MIT: Device makes power conversion more efficient New design could dramatically cut energy waste in electric vehicles, data centers, and the power grid

Great Things from Small Things .. Nanotechnology Innovation

MIT-Power-Converters-01_0MIT postdoc Yuhao Zhang, handles a wafer with hundreds of vertical gallium nitride power devices fabricated from the Microsystems Technology Laboratories production line. Courtesy of Yuhao Zhang

Power electronics, which do things like modify voltages or convert between direct and alternating current, are everywhere. They’re in the power bricks we use to charge our portable devices; they’re in the battery packs of electric cars; and they’re in the power grid itself, where they mediate between high-voltage transmission lines and the lower voltages of household electrical sockets.

Power conversion is intrinsically inefficient: A power converter will never output quite as much power as it takes in. But recently, power converters made from gallium nitride have begun to reach the market, boasting higher efficiencies and smaller sizes than conventional, silicon-based power converters.

Commercial gallium nitride power devices can’t handle voltages above about 600 volts, however, which limits their use to household…

View original post 743 more words


Researchers sew atomic lattices seamlessly together

In a study published March 8 in Science, scientists with the University of Chicago and Cornell University revealed a technique to “sew” two patches of crystals seamlessly together at the atomic level to create atomically-thin fabrics.

The team wanted to do this by stitching different fabric-like, three-atom-thick crystals. “Usually these are grown in stages under very different conditions; grow one material first, stop the growth, change the condition, and start it again to grow another material,” said Jiwoong Park, professor of chemistry in the James Franck Institute and the Institute for Molecular Engineering and a lead author on the study.

Instead, they developed a new process to find the perfect window that would work for both materials in a constant environment, so they could grow the entire crystal in a single session.

The resulting single-layer materials are the most perfectly aligned ever grown, Park said. The gentler transition meant that at the points where the two lattices meet, one lattice stretches or grows to meet the other—instead of leaving holes or other defects.

The atomic seams are so tight, in fact, that when they looked up close using scanning electron microscopes, they saw that the larger of the two materials puckers a little around the joint.

They decided to test its performance in one of the most widely used electronic devices: a diode. Two different kinds of material are joined, and electrons are supposed to be able to flow one way through the “fabric,” but not the other.

The diode lit up. “It was exciting to see these three-atom-thick LEDs glowing. We saw excellent performance—the best known for these types of materials,” said Saien Xie, a graduate student and first author on the paper.

The discovery opens up some interesting ideas for electronics. Devices like LEDs are currently stacked in layers—3-D versus 2-D, and are usually on a rigid surface. But Park said the new technique could open up new configurations, like flexible LEDs or atoms-thick 2-D circuits that work both horizontally and laterally.

He also noted that the stretching and compressing changed the optical properties—the color—of the crystals due to the quantum mechanical effects. This suggests potential for light sensors and LEDs that could be tuned to different colors, for example, or strain-sensing fabrics that change color as they’re stretched.

“This is so unknown that we don’t even know all the possibilities it holds yet,” Park said. “Even two years ago it would have been unimaginable.”

This work was carried out in collaboration with co-lead authors David Muller and Robert A. DiStasio Jr. at Cornell University. Other coauthors included University of Chicago postdoctoral scholars Kibum Kang and Chibeom Park and graduate student Preeti Poddar, as well as Cornell postdoctoral scholar Ka Un Lao and graduate students Lujie Huang, Lijie Tu and Yimo Han. The study used computing resources at the Argonne Leadership Computing Facility at Argonne National Laboratory.

Citation: “Coherent, atomically-thin transition-metal dichalcogenide superlattices with engineered strain.” Xie et. al, Science, March 8, 2018. DOI: 10.1126/science.aao5360

Funding: U.S. Air Force Office of Scientific Research, National Science Foundation, Samsung Advanced Institute of Technology, U.S. Department of Energy Office of Science

Joining different kinds of materials can lead to all kinds of breakthroughs. It’s an essential skill that allowed humans to make everything from skyscrapers (by reinforcing concrete with steel) to solar cells (by layering materials to herd along electrons).

In electronics, joining different materials produces “heterojunctions”—the most fundamental components in solar cells, LEDs or computer chips. The smoother the seam between two materials, the more easily electrons flow across it; essential for how well the electronic devices function. But they’re made up of crystals—rigid lattices of atoms, which may have very different spacing—and they don’t take kindly to being mashed together.

Coherent, atomically thin transition-metal dichalcogenide superlattices with engineered strain

Saien Xie, Lijie Tu, Yimo Han, Lujie Huang, Kibum Kang, Ka Un Lao, Preeti Poddar, Chibeom Park, David A. Muller, Robert A. DiStasio Jr., Jiwoong Park

Science  09 Mar 2018: Vol. 359, Issue 6380, pp. 1131-1136

DOI: 10.1126/science.aao5360

Israeli scientists develop ‘Cancer-Sniffing Nose’ using Nanotechnology – new device can ‘smell’ 17 diseases on a person’s breath


Nano Nose 2 nanose2-900x497

London audience told by Israeli-Christian professor about a new device which can ‘smell’ 17 diseases on a person’s breath

Professor Hossam Haick, an Israeli Christian, delivered Technion UK’s Ron Arad lecture at the Royal College of Physicians last week.

The electronic ‘nose’ he developed can smell 17 diseases on a person’s breath, including Alzheimer’s, Parkinson’s, tuberculous, diabetes and lung cancer.Cancer Nose I 140715155737-na-nose-face-story-top

The non-intrusive medical device, which works by identifying as disease’s bio-markers, has attracted the attention of billionaires such as Bill and Melinda Gates, whose foundation focuses on the diagnostics of diseases.

“Every disease has a unique signature – a ‘breath print,’” Haick said. “The challenge is to bring the best science we have proven into reality by developing a smaller device that captures all the components of a disease appearing in the breath.”

Cancer Sniffing Nose The-Technion-Ron-Arad-Dinner-The-Technion-UK_Prof_Hosaim-Haick_Cancer-Sniffing_Nose_Lecture-2-635x357Haick works at the Department of Chemical Engineering and the Russell Berrie Nanotechnology Institute at the Technion in Israel and is an expert in the field of nanotechnology and non-invasive disease diagnosis. (Left) Professor Hossam Haick at the Technion Ron Arad Dinner Credit: John Rifkin

The University said the latest advances in his research mean that it has the potential to identify diseases though sensors in mobile phones and wearable technology, and with more analysis and data it may even be able to predict cancer in the future.

“We cannot develop this technology in Israel without developing the best science,” he said. “Integrating the software, machine learning and academic intelligence will make a critical change in the early detection and prevention of cancerous diseases.”


Metal-organic frameworks (MOF’s) Cut Energy Consumption of Petrochemicals – Expanding the Research of Carbon Capture

metalorganic frameworks petrochemsUltrathin MOF membrane on commercial polymer support. Credit: K.V. Agrawal/EPFL

In the chemical and the petrochemical industries, separating molecules in an energy-efficient way is one of the most important challenges. Overall, the separation processes account for around 40% of the energy consumed in the petrochemical industry, and reducing this can help addressing anthropogenic carbon emissions.

One of the most important products in the  is propylene, which is widely used in fibers, foams, plastics etc. Purifying propylene almost always requires separating it from propane. Currently this is done by cryogenic distillation, where the two gases are liquefied by being cooled to sub-zero temperatures. This gives the propylene-propane separation process a very large energy footprint.

A solution is to use “metal-organic frameworks” (MOF’s). These are porous, crystalline polymers made of metal nodes that are linked together by organic ligands. The pores in their molecular structure allow MOFs to capture molecules so efficiently that they are now prime candidates in carbon-capture research.

In terms of separating molecules, MOF-based membranes are among the highest performers, and can carry out the propylene-propane separation at ambient temperature. One MOF called ZIF-8 (zeolitic imidazolium frameworks-8), allows propylene to diffuse through its pores 125 times more efficiently than propane at 30oC, offering high selectivity without the need for sub-zero temperatures.

Metal-organic frameworks cut energy consumption of petrochemicals
Electrophoretic nuclei assembly for energy-efficient separation membrane. Credit: K.V. Agrawal/EPFL

“The main challenge with this approach is to synthesize high-quality, ultrathin, MOF films on commercial porous substrates without complicated substrate modifications,” says Professor Kumar Varoon Agrawal at EPFL. “Such high-quality films have fewer defects and are necessary for obtaining the highest possible separation selectivity.” His lab at EPFL Sion has now developed a straightforward MOF crystallization approach called “electrophoretic nuclei assembly for crystallization of highly-intergrown thin-films” (ENACT).

The ENACT method allows simple regulation of the heterogeneous nucleation on unmodified (as-obtained) porous and nonporous substrates. This in turn facilitates the synthesis of ultrathin, highly intergrown polycrystalline MOF films.

The lab used the ENACT method to synthesize 500-nm-thick MOF membranes. When they tested them, the membranes yielded one of the best separation performances in propylene/propane separation recorded to date. The ultrathin film yielded large  permeance (flux normalized with pressure difference), which will help reduce the membrane area needed for industrial applications.

The group concludes that the versatile, straightforward ENACT method can be extended to a wide-range of nanoporous crystals.

 Explore further: Researcher optimally isolates propylene for commercial use

More information: Guangwei He et al. Electrophoretic Nuclei Assembly for Crystallization of High-Performance Membranes on Unmodified Supports, Advanced Functional Materials (2018). DOI: 10.1002/adfm.201707427



Scientists create hybrid nanomaterials in fight against cancer and bacteria




Scientists from the National University of Science and Technology MISIS (NUST MISIS), the State Research Center for Applied Microbiology and Biotechnology and the Queensland University (Brisbane, Australia) have created BN/Ag hybrid nanomaterials and have proved their effectiveness as catalysts and antibacterial agents as well as for treating oncological diseases. The results are published in the Beilstein Journal of Nanotechnology.

The interest in the nanomaterials is related to the fact that when a particle is decreased to nanometers (1 nanometer = 10-9 meter) its electronic structure changes, and the material acquires new physical and chemical properties. For example, a magneto can lose its magnetism completely when decreased to ten nanometers.

Today, scientists are beginning to study combinations of various materials at the nanolevel instead of as separate nanoparticles (fullerenes and nanotubes). They have come up with a concept of hybrid nanomaterials, which combine the properties of individual components.

Hybridization makes it possible to combine properties that were incompatible before, for example, to create a material that can be a solid and a plastic at the same time. In addition, the scientists noted that combinations of nanomaterials often showed better or even new properties. Today the nanohybrid area is only beginning to develop.

MISIS scientists are studying the properties of BN hybrid nanomaterials. BN (boron nitride) was chosen as the base for new hybrid nanoparticles because it is chemically inert and biocompatible and has low relative density.

BN hybrid nanomaterials are used as prospective key components of the next generation advanced biomaterials, catalysts and sensors. These hybrids have advantageous combination of properties, such as biocompatibility, high tensile strength and thermal conductivity as well as superb chemical stability and electrical insulation. This explains their rich functionality for developing new biomedicines, reinforcement of ultralight metals and polymers and production of transparent superhydrophobic films and quantum devices.

“We have studied BN/Ag nanohybrid properties and have discovered a high potential for new applications. We were especially interested in an application for treating oncological diseases as well as their activity as catalysts and antibacterial agents,” said Andrei Matveyev, a research author, Senior Research Fellow at the MISIS Inorganic Materials Laboratory.

According to Matveyev, these nanohybrids can be used in cancer therapy as a base for drug delivery medicines. The nanohybrids with the drug become containers to be delivered inside cancer cells. Nanohybrids are chemically modified by attaching folic acid (vitamin ?9) to its surface through an Ag nanoparticle.

The modified nanohybrids with folic acid are mostly accumulated in cancer cells, because they have an increased number of folic acid receptors, so the concentration grows thousand times higher than in healthy cells. In addition, the acidity in a cancer cell is also higher than in the intercellular space, which leads to the drug’s release from its nanocontainer.

“This is why the drug is mostly released inside cancer cells, which decreases the general concentration of the drug in the organism, thus preventing toxicity,” Matveyev notes.

The authors believe that nanohybrids modified for drug delivery can be applied to uses in isotope and neuron capture cancer therapy.

The synthesized particles have also demonstrated high antibacterial activity against test bacteria: Escherichia coli live in dirty water, so water disinfection by nanohybrids may prove useful in emergencies or during war time.

Nanohybrids based on BN/Ag nanoparticles can also be used as an ultraviolet photoactive material.


Energy Storage is Changing the Energy Paradigm: Video

Energy Storage is fast finding favor among savvy investors as it looks likely to revolutionize the ‘Renewable Energy Landscape.’


Canadian Nanotechnology Firm Finds Water in the Driest of Air

A Canadian startup could have a new breakthrough in pulling moisture from the driest of places. For years, researchers around the world have been looking for new technology and methods of making drinkable water out of the atmosphere.

The company Awn Nanotech, based out of Montreal, have been leveraging the latest in nanotechnology to make that water harvesting a reality. Awn Nanotech, most recently, released new information about their progress at the American Physical Society’s March meeting — the world’s largest gathering of physicists.

Founder Richard Boudreault made the presentation, who is both a physicist and an entrepreneur with a sizeable number of other tech-based startup companies under his belt. He said the company got its inspiration after hearing about the water crises in southern California and South Africa. While most others were looking to solve the problem by desalination techniques and new technologies, he wanted to look to the sky instead.

He also wondered if he could create a more cost-efficient alternative to the other expensive options on the market. By tapping into nanotechnology, he could pull the particles toward each other and use the natural tension found in the surface as a force of energy to power the nanotechnology itself.

“It’s extremely simple technology, so it’s extremely durable,” Boudreault said at the press conference.

Boudreault partnered with college students throughout Canada to develop a specific textile. The fine mesh of carbon nanotubes would be both hydrophilic (attracts water to the surface) on one side and hydrophobic (repels water away from the surface) on the other.

Water particles hit the mesh and get pushed through the film from one side to the other. This ultimately forms droplets.

“Because of the surface tension, (the water) finds its way through,” Boudreault explained. The water then gets consolidated into storage tanks as clean water where it can await consumption. While there’s no need for power with the system, the Awn Nanotech team realized they could significantly speed up the water harvesting process by adding a simple fan. The team quickly added a small fan of a size that cools a computer. To make sure the fan also kept energy usage low, the fan itself runs on a small solar panel.

There have been some other attempts around the world to scale up water harvesting technology. In April 2017, a team from MIT partnered with University of California at Berkeley to harvest fog. They turned their attention to already very moist air and created a much cheaper alternative to other fog-harvesting methods using metal-organic frameworks.

However, unlike the small frameworks developed by the MIT researchers, Boudreault said that they’ve quickly scaled up their technology. In fact, the Awn Nanotech team has already created a larger alternative to their smaller scale that can capture 1,000 liters in one day. They’re currently selling their regular-scale water capture systems for $1,000 each, but the company intends on partnering with agricultural companies and farms for the more extensive systems.


Improving Cancer and Alzheimer’s Therapy by Better Understanding ‘Microtubules’ – railways in (almost) every cell in your body

Single microtubule ‘railway track’ surrounded by bubbles of ‘cargo’ held inside cells. Credit: University of Warwick

New work from the University of Warwick shows how a microscopic ‘railway’ system in our cells can optimise its structure to better suit bodies’

The work was conducted by Professor Robert Cross, director of the centre for mechanochemical cell biology at Warwick Medical School and leader of the Cross lab.

His team based at Warwick Medical School has been looking at how the microtubule ‘railway tracks’ inside cells are built. Almost every cell in our bodies contains a ‘railway’ network, a system of tiny tracks called microtubules that link important destinations inside the cell. Professor Cross’ team found the system of microtubule rails inside cells can adjust its own stability depending on whether it is being used or not..

Prof Cross said: “The microtubule tracks of the cellular railway are almost unimaginably small – just 25 nanometres across (a nanometre being a millionth of a millimetre).The railway is just as crucial to a well-run cell as a full-size railway is to a well-run country. For cells and for countries the problem is very much the same – how to run a better railway?”

“Imagine if the tracks of a real railway were able to ask themselves, ‘am I useful?’ To find out, they would check how often a railway engine passed along them.

“It turns out that the microtubule railway tracks inside cells can do exactly that – they check whether or not they are in contact with tiny railway engines (called kinesins). If they are, then they remain stably in place. If they are not, they disassemble themselves. We think this allows the sections of microtubule rail to be recycled to build new and more useful rails elsewhere in the cell.”

The paper, ‘Kinesin expands and stabilizes the GDP-microtubule lattice’ published (12 March 2018) in Nature Nanotechnology, shows that when the kinesin railway engines contact their microtubule rails, they subtly change their structure, producing a very slight lengthening that stabilises the rail.

Using a custom built microscope, the Warwick Open Source Microscope, the researchers who are also based at Warwick Systems Biology Centre and Mathematics Institute, University of Warwick, detected a 1.6% increase in the length of microtubules attached to kinesins, with a 200 times increase in their lifetime.

By revealing how microtubules are stabilised and destabilised, the team hope to throw new light on the workings of a number of human diseases (for example Alzheimer’s), which is linked to abnormalities in microtubule function. They are hopeful also that their work may ultimately lead to improved cancer therapy because the railway is so vital (for example for cell division), as its microtubule tracks are a key target for cancer drugs such as Taxol. Exactly how Taxol stabilises microtubules in cells remains poorly understood.

Professor Cross added: “Our new work shows that the kinesin railway engines stabilise microtubules in a Taxol-like way. We need to understand as much as we can about how microtubules can be stabilised and destabilised, to pave and illuminate the road to improved therapies.”

More information: Daniel R. Peet et al, Kinesin expands and stabilizes the GDP-microtubule lattice, Nature Nanotechnology (2018). DOI: 10.1038/s41565-018-0084-4

Provided by: University of Warwick



One of the biggest challenges to the recovery of someone who has experienced a major physical trauma such as a heart attack is the growth of scar tissue.

As scar tissue builds up in the heart, it can limit the organ’s functions, which is obviously a problem for recovery.

However, researchers from the Science Foundation Ireland-funded Advanced Materials and BioEngineering Research (AMBER) Centre have revealed a new biomaterial that actually ‘grows’ healthy tissue – not only for the heart, but also for people with extensive nerve damage.

In a paper published to Advanced Materials, the team said its biomaterial regenerating tissue responds to electrical stimuli and also eliminates infection.

The new material developed by the multidisciplinary research team is composed of the protein collagen, abundant in the human body, and the atom-thick ‘wonder material’ graphene.

The resulting merger creates an electroconductive ‘biohybrid’, combining the beneficial properties of both materials and creating a material that is mechanically stronger, with increased electrical conductivity.

This biohybrid material has been shown to enhance cell growth and, when electrical stimulation is applied, directs cardiac cells to respond and align in the direction of the electrical impulse.

Could repair spinal cord

It is able to prevent infection in the affected area because the surface roughness of the material – thanks to graphene – results in bacterial walls being burst, simultaneously allowing the heart cells to multiply and grow.

For those with extensive nerve damage, current repairs are limited to a region only 2cm across, but this new biomaterial could be used across an entire affected area as it may be possible to transmit electrical signals across damaged tissue.

Speaking of the breakthrough, Prof Fergal O’Brien, deputy director and lead investigator on the project, said: “We are very excited by the potential of this material for cardiac applications, but the capacity of the material to deliver physiological electrical stimuli while limiting infection suggests it might have potential in a number of other indications, such as repairing damaged peripheral nerves or perhaps even spinal cord.

“The technology also has potential applications where external devices such as biosensors and devices might interface with the body.”

The study was led by AMBER researchers at the Royal College of Surgeons in Ireland in partnership with Trinity College Dublin and Eberhard Karls University in Germany.


Programmable and Highly Scalable Molecular Fabrication of Trillions of Carbon-Nanotubes (CNT’s) for: Carbon-zero fuels, health & performance optimized air, water and precision medicine

Mattershift designs and manufactures nanotube membranes carbon-zero fuels, health and performance optimized air and water, and precision medicine.

ThOe startup was founded in 2013 to realize the potential of molecular factories, with the ultimate goal of printing matter from the air.

Science Advances – Large-scale polymeric carbon nanotube membranes with sub–1.27-nm pores


Mattershift reports the first characterization study of commercial prototype carbon nanotube (CNT) membranes consisting of sub–1.27-nm-diameter CNTs traversing a large-area nonporous polysulfone film. The membranes show rejection of NaCl and MgSO4 at higher ionic strengths than have previously been reported in CNT membranes, and specific size selectivity for analytes with diameters below 1.24 nm. The CNTs used in the membranes were arc discharge nanotubes with inner diameters of 0.67 to 1.27 nm. Water flow through the membranes was 1000 times higher than predicted by Hagen-Poiseuille flow, in agreement with previous CNT membrane studies. Ideal gas selectivity was found to deviate significantly from that predicted by both viscous and Knudsen flow, suggesting that surface diffusion effects may begin to dominate gas selectivity at this size scale.

The most basic building block of a Mattershift Molecular Factory is the Programmable Molecular Gateway. It consists of a carbon nanotube fixed within a flexible polymer sheet and aligned so that both of its ends are open.

The gateways are called “programmable” because a great variety of gates can be added to their openings, allowing them to manipulate molecules in specific ways.

One example is a NEMS gate, which is a gateway with a Nano Electro Mechanical System (NEMS) attached. It’s similar to a Micro Electro Mechanical System (MEMS), like the kind used to create accelerometers in smartphones, for example, but NEMS are much smaller. The one shown above is a gate that can be opened and closed by sending an electrical signal through the nanotube to which it’s attached.

Another example is a catalyst gate. This is a gateway with a catalyst attached to the opening of the nanotube. All molecules passing through the gateway must interact with the catalyst, which may be active or passive, removing or adding electrons, combining or splitting molecular parts.

Protein gates may be used to allow only specific molecules to pass through the gateways, like therapeutically useful antibodies, ions, or anything else protein channels may select for. Protein gates consisting of enzymes may also be used for highly specific catalysis of reactions, like those involved in molecular assembly.

A great many types of gates are possible, and many have already been demonstrated in laboratories around the world

Each sheet is embedded with a large number of gateways to transform and transport molecules. A typical density of gateways is 250 Trillion per square meter of sheet.

By creating a series of gateway sheets that perform different functions — purification, catalysis, separation, concentration, further reactions, and so on, complex chemical synthesis can be achieved in compact, inexpensive devices. These factories may be as small as a shoebox or as large as a warehouse.

The key innovation at Mattershift has been to create an inexpensive and scalable platform for this library of gates. With the ability to deploy Programmable Molecular Gateways at scale, we believe practical molecular factories are now possible.

New York-based Mattershift has managed to create large-scale carbon nanotube (CNT) membranes that are able to combine and separate individual molecules.

%d bloggers like this: