid-state batteries in 2020. Toyota is also expected to have solid-state batteries just ahead of Fisker around 2022.

The reason all these companies are working on developing solid-state batteries is because they present a whole host of advantages over what you’ll find in today’s phones, computers and cars. The two big ones are greater energy density and rapid charging times. Fisker claims the batteries it’s developing have an energy density 2.5 times that of current batteries, and they should be capable of providing a 500-mile driving range. The company also says the batteries could be recharged in as little as a minute. Both claims are similar to past claims from others, including Sakti3. Other benefits include lower estimated cost than conventional lithium-ion batteries as well as very little risk of fires or explosions.

Fisker also announced that it will display the new battery technology at the Consumer Electronics Show in January. It will be on display along with a close-to-production EMotion, which will be using more conventional lithium-ion batteries from LG Chem. That car has its own impressive claims with a range of more than 400 miles and the ability to regain around 125 miles of range in about 9 minutes. It will also retail for around $130,000, and the company is taking $2,000 reservations now. Fisker intends for it to go into production in 2019.

Fisker battery prototype 6a00d8341c4fbe53ef01b8d2be0382970c-550wi

Fighting Cancer and Drug Resistance – A ‘Nanosystem’ Does Both


Cancer is often referred to as “smart,” and this term often refers to the ability of these cells to proliferate without purpose or restraint.

The ability of cancer cells to develop multidrug resistance (MDR), a major problem that patients can face, making treatment against this disease even more elusive.

In an effort to combat both cancer cell proliferation and MDR, a recent study conducted by researchers from the National Health Research Institutes of Taiwan and the National Science Council of Taiwan have developed a nanosystem capable of addressing both challenges in the field of cancer therapy.

Drug Resistance and Cancer

Patients with several forms of blood cancer and solid tumors in the breast, ovaries, lungs and lower gastrointestinal tract can become untreatable as a result of multidrug resistance (MDR).

In MDR, the cancer cells of these patients become resistant to commonly used therapeutic drugs as a result of an overexpression of ATP-binding cassette (ABC) transporters that effectively push out drug molecules following administration.

P-glycoprotein and what is termed as the multidrug resistance-associated protein (MRP) are two of the most studied pumps present in cancer cells that are capable of rejecting chemotherapeutic drugs.

By avoiding the toxic effects of these drugs, cancer cells are able to continue to proliferate and metastasize to other organs of the body.

Unfortunately, some of the most commonly used cancer therapeutic drugs such as colchicine, vinblastine, doxorubicin, etoposide, paclitaxel, certain vinca alkaloids and other small molecules have shown resistance in various cancer cells.

Current research efforts in the field of anticancer drug discovery have looked towards the administration of combinatorial technology to be administered with cancer to effectively prevent cancer cells from physically removing therapeutic drugs when administered together.

While blocking the action of pumps like MRP and P-glycoprotein has shown some efficacy, transcription factors, such as c-Jun, which plays a role in cell, proliferation and MDR, can still potentiate metastasis.

Therefore, there remains a need to develop cancer therapies that work against drug resistance and simultaneously prevent further metastasis.

Related Stories

Multi-Functional Nanoparticles and Their Role in Cancer Drug Delivery – A Review

82% of Americans Looking for Hassle-Free Clothes That Go the Extra Mile – News Item

Cancer Cooking Lesson, A Basic Look At How Nanotechnology Can Be Used To Physically Destroy Cancer Cells and Cure The Body of Cancer

The Efficacy of Administering Doxorubicin Mesoporous Silica Nanoparticles (MSNs)

Mesoporous silica nanoparticles (MSNs) are well-documented drug delivery vehicles that allow for a high drug loading capacity with minimal side effects upon administration.

The tunable size properties, thermal stability, photostability and ease of functionalization to different applications make MSNs one of the most promising options for therapeutic delivery systems.

In the recent study published in Nano Futures, the group of scientists led by Leu-Wei Lo covalently conjugated MSNs with doxorubicin and tested the ability of these nanosystems to be taken up by cancer cells in vitro.

The PC-3 cell line of metastatic human prostate carcinoma cells were treated with 100 μg/ml of either Dox-MSNs that were conjugated with DNAzyme, (Dox-MSN-Dz), Dox-MSNs or control MSNs for 24 hours to study the ability of these cells to survive following treatment.

The researchers found the Dox-MSN-Dz reduced cell survival rates by over 80%, whereas the Dox-MSNs alone still reduced cell survival rates by 60%.

The results of this study confirm the therapeutic potential of the developed multifunctional nanosystem, which incorporates doxorubicin, a widely used chemotherapeutic drug, MSNs and DNAzyme.

Not only did this nanosystem improve the cytotoxicity of doxorubicin to a resistance cancer cell line, but it also successfully reduced migration of cancer cells by inhibiting c-Jun.

While further in vivo studies need to be conducted to fully evaluate the ability of Dox-MSN-Dz to prevent metastasis and invade highly resistance cancer cells, the results of this study are promising.

Future research initiatives that incorporate different chemotherapeutic drugs into a similar nanosystem design could also show similar bifunctional properties as presented here.

Image Credit:

fusebulb/Shutterstock.com

References:

1 “A co-delivery nanosystem of chemotherapeutics and DNAzyme overcomes cancer drug resistance and metastasis” S. Sun, C. Liu, et al. Nano Futures. (2017). DOI: 10.1088/2399-1984/aa996f.

The Death Of Oil: Scientists Eyeball 2X EV Battery Range


For someone who’s all in for fossil fuels, President* Trump sure has a thing for electric vehicles.

Last October the US Energy Department announced $15 million in funding to jumpstart the next generation of “extremely” fast charging systems, and last week the agency’s SLAC National Accelerator Laboratory announced a breakthrough discovery for doubling the range of EV batteries.

Put the two together, and you have EVs that can go farther than any old car, and fuel up just about as quickly.

Add the convenience factor of charging up at home or at work, and there’s your recipe for killing oil. #ThanksTrump!

A Breakthrough Energy Storage Discovery For Electric Vehicles

Did you know that it’s possible to double the range of today’s electric vehicles?

No, really! The current crop of  lithium-ion batteries use just half of their theoretical capacity, so there is much room for improvement.

To get closer to 100%, all you have to do is “overstuff” the positive electrode — the cathode — with more lithium. Theoretically, that would enable the battery to absorb more ions in the same space. Theoretically.

Unfortunately, previous researchers have demonstrated that supercharged cathodes lose voltage too quickly to be useful in EVs, because their atomic structure changes.

During the charge cycle, lithium ions leave the supercharged cathode and transition metal atoms move in. When the battery discharges, not all of the transition metal atoms go back to where they came from, leaving less space for the lithium ions to return.

It’s kind of like letting two friends crash on your couch, and one of them never leaves.

That’s the problem tackled by a research team based at the SLAC National Accelerator Laboratory (SLAC is located at Stanford University and the name is a long story involving some trademark issues, but apparently it’s all good now).

Here’s Stanford grad student and study leader William E. Gent enthusing over the new breakthrough:

It gives us a promising new pathway for optimizing the voltage performance of lithium-rich cathodes by controlling the way their atomic structure evolves as a battery charges and discharges.

Umm, okay.

In other words, the SLAC team discovered a way to manipulate the atomic structure of supercharged cathodes, so the battery doesn’t lose voltage during the charge/discharge cycle.

And, here’s where oil dies:

The more ions an electrode can absorb and release in relation to its size and weight — a factor known as capacity — the more energy it can store and the smaller and lighter a battery can be, allowing batteries to shrink and electric cars to travel more miles between charges.

No, Really — How Does It Work?

To get to the root of the problem, the research team deployed some fancy equipment at  SLAC’s SSRL (Stanford Synchotron Radiation Lightsource) to track the atomic-level changes that a lithium-rich battery undergoes during charging cycles.

First, they defined the problem:

…clarifying the nature of anion redox and its effect on electrochemical stability requires an approach that simultaneously probes the spatial distribution of anion redox chemistry and the evolution of local structure.

The research team “unambiguously confirmed” the interplay between oxygen and the transition metal, along with the mechanism for controlling that reaction:

Our results further suggest that anion redox chemistry can be tuned through control of the crystal structure and resulting TM migration pathways, providing an alternative route to improve Li-rich materials without altering TM–O bond covalency through substitution with heavier 4d and 5d TMs.

The equipment angle is essential, btw. Apparently, until the new SLAC study nailed it down there was widespread disagreement on the root cause of the problem.

The new research was made possible in part by a new soft X-ray RIXS system, which was just installed at the lab last year (RIX stands for resonant inelastic X-ray scattering).

You can get all the details from the study, “Coupling between oxygen redox and cation migration explains unusual electrochemistry in lithium-rich layered oxides,” which just came out in the journal Nature Communications.

So, Now What?

The SLAC team points out that until now, RIXS has been mainly used in foundational research. The new study goes a long way to confirming the practical application of RIXS.

In other words, the floodgates are open to a new wave of advanced energy storage research leading to better, cheaper EV batteries and faster charging systems.

In that regard its worth noting that along with the Energy Department, Samsung partnered in the new study and chipped in some of the funding.

That’s a pretty clear indication that Samsung is looking to crack open the Panasonic/Tesla partnership and take over global leadership of the energy storage field. Last September, Samsung unveiled a new 600-km (430-mile) battery for EVs, but the company was mum on the details.

Last November, Samsung unveiled a new version of its SM3 ZE sedan, in which the size of the battery was doubled without increasing the weight of the vehicle. That’s a significant achievement and the company has been tight-lipped on that score, too.

Samsung is also exploring graphene for advanced, long range batteries, so there’s that.

“Perhaps News of My (Oil) premature Death has been misreported”

As for the death of oil, electric vehicles are getting their place in the sun, no matter how much Trump talks up fossil fuels.

That still leaves the issue of petrochemicals.

Although the green chemistry movement is gathering steam, the US petrochemical industry has been taking off like a rocket in recent years. That means both oil and natural gas production could continue apace for the foreseeable future, with or without gasmobiles.

ExxonMobil has been making huge moves into the Texas epicenter of US petrochemicals, and just last week the Houston Chronicle noted this development:

Michigan and Delware-based DowDuPont announced earlier this year that it would spend $4 billion expanding its industrial campus in Freeport.

The expansion will give Freeport the largest ethylene plant in the world. Houston-based Freeport LNG is also building an LNG export terminal in the area.

Then there’s this:

By 2019, Freeport’s power demand is expected to be 92 percent higher than it was in 2016, according to ERCOT.

The $246.7 million project will include a new 48 mile transmission line and upgrades to shorter line in the area, according to ERCOT.

Stanford University: Lithium-Graphene “FOIL” makes for a GREAT Battery Electrode


defectfreegrScientists fabricate defect-free graphene, set record reversible capacity for Co3O4 anode in Li-ion batteries

Lithium ion batteries, as the name implies, work by shuffling lithium atoms between a battery’s two electrodes. So, increasing a battery’s capacity is largely about finding ways to put more lithium into those electrodes. These efforts, however, have run into significant problems. If lithium is a large fraction of your electrode material, then moving it out can cause the electrode to shrink. Moving it back in can lead to lithium deposits in the wrong places, shorting out the battery.

Now, a research team from Stanford has figured out how to wrap lots of lithium in graphene. The resulting structure holds a place open for lithium when it leaves, allowing it to flow back to where it started. Tests of the resulting material, which they call a lithium-graphene foil, show it could enable batteries with close to twice the energy density of existing lithium batteries.

Lithium behaving badly

One obvious solution to increasing the amount of lithium in an electrode is simply to use lithium metal itself. But that’s not the easiest thing to do. Lithium metal is less reactive than the other members of its column of the periodic table (I’m looking at you, sodium and potassium), but it still reacts with air, water, and many electrolyte materials. In addition, when lithium leaves the electrode and returns, there’s no way to control where it re-forms metal. After a few charge/discharge cycles, the lithium electrode starts to form sharp spikes that can ultimately grow large enough to short out the battery.Graphene Anodes for LI Batt id35611

To have better control over how lithium behaves at the electrode, the Stanford group has looked into the use of some lithium-rich alloys. Lithium, for example, forms a complex with silicon where there are typically over four lithium atoms for each atom of silicon. When the lithium leaves the electrode, the silicon stays behind, providing a structure to incorporate the lithium when it returns on the other half of the charge/discharge cycle.

While this solves the problems with lithium metal, it creates a new one: volume changes. The silicon left behind when the lithium runs to the other electrode simply doesn’t take up as much volume as it does when the same electrode is filled with the lithium-silicon mix. As a result, the electrode expands and contracts dramatically during a charge-discharge cycle, putting the battery under physical stress. (Mind you, a lithium metal electrode disappears entirely, possibly causing an even larger mechanical stress.)

And that would seem to leave us stuck. Limiting the expansion/contraction of the electrode material would seem to require limiting the amount of lithium that moves into and out of it. Which would, of course, mean limiting the energy density of the battery.

Between the sheets

In the new work, the researchers take their earlier lithium-silicon work and combine it with graphene. Graphene is a single-atom-thick sheet of carbon atoms linked together, and it has a number of properties that make it good for batteries. It conducts electricity well, making it easy to shift charges to and from the lithium when the battery charges and discharges. It’s also extremely thin, which means that packing a lot of graphene molecules into the electrode doesn’t take up much space. And critically for this work, graphene is mechanically tough.

Stanford_University_seal_2003_svgTo make their electrode material, the team made nanoparticles of the lithium-silicon material. These were then mixed in with graphene sheets in an eight-to-one ratio. A small amount of a plastic precursor was added, and the whole mixture was spread across a plastic block. Once spread, the polymer precursor created a thin film of polymer on top of the graphene-nanoparticle mix. This could be peeled off, and then the graphene-nanoparticle mix could be peeled off the block as a sheet.

The resulting material, which they call a foil, contains large clusters of the nanoparticles typically surrounded by three to five layers of graphene. Depending on how thick you make the foil, there can be several layers of nanoparticle clusters, each separated by graphene.

The graphene sheets make the material pretty robust, as you can fold and unfold it and then still use it as a battery electrode. They also help keep the air from reacting with the lithium inside. Even after two weeks of being exposed to the air, the foil retained about 95 percent of its capacity as an electrode. Lower the fraction of graphene used in the starting mix and air becomes a problem, with the electrode losing nearly half of its capacity in the same two weeks.

And it worked pretty well as an electrode. When the lithium left, the nanoparticles did shrink, but the graphene sheets held the structure together and kept it from shrinking. And it retained 98 percent of its original capacity even after 400 charge-discharge cycles. Perhaps most importantly, when paired with a vanadium oxide cathode, the energy density was just over 500 Watt-hours per kilogram. Current lithium-ion batteries top out at about half that.

Normally, work like this can take a while to get out of an academic lab and have a company start looking into it. In this case, however, the head of the research group Yi Cui already has a startup company with batteries on the market. So, this could take somewhat less time for a thorough commercial evaluation. The biggest sticking point may be the cost of the graphene. A quick search suggests that graphene is still thousands of dollars per kilogram, although it has come down, and lots of people are looking for ways to make it even less expensive.

If they succeed, then the rest of the components of this electrode are pretty cheap. And the process for making it seems pretty simple.

Nature Nanotechnology, 2017. DOI: 10.1038/NNANO.2017.129  (About DOIs).

Nikola Motors – Daimler – Toyota Challenge Tesla’s Metrics for the ‘Long-Haul’ – Will the Best Zero-Emissions Semi (Trucks) Run on Fuel Cells? Next-Gen Batteries? Both?


Toyota’s Project Portal and … a possibly “game-changing” semi from upstart Nikola Motors might prove FCEVs are the winning tech for the long-haul industry.

Last month, Tesla CEO Elon Musk rode onto the dais at Tesla’s design studio in Hawthorne, California aboard a futuristic semi truck.

Tesla Elec Semi I 4w2a6750

He exited the vehicle, collar popped, to introduce what looked to be a sleeker version of the colossal, decidedly unsexy commercial vehicles that rumble endlessly across America—and received the type of hysterical fanfare usually reserved for the Beyonces and Biebers of the world.

This marked one of the most anticipated, and curious, new-vehicle reveals of 2017: the Tesla Semi, a battery-electric-powered long-haul truck.

Tesla-Semi-truck-nikola-one

In his signature #humblebrag tone, Musk ticked off the Class 8 truck’s impressive capabilities: It can tow 80,000 pounds, the most allowed on US highways, for a range of 500 miles.

It has aerodynamics better than a Bugatti Chiron, a unique central seating position, and comes standard with enhanced AutoPilot, meaning it should never jackknife.

Also: it’s guaranteed not to break down for one million miles; it has a shatterproof windshield; and it implements a kinetic-energy-recovery system (KERS) in such a way that it will never need brake pads – in short WOW!

Plus, with a motor on each of the four rear wheels, it can rocket from 0-60 mph in five seconds flat—one-third the time of the average diesel semi.

Even fully loaded, that number increases to a scant 20 seconds, or a full minute faster than its smog-belching contemporaries. When towing up a five-percent grade, the Tesla can reach speeds of 65 mph, which is 20 mph faster than a diesel.

Taken in aggregate, these features and numbers would greatly benefit a trucker’s route in both speed and cost savings. They are eye-popping metrics; almost unbelievable. Which is perhaps why some are having a hard time believing them.

More important than what Musk said during his November announcement was what he didn’t say. For instance, there was no mention at all about the battery pack that will power the Tesla Semi to these magical thresholds. There was no mention of total weight or cost, which are arguably the two most important variables for long-haul shippers.

In terms of charging these unknown batteries, Musk promised a 400-mile recharge in the course of about 30 minutes. Based on recent estimates in Bloomberg New Energy Finance, hitting those numbers would require a charging system ten times more powerful than Tesla’s own Superchargers—currently the fastest consumer charging network in the world.

The cost building stations that could hit those figures would be profound, as would be the potential stress on the electrical system from multiple trucks charging simultaneously.

Bloomberg estimated that in order to fulfill Musk’s promises the truck would require a battery capacity between 600 and 1,000 kilowatt-hours.

Assuming a down-the-middle number of 800 kWh, that would necessitate a battery of more than 10,000 pounds, with a likely price tag north of $100,000. Musk also claims the Semi will be 20 percent less expensive than a diesel truck per mile—but that is with customers only paying $0.07/kWh.

Experts estimate that Tesla will have to pay, on average, a minimum of $0.40/kWh* for “green” electricity—meaning the company would have to heavily subsidize charging costs for fleets of trucks sucking down terawatts of electricity.

So, in order to hit Musk’s stated targets, Tesla will require batteries that don’t, as far as anyone knows, exist; charging capability faster than anything on the planet; and rates far below current market value.

“I don’t understand how that works,” electric vehicle analyst Salim Morsy told Bloomberg. “I really don’t.” Investor’s Business Daily dubbed Musk’s claims “monuments of envelope pushing.”

“The biggest concern that I have is that this is a typical Elon Musk ‘shiny object’ announcement to prop up Tesla’s stock price and distract from all of the issues he is having with Model 3 production,” an engineer associated with the hydrogen industry, who asked to remain anonymous, told us, referencing recent production delays and Tesla’s loss of over $1.3 billion year-to-date.

“I don’t mean to be negative; I do believe in battery technology and its merits, and I also believe that we will continue to see significant improvements in battery cost and performance during the coming decades.

But as a scientist and engineer I have always found Elon Musk’s lack of scientific accuracy and ability to overstate and exaggerate truth, and get away with it, very annoying and disingenuous.”

Tesla did not respond to requests to clarify these apparent discrepancies for this article.

The Truth About EV Trucks

Musk is not alone in the world of heavy-duty battery-electric trucks. VW recently announced a $1.7 billion investment towards developing electric powertrains for trucks and buses. Daimler, the world’s largest truck maker, unveiled an all-electric heavy-duty concept dubbed the E-FUSO Vision ONE at the Tokyo Motor Show, in late October. Daimler’s Class 8 truck promises a significantly more modest 220-mile range, with a payload 1.8 tons less than its diesel counterpart, and utilizing a 300 kWh battery pack. On paper, these figures make the E-FUSO Vision ONE more plausible than the Tesla Semi.

Project Portal Toyota maxresdefault

Of course Musk, a man who has promised to colonize Mars and builds spaceships to commute to the International Space Station, has never been known for making anything less than bold announcements.

But shorter-range BEV trucks do have a place in the transportation ecosystem.This is known as “last mile” and “short haul,” where deliveries are made inter-city, or within 100 miles. In such a capacity, the Tesla Semi could be greatly successful.

The semi truck business is a $30-billion-per-year industry in the United States alone, so there’s plenty of money to go around. But the Semi’s utility in true long-haul applications remains questionable.

Toyota’s Project Portal

Project Portal, a Real-World Zero-Emission Semi

Toyota has logged more than 4,000 development miles in a zero-emission Class 8 truck pulling drayage-rated cargo. This proof-of-concept semi, dubbed Project Portal, boasts 670 horsepower, 1,325 lb-ft of torque, and a 200-mile range. Rather than being powered strictly by battery pack—in this case, a comparatively small, 12kWh unit—Project Portal also utilizes twin fuel cell stacks plumbed from the Toyota Mirai consumer vehicle.

Project Portal II maxresdefault (2)

Project Portal has been moving goods around the Port of Los Angeles since April, and on October 23 expanded its routes to distribution warehouses and nearby rail yards. The idea is to collect data while the truck performs real-world drayage duties, its itineraries increasing as the study progresses.

Like the Tesla Semi, Project Portal also boasts impressive acceleration versus a traditional diesel truck: 8.9 seconds to travel 1/8th of a mile versus 14.6 seconds. Unlike the Tesla Semi, however, it’s already at work in the real world, even moving supplies and auto parts for Toyota throughout Southern California. Its numbers are verifiable.

In order to supply the Project Portal truck, as well as a growing fleet of FCEV semis as the project scales in size, Toyota announced last week that it would build the world’s first megawatt-scale hydrogen power station at the Port of Long Beach.

The power plant will generate 2.35 megawatts of electricity and 1.2 tons of hydrogen each day, enough to supply power and fuel to 2,350 homes and 1,500 FCEVs, respectively. Moreover, the Tri-Gen plant will generate so-called “green hydrogen” because it will be powered by 100-percent renewable sources, like local farm bio-waste. (Currently, most hydrogen is created via “cracking” natural gas, meaning splitting the CH4 into two H2 molecules and a free carbon atom.) Toyota could then claim the Project Portal trucks to be zero-emission from well-to-wheel.

Nikola Motors Arrives on the Scene With Bold Claims

A recent surprise player in the FCEV semi game is Utah-based Nikola Motors, makers of an announced Class 8 truck dubbed the Nikola One, a 320 kWh-powered tractor-trailer that will reportedly generate over 1,000-hp and 2,000 lb-ft of torque. Nikola Motors has also set the formidable goal of building a proprietary refueling station network across America, with over 700 planned H2 stations to be constructed in the next 10 years. As ambitious as that sounds, Nikola has an innovative business plan to scale up its stations. 

Nikola I Trevor-Milton-Nikola-Motor-CEO-on-truck

Nikola Motors CEO Trevor Milton

“We’re selling to fleets that run the same route every day,” says Nikola Motors CEO Trevor Milton. “So they’ll put an order in for 500 trucks, and we’ll build the stations before they come online.” A medium-size station will be constructed on each end of the route, allowing Nikola to establish flagship stations in each of those two terminal cities. With a range between 500 and 1,200 miles, depending on terrain, for their Nikola One, these stations can be quite far apart. Nikola plans to start with 16 stations located in the Midwest and East Coast, to be completed by 2019, at a cost of about $10 million apiece. Initially, there will be four test trucks running in 2018, with a planned 250 by 2019, and a total of 750 by 2020. Nikola plans to hit full production in 2021.

Rather than through a traditional lease, Nikola’s business model will be to charge customers solely on a per-mile basis. Nikola estimates the cost of a diesel semi runs between $1 to $1.25 per mile—this includes fuel, lease, tires, warranty, service, maintenance, etc.—though Milton says that with the Nikola One a driver is paying “anywhere between 20 to 40 percent less than that.”

“You don’t have to wait for 3 years to get your money back—you get your money back starting from day one,” Milton says.

While customers pay per mile (from $0.85 per mile for cheaper models up to $1.00/mile for the most expensive) all other costs of running the truck save insurance—from wipers and tires to all maintenance and fuel—are covered by Nikola Motors.

“That’s the golden egg,” Milton says. “How do you provide something that has no emission, that has better performance at less cost? And that’s what we’ve been able to do,” he says. “You won’t even be able to buy a diesel in 10 years because you’re going to be losing over a zero-emission vehicle.”

With over 8,000 trucks reserved in their first month of unveiling, Milton has no doubt they will have the necessary customers to fill out the initial 750 truck order, and more. “We’re on track, probably, to being more than 10-15 years booked out once we hit the assembly line,” he says. “We have more customers than we know what to do with.”

As far as Tesla’s news, Milton believes the Semi will be successful for short-haul work, estimating the truck’s real-world range will probably be around 350 miles—not nearly long enough for long-haul purposes.

“Their battery alone will weigh more than our entire truck,” he says, estimating the Semi’s lithium-ion pack will weigh about 15,000 pounds.

“We don’t really see them as a competitor on our end, just because our truck can outperform their truck in every category, every time, in every situation,” Milton says. “And [Nikola One can do] it two to three times further than they can, at a 10,000-pound weight difference. But it’s good that they’re coming in teaching people that electric can work, because we need all the help we can get in the industry to prove electric trucks work.”

Competitors or colleagues, Musk and Milton share a capacity for eyebrow-raising claims. When we first spoke with Milton in the spring for a longer feature on this site about the current state of the global hydrogen industry, he claimed he would require every Nikola station to produce 100 percent of its hydrogen via renewables like solar energy—a stipulation that would make the Nikola One, like Project Portal trucks fueled by the Tri-Gen bio-waste-powered plant, truly zero-emission from wheel to well.

“We will produce all the H2 on every one of our stations onsite via electrolysis,” Milton said at the time.

The math didn’t appear to add up. Using National Renewable Energy Laboratory (NREL) algorithms of energy production via solar cells, we deduced the lowest-capacity stations, at 12,500 kgs, would require a 540-acre solar farm to produce the necessary H2. We followed up with Nikola for clarification, and the company responded that, according to their calculations, they would each require “just over 218 acres.” Even with this considerable reduction, the idea that 700-plus stations across America would each be connected to a 218-acre solar fields seemed highly unlikely.

When we spoke more recently, Milton had softened his stance.

“I’ve definitely lessened on that, but it’s more of a philosophy, not as an actual message,” he said. “We have to take energy from the grid, but the way we get that energy is guaranteed that it’s zero-emission. We just don’t want a gigantic diesel plant powering our hydrogen.”

Instead, Milton now says, one-third of Nikola’s energy will be produced on-site, while the remainder will be bought from other green sources, whether that means from renewables, from power plants at excess capacity, or the grid via guaranteed zero-emission sources.

“There are multiple ways we’ll be buying and getting energy into our hydrogen production, but it’s not one-size-fits-all, that’s for sure. And if we made it sound like that, we apologize; we were mainly just trying to educate people that we are going to mandate that almost all of our energy is zero-emission from production to consumption.

“We’re evolving every month, as we get all these orders going in. We’re learning. There’s little things we’re tweaking, but ultimately our overall philosophy is it’s our duty and our goal to get rid of all the diesels and all the emissions on the road. And we’ll get there soon, it’ll just take some time.”

Regardless of the historical challenges inherent to starting any automotive brand, some people are hopeful about Nikola’s future.

“Building up a hydrogen eco-system entails many—and very different—elements,” says Yorgo Chatzimarkakis, Secretary General of the hydrogen-advocacy group Hydrogen Europe. After invoking the myriad doubts that Elon Musk faced when launching Tesla, he continues. “Some areas of a hydrogen-based economy need visionaries who have ambitions that do not seem plausible at the moment but are doable, and absolutely make sense in the long run.”

The Realities of a Zero-Emission Future

The point here isn’t to denigrate Tesla specifically, or BEVs in general. In order to achieve a zero emission transportation future—the goal of an increasing number of nations worldwide—many think that we should not have to choose between BEVs and FCEVs. Each has its clear advantages. 

As we’ve outlined in detail before, a zero-emission future will likely require the right solution for specific applications. Battery-electric power excels in smaller vehicles and for shorter ranges, while FCEVs are better suited for heavy-duty jobs that demand intense energy consumption and longer ranges. It need not be a zero-sum game.

Musk has accomplished enough already to warrant the benefit of the doubt for his bold Semi claims. Just this summer, he made a bet on Twitter that he could install a 100-megawatt battery storage facility in the South Australian outback within 100 days—or it would be free. Many doubted the billionaire futurist’s wager, but sure enough, by December 1 the facility was online and functional. During his comet-streak career he has made a habit of unflinching claims doubted by the masses, and has often enough enjoyed the last laugh.

However, Musk also has a history of disparaging hydrogen and FCEVs as legitimate transportation alternatives, calling them “incredibly dumb” and “bullshit.” This position is not only erroneous and misleading, but also dangerous and counterproductive to the same zero-emission future that he repeatedly touts. As the founder and CEO of the most valuable BEV company in the world by far—in fact, Wall Street considers Tesla the most valuable American automaker, having surpassed General Motors in April—it benefits him tremendously if that future is strictly BEV-powered.

The potential problem with Musk’s Semi assertions wouldn’t be that they’re possible embellishments about the capabilities of a BEV truck—he certainly wouldn’t be the first CEO to promise the impossible to prop up stock value—as much as their potential to salt the earth for FCEV semi truck growth. Claiming that BEV semis are a better solution than FCEVs would be fine on a barstool or in a vacuum, but the incredible power of Musk’s voice in the tech and transportation markets could devalue the viability of Class 8 vehicles powered by fuel cells.

Case in point: Bloomberg reported that immediately after Musk’s Tesla Semi announcement, share prices of truck and truck component makers dropped. They recovered when analysts had time to sift through the available information, but Musk potentially hobbling a critical cog of a zero-emission future runs contrary to his stated goals of saving the planet.

In the end, if Tesla, Daimler, Toyota and Nikola can get their respective FCEV and BEV semis off the ground, the impact would be tectonic. Using average estimates, every single alternative-powertrain truck replacing a similar ICE-powered vehicle would remove about 173 tons of CO2 emissions each year. Scale that to a fleet of 1,000, or 100,000, or a million trucks, and the impact on the climate and air quality would be profound. Musk should be free to do what he needs to in order to ensure his company succeeds, except when it values Tesla’s bottom line over that of the planet.

*Note: This article was updated to reflect that the stated price of $0.40/kWh is specifically for so-called “green” electricity harnessed from renewable or zero-emission sources.

Swedish Researchers develop Precision Nanomaterials to selectively kill Cancer Cells


precisionnan cancer cellsDendrimers loaded with organic sulfur compounds (OSC) accumulate in cancer cells, where they are broken down and release reactive oxygen radicals (ROS). The elevation of ROS levels eventually spells death for the cancer cell. Credit: KTH The Royal Institute of Technology

Researchers in Sweden have succeeded in taking the next step toward using man-made nanoscale compounds in the fight against cancer. A recent proof-of-concept study showed that dendrimers, which were first introduced in the 1980s, may be used to introduce compounds that essentially trick cancer cells into performing self-destructive tasks.

Dendrimers, or cascade molecules, are organically synthesized large molecules that match nature’s peptides and proteins with respect to size and structure. Researchers from KTH Royal Institute of Technology took advantage of these qualities – and cancer cells’ appetite for adsorbing large molecules – by loading the material with an organic sulfur compound (OSC) which is also a key ingredient in amino acids, peptides and proteins.

Applying these to cultured human cancer cells sets in motion a process that distracts cancer cells from their normal task of multiplying, and instead go to work on picking apart disulfide bonds in the dendrimers, says Michael Malkoch, a professor of fiber and polymer technology at KTH.

Malkoch says that this activity releases an increased concentration of reactive oxygen radicals (ROS), which eventually induces cell death. Unlike treatments like chemotherapy, the effect is selective toward , leaving the healthy ones unaffected since  have a higher tolerance for ROS.

The nanomaterial is finally broken down by the body, he says.

The article was published in Journal of the American Chemical Society, and is co-authored by Malkoch, KTH doctoral student Oliver Andrén and Aristi P. Fernandes of Karolinska Institutet.

Their results show that the platform is worth continued research with clinical tests in which dendrimers are preprogrammed with large and specific numbers of organic , Malkoch says.

“We’ve just scratched the surface for what you can do with . We have previously tested using similar materials as a part of a leg patch – a type of adhesive that in some cases enables treatment of bone fractures without screws and plates,” he says. “You can imagine future applications where the material is used to coat implants around  tumors and thereby enable therapy treatment at a localized level.”

 Explore further: ‘Spiders’ that battle cancer

More information: Oliver C. J. Andrén et al. Heterogeneous Rupturing Dendrimers, Journal of the American Chemical Society (2017). DOI: 10.1021/jacs.7b10377

 

‘Team Graphene X’ develops promising Applications for Graphene in Space -Increased lifetime and an improved autonomy for satellites and space probes


Zero G Graphene grapheneinzeThe airplane in which Flagship researchers performed experiment in microgravity. Operated by Novespace, the plane makes special manoeuvres to create zero gravity conditions inside the plane Credit: Graphene Flagship

In a successful collaboration between the Graphene Flagship and the European Space Agency, experiments testing graphene for two different space-related applications have shown extremely promising results. Based on these results, the Flagship are continuing to develop graphene devices for use in space.

“Graphene as we know has a lot of opportunities. One of them, recognised early on, is space applications, and this is the first time that graphene has been tested in space-like applications, worldwide,” said Prof. Andrea Ferrari (University of Cambridge, UK), Science and Technology Officer of the Graphene Flagship.

Graphene’s excellent thermal properties are promising for improving the performance of loop heat pipes, thermal management systems used in aerospace and satellite applications. Graphene could also have a use in space propulsion, due to its lightness and strong interaction with light. The Graphene Flagship tested both these applications in recent experiments in November and December 2017.

The main element of the loop heat pipe is the metallic wick, where heat is transferred from a hot object into a fluid, which cools the system. Two different types of graphene were tested in a collaboration between the Microgravity Research Centre, Université libre de Bruxelles, Belgium; the Cambridge Graphene Centre, University of Cambridge, UK; the Institute for Organic Synthesis and Photoreactivity and the Institute for Microelectronics and Microsystems, both at the National Research Council of Italy (CNR), Italy; and industry partner Leonardo Spa, Italy, a global leader in aerospace, operating in space systems and high-tech instrument manufacturing and in the management of launch and in-orbit services and satellite services.

“We are aiming at an increased lifetime and an improved autonomy of the satellites and space probes. By adding graphene, we will have a more reliable loop heat pipe, capable to operate autonomously in space,” said Dr Marco Molina, Chief Technical Officer of Leonardo’s space line of business.

After excellent results in laboratory tests, the wicks for the loop heat pipes were tested in two ESA parabolic flight campaigns in November and December. “We have good tests done on earth in the lab, and now of course because the applications will be in satellites, we needed to see how the wicks perform in low gravity conditions and also in hypergravity conditions, to simulate a satellite launch,” added Prof Ferrari.

“It was amazing, the feeling is incredible and its extremely interesting to do experiments in these kinds of conditions but also to enjoy the free-floating zone. The whole experience was really great,” said Vanja Miskovic, a student at Université libre de Bruxelles who performed the experiment in microgravity during a parabolic flight operated by Novespace.

The results of the parabolic flight confirm the improvements to the wick, and the Flagship will continue to develop the graphene-based heat pipes towards a commercial product. “I think this is a very nice example of how the Flagship is working. Bringing together three academic partners and one big industry with a clearly defined goal for an application,” said Vincenzo Palermo (CNR), Vice-Director of the Graphene Flagship. “At the moment, we have tested the principle and the core of the device. The next step will be to optimise the whole device, and have a full heat pipe that can go in a satellite.”

Testing graphene space-propulsion potential, a team of PhD students from Delft Technical University (TU Delft), Netherlands participated in ESA’s Drop Your Thesis! campaign, which offers students the chance to perform an experiment in microgravity at the ZARM Drop Tower in Bremen, Germany. To create extreme microgravity conditions, down to one millionth of the Earth’s gravitational force, a capsule containing the experiment is catapulted up and down the 146 metre tower, leading to 9.3 seconds of weightlessness. The TU Delft Space Institute, Netherlands, also provided support to the GrapheneX project.

The team – named GrapheneX – designed and built an experiment to test graphene for use in solar sails, using free-floating graphene membranes provided by Flagship partner Graphenea. The idea was to test how the graphene membranes would behave under radiation pressure from lasers. In total, the experiment ran five times over 13-17 November 2017.

“Our experiment is like a complex ‘clockwork’ where every component has to go off seamlessly at the right time” said Rocco Gaudenzi, a member of the GrapheneX team. “It does not often happen that you have to build up such a clockwork from scratch, and you cannot test it in real conditions but during the launch itself.”

The team worked hard to make the experiment successful. “Despite the initial technical difficulties, we managed to quickly figure out what was going on, fix the issues and get back on track. We are very happy with the results of the experiment as we observed laser-induced motion of a graphene light sail, and most importantly we had a great experience!” said Davide Stefani, GrapheneX team member.

Santiago J. Cartamil-Bueno, GrapheneX team leader, expressed that both the experience and the results were valuable to the team. “The most important lesson is that always something will happen, and you need to be ready to adapt or to change,” he said. “I think at the end of the day, it’s about the experience; you just need to create new challenges and learn from them, and be ready to grab more experience and go to the next level.”

Though the GrapheneX experiment is now finished, the team is considering further tests as part of a new and ambitious research project, to continue exploring the influence of radiation pressure on graphene light sails.

The results of the two projects demonstrate graphene’s versatility and are the first step towards expanding the frontiers of  research.

 Explore further: Graphene tests set for zero-G flight

Provided by: Graphene Flagship

 

MIT Engineers create Plants that “Glow” – Embedded Nanoparticles could Illuminate Workspace


Plant Glow 4-engineerscreIllumination of a book (“Paradise Lost,” by John Milton) with the nanobionic light-emitting plants (two 3.5-week-old watercress plants). The book and the light-emitting watercress plants were placed in front of a reflective paper to …more

Imagine that instead of switching on a lamp when it gets dark, you could read by the light of a glowing plant on your desk.

MIT engineers have taken a critical first step toward making that vision a reality. By embedding specialized nanoparticles into the leaves of a watercress plant, they induced the plants to give off dim  for nearly four hours. They believe that, with further optimization, such plants will one day be bright enough to illuminate a workspace.

“The vision is to make a plant that will function as a desk lamp—a lamp that you don’t have to plug in. The light is ultimately powered by the energy metabolism of the plant itself,” says Michael Strano, the Carbon P. Dubbs Professor of Chemical Engineering at MIT and the senior author of the study.

This technology could also be used to provide low-intensity indoor lighting, or to transform trees into self-powered streetlights, the researchers say.

MIT postdoc Seon-Yeong Kwak is the lead author of the study, which appears in the journal Nano Letters.

Nanobionic plants

Plant nanobionics, a new research area pioneered by Strano’s lab, aims to give plants novel features by embedding them with different types of nanoparticles. The group’s goal is to engineer plants to take over many of the functions now performed by electrical devices. The researchers have previously designed plants that can detect explosives and communicate that information to a smartphone, as well as plants that can monitor drought conditions.

Engineers create plants that glow
Glowing MIT logo printed on the leaf of an arugula plant. The mixture of nanoparticles was infused into the leaf using lab-designed syringe termination adaptors. The image is merged of the bright-field image and light emission in the dark. Credit: Kwak Seonyeong

Lighting, which accounts for about 20 percent of worldwide energy consumption, seemed like a logical next target. “Plants can self-repair, they have their own energy, and they are already adapted to the outdoor environment,” Strano says. “We think this is an idea whose time has come. It’s a perfect problem for plant nanobionics.”

To create their glowing plants, the MIT team turned to luciferase, the enzyme that gives fireflies their glow. Luciferase acts on a molecule called luciferin, causing it to emit light. Another molecule called co-enzyme A helps the process along by removing a reaction byproduct that can inhibit luciferase activity.

The MIT team packaged each of these three components into a different type of nanoparticle carrier. The nanoparticles, which are all made of materials that the U.S. Food and Drug Administration classifies as “generally regarded as safe,” help each component get to the right part of the plant. They also prevent the components from reaching concentrations that could be toxic to the plants.

The researchers used silica nanoparticles about 10 nanometers in diameter to carry luciferase, and they used slightly larger particles of the polymers PLGA and chitosan to carry luciferin and coenzyme A, respectively. To get the particles into , the researchers first suspended the particles in a solution. Plants were immersed in the solution and then exposed to high pressure, allowing the particles to enter the leaves through tiny pores called stomata.

Particles releasing luciferin and coenzyme A were designed to accumulate in the extracellular space of the mesophyll, an inner layer of the leaf, while the smaller particles carrying luciferase enter the cells that make up the mesophyll. The PLGA particles gradually release luciferin, which then enters the plant cells, where luciferase performs the chemical reaction that makes luciferin glow.

The researchers’ early efforts at the start of the project yielded plants that could glow for about 45 minutes, which they have since improved to 3.5 hours. The light generated by one 10-centimeter watercress seedling is currently about one-thousandth of the amount needed to read by, but the researchers believe they can boost the light emitted, as well as the duration of light, by further optimizing the concentration and release rates of the components.

Credit: Melanie Gonick/MIT

Plant transformation

Previous efforts to create light-emitting plants have relied on genetically engineering plants to express the gene for luciferase, but this is a laborious process that yields extremely dim light. Those studies were performed on tobacco plants and Arabidopsis thaliana, which are commonly used for plant genetic studies. However, the method developed by Strano’s lab could be used on any type of plant. So far, they have demonstrated it with arugula, kale, and spinach, in addition to watercress.

For future versions of this technology, the researchers hope to develop a way to paint or spray the nanoparticles onto plant leaves, which could make it possible to transform trees and other large plants into light sources.

“Our target is to perform one treatment when the plant is a seedling or a mature plant, and have it last for the lifetime of the plant,” Strano says. “Our work very seriously opens up the doorway to streetlamps that are nothing but treated trees, and to indirect lighting around homes.”

The researchers have also demonstrated that they can turn the light off by adding nanoparticles carrying a luciferase inhibitor. This could enable them to eventually create  that shut off their light emission in response to environmental conditions such as sunlight, the researchers say.

 Explore further: Nanobionic spinach plants can detect explosives

More information: Seon-Yeong Kwak et al. A Nanobionic Light-Emitting Plant, Nano Letters (2017). DOI: 10.1021/acs.nanolett.7b04369

 

Sandia National Laboratories: Making ‘solid ground’ toward better lithium-ion battery interfaces


5-1-researchersmSchematic of full battery cell architecture and cross-sectional microscopic image of the actual battery. Credit: Sandia National Laboratories

Research at Sandia National Laboratories has identified a major obstacle to advancing solid-state lithium-ion battery performance in small electronics: the flow of lithium ions across battery interfaces.

Sandia’s three-year Laboratory Directed Research and Development project investigated the nanoscale chemistry of , focusing on the region where electrodes and electrolytes make contact. Most commercial  contain a liquid electrolyte and two solid electrodes, but solid-state batteries instead have a solid electrolyte layer, allowing them to last longer and operate more safely.

“The underlying goal of the work is to make solid-state batteries more efficient and to improve the interfaces between different materials,” Sandia physicist Farid El Gabaly said. “In this project, all of the materials are solid; we don’t have a liquid-solid  like in traditional lithium-ion batteries.”

The research was published in a Nano Letters paper titled, “Non-Faradaic Li+ Migration and Chemical Coordination across Solid-State Battery Interfaces.” Authors include Sandia postdoctoral scientist Forrest Gittleson and El Gabaly. The work was funded by the Laboratory Directed Research and Development program, with supplemental funding by the Department of Energy’s Office of Science.

El Gabaly explained that in any lithium , the lithium must travel back and forth from one electrode to the other when it is charged and discharged. However, the mobility of lithium ions is not the same in all materials and interfaces between materials are a major obstacle.

Speeding up the intersection

El Gabaly compares the work to figuring out how to make traffic move quickly through a busy intersection.

“For us, we are trying to reduce the traffic jam at the junction between two materials,” he said.

El Gabaly likened the electrode-electrolyte interface to a tollbooth or merge on a freeway.

“We are essentially taking away the cash tolls and saying everybody needs to go through the fast track, so you’re smoothing out or eliminating the slowdowns,” he said. “When you improve the process at the interface you have the right infrastructure for vehicles to pass easily. You still have to pay, but it is faster and more controlled than people searching for coins in the glove box.”

There are two important interfaces in solid state batteries, he explained, at the cathode-electrolyte junction and electrolyte-anode junction. Either could be dictating the performance limits of a full battery.

Gittleson adds, “When we identify one of these bottlenecks, we ask, ‘Can we modify it?’ And then we try to change the interface and make the chemical processes more stable over time.”

Researchers make solid ground toward better lithium-ion battery interfaces
Sandia National Laboratories researchers Forrest Gittleson, left, and Farid El Gabaly investigate the nanoscale chemistry of solid-state batteries, focusing on the region where electrodes and electrolytes make contact. Credit: Dino Vournas

Sandia’s interest in solid-state batteries

El Gabaly said Sandia is interested in the research mainly because solid-state batteries are low maintenance, reliable and safe. Liquid electrolytes are typically reactive, volatile and highly flammable and are a leading cause of commercial battery failure. Eliminating the liquid component can make these devices perform better.

“Our focus wasn’t on large batteries, like in electric vehicles,” El Gabaly said. “It was more for small or integrated electronics.”

Since Sandia’s California laboratory did not conduct solid-state battery research, the project first built the foundation to prototype batteries and examine interfaces.

“This sort of characterization is not trivial because the interfaces that we are interested in are only a few atomic layers thick,” Gittleson said. “We use X-rays to probe the chemistry of those buried interfaces, seeing through only a few nanometers of material. Though challenging to design experiments, we have been successful in probing those regions and relating the chemistry to full battery performance.”

Processing the research

The research was conducted using materials that have been used in previous proof-of-concept solid-state batteries.

“Since these materials are not produced on a massive commercial scale, we needed to be able to fabricate full devices on-site,” El Gabaly said. “We sought methods to improve the batteries by either inserting or changing the interfaces in various ways or exchanging materials.”

The work used pulsed laser deposition and X-ray photoelectron spectroscopy combined with electrochemical techniques. This allowed very small-scale deposition since the batteries are thin and integrated on a silicon wafer.

“Using this method, we can engineer the interface down to the nanometer or even subnanometer level,” Gittleson said, adding that hundreds of samples were created.

Building batteries in this way allowed the researchers to get a precise view of what that interface looks like because the  can be assembled so controllably.

The next phase of the research is to improve the performance of the batteries and to assemble them alongside other Sandia technologies.

“We can now start combining our batteries with LEDs, sensors, small antennas or any number of integrated devices,” El Gabaly said. “Even though we are happy with our , we can always try to improve it more.”

 Explore further: Toward safer, longer-lasting batteries for electronics and vehicles

More information: Forrest S. Gittleson et al. Non-Faradaic Li+ Migration and Chemical Coordination across Solid-State Battery Interfaces, Nano Letters (2017). DOI: 10.1021/acs.nanolett.7b03498