Berkeley Lab – DOE – Argonne – “Holy Grail” for Batteries: Solid-State Magnesium Battery a Big Step Closer


 

Berkeley Lab leads discovery of the fastest magnesium-ion solid-state conductor to date.

 

A team of Department of Energy (DOE) scientists at the Joint Center for Energy Storage Research (JCESR) has discovered the fastest magnesium-ion solid-state conductor, a major step towards making solid-state magnesium-ion batteries that are both energy dense and safe.

Argonne scientist Baris Key, shown on left at work in his nuclear magnetic resonance lab, worked with researchers at Berkeley Lab on the discovery of the fastest ever magnesium-ion solid-state conductor. (Credit: Argonne National Laboratory)

The electrolyte, which carries charge back and forth between the battery’s cathode and anode, is a liquid in all commercial batteries, which makes them potentially flammable, especially in lithium-ion batteries. A solid-state conductor, which has the potential to become an electrolyte, would be far more fire-resistant.

Researchers at DOE’s Lawrence Berkeley National Laboratory (Berkeley Lab) and Argonne National Laboratory were working on a magnesium battery, which offers higher energy density than lithium, but were stymied by the dearth of good options for a liquid electrolyte, most of which tend to be corrosive against other parts of the battery. “Magnesium is such a new technology, it doesn’t have any good liquid electrolytes,” said Gerbrand Ceder, a Berkeley Lab Senior Faculty Scientist. “We thought, why not leapfrog and make a solid-state electrolyte?”

The material they came up with, magnesium scandium selenide spinel, has magnesium mobility comparable to solid-state electrolytes for lithium batteries. Their findings were reported in Nature Communications in a paper titled, “High magnesium mobility in ternary spinel chalcogenides.”JCESR, a DOE Innovation Hub, sponsored the study, and the lead authors are Pieremanuele Canepa and Shou-Hang Bo, postdoctoral fellows at Berkeley Lab.

“With the help of a concerted effort bringing together computational materials science methodologies, synthesis, and a variety of characterization techniques, we have identified a new class of solid conductors that can transport magnesium ions at unprecedented speed,” Canepa said.

Collaboration with MIT and Argonne

The research team also included scientists at MIT, who provided computational resources, and Argonne, who provided key experimental confirmation of the magnesium scandium selenide spinel material to document its structure and function.

Co-author Baris Key, a research chemist at Argonne, conducted nuclear magnetic resonance (NMR) spectroscopy experiments. These tests were among the first steps to experimentally prove that magnesium ions could move through the material as rapidly as the theoretical studies had predicted.

“It was crucial to confirm the fast magnesium hopping experimentally. It is not often that the theory and the experiment agree closely with each other,” Key said. “The solid state NMR experiments for this chemistry were very challenging and would not be possible without dedicated resources and a funding source such as JCESR.

As we’ve shown in this study, an in-depth understanding of short- and long-range structure and ion dynamics will be the key for magnesium ion battery research.”

NMR is akin to magnetic resonance imaging (MRI), which is routinely used in medical settings, where it shows hydrogen atoms of water in human muscles, nerves, fatty tissue, and other biological substances. But researchers can also tune NMR frequency to detect other elements, including the lithium or magnesium ions that are found in battery materials.

The NMR data from the magnesium scandium selenide material, however, involved material of unknown structure with complex properties, making them challenging to interpret.

Canepa noted the challenges of testing materials that are so new. “Protocols are basically non-existent,” he said. “These findings were only possible by combining a multi-technique approach (solid-state NMR and synchrotron measurements at Argonne) in addition to conventional electrochemical characterization.”

Doing the impossible

The team plans to do further work to use the conductor in a battery. “This probably has a long way to go before you can make a battery out of it, but it’s the first demonstration you can make solid-state materials with really good magnesium mobility through it,” Ceder said. “Magnesium is thought to move slowly in most solids, so nobody thought this would be possible.”

Additionally, the research identified two related fundamental phenomena that could significantly affect the development of magnesium solid electrolytes in the near future, namely, the role of anti-site defects and the interplay of electronic and magnesium conductivity, both published recently in Chemistry of Materials.

Bo, now an assistant professor at Shanghai Jiao Tong University, said the discovery could have a dramatic effect on the energy landscape. “This work brought together a great team of scientists from various scientific disciplines, and took the first stab at the formidable challenge of building a solid-state magnesium battery,” he said. “Although currently in its infancy, this emerging technology may have a transformative impact on energy storage in the near future.”

Gopalakrishnan Sai Gautam, another co-author who was an affiliate at Berkeley Lab and is now at Princeton, said the team approach made possible by a DOE hub such as JCESR was critical. “The work shows the importance of using a variety of theoretical and experimental techniques in a highly collaborative environment to make important fundamental discoveries,” he said.

Ceder was excited at the prospects for the finding but cautioned that work remains to be done. “There are enormous efforts in industry to make a solid-state battery. It’s the holy grail because you would have the ultimate safe battery. But we still have work to do. This material shows a small amount of electron leakage, which has to be removed before it can be used in a battery.”

Funding for the project was provided by the DOE Office of Science through the Joint Center for Energy Storage Research, a Department of Energy Innovation Hub. The Advanced Photon Source, a DOE Office of Science User Facility at Argonne, added vital data to the study regarding the structure of the solid conductor.

The National Energy Research Scientific Computing Center (NERSC), a DOE Office of Science User Facility at Berkeley Lab, provided computing resources. Other co-authors on the paper are Juchaun Li of Berkeley Lab, William Richards and Yan Wang of MIT, and Tan Shi and Yaosen Tian of UC Berkeley.

# # #

Lawrence Berkeley National Laboratory addresses the world’s most urgent scientific challenges by advancing sustainable energy, protecting human health, creating new materials, and revealing the origin and fate of the universe. Founded in 1931, Berkeley Lab’s scientific expertise has been recognized with 13 Nobel Prizes. The University of California manages Berkeley Lab for the U.S. Department of Energy’s Office of Science. For more, visit www.lbl.gov.

Argonne National Laboratory seeks solutions to pressing national problems in science and technology. The nation’s first national laboratory, Argonne conducts leading-edge basic and applied scientific research in virtually every scientific discipline. Argonne researchers work closely with researchers from hundreds of companies, universities, and federal, state, and municipal agencies to help them solve their specific problems, advance America’s scientific leadership, and prepare the nation for a better future. With employees from more than 60 nations, Argonne is managed by UChicago Argonne, LLC for the U.S. Department of Energy’s Office of Science.

DOE’s Office of Science is the single largest supporter of basic research in the physical sciences in the United States, and is working to address some of the most pressing challenges of our time. For more information, please visit science.energy.gov.

The Joint Center for Energy Storage Research (JCESR), a DOE Energy Innovation Hub, is a major partnership that integrates researchers from many disciplines to overcome critical scientific and technical barriers and create new breakthrough energy storage technology. Led by the U.S. Department of Energy’s Argonne National Laboratory, partners include national leaders in science and engineering from academia, the private sector, and national laboratories. Their combined expertise spans the full range of the technology-development pipeline from basic research to prototype development to product engineering to market delivery.

Advertisements

NREL Develops Switchable Solar Window


November 27, 2017

Demonstration device dynamically responds to sunlight by transforming from transparent to tinted while converting sunlight into electricity

Thermochromic windows capable of converting sunlight into electricity at a high efficiency have been developed by scientists at the U.S. Department of Energy’s National Renewable Energy Laboratory (NREL).

Relying on such advanced materials as perovskites and single-walled carbon nanotubes, the new technology responds to heat by transforming from transparent to tinted.

As the window darkens, it generates electricity. The color change is driven by molecules (methylamine) that are reversibly absorbed into the device. When solar energy heats up the device, the molecules are driven out, and the device is darkened.

When the sun is not shining, the device is cooled back down, and the molecules re-absorb into the window device, which then appears transparent. A video showing the device switch can be seen here

Video

.

Lance Wheeler (front) developed a switchable photovoltaic window along with (from left) Nathan Neale, Robert Tenent, Jeffrey Blackburn, Elisa Miller, and David Moore. (Photo by Dennis Schroeder/NREL)

The NREL-developed demonstration device allows an average of 68 percent of light in the visible portion of the solar spectrum to pass through when it’s in a transparent, or bleached, state. When the window changes color—a process that took about 3 minutes of illumination during testing—only 3 percent is allowed through the window.

Existing solar window technologies are static, which means they are designed to harness a fraction of the sunlight without sacrificing too much visible light transmission needed for viewing or the comfort of building occupants. “There is a fundamental tradeoff between a good window and a good solar cell,” said Lance Wheeler, a scientist at NREL. “This technology bypasses that. We have a good solar cell when there’s lots of sunshine and we have a good window when there’s not.”

The proof-of-concept paper published in Nature Communications established a solar power conversion efficiency of 11.3 percent. “There are thermochromic technologies out there but nothing that actually converts that energy into electricity,” Wheeler said. He is the lead author of the paper, “Switchable Photovoltaic Windows Enabled by Reversible Photothermal Complex Dissociation from Methylammonium Lead Iodide.”

His co-authors, all from NREL, are David Moore, Rachelle Ihly, Noah Stanton, Elisa Miller, Robert Tenent, Jeffrey Blackburn, and Nathan Neale.

In testing under 1-sun illumination, the 1-square-centimeter demonstration device cycled through repeated transparent-tinted cycles, but the performance declined over the course of 20 cycles due to restructuring of the switchable layer. Ongoing research is focused on improving cycle stability.

The path to commercialization of the technology was explored last year during a two-month program called Energy I-Corps. Teams of researchers are paired with industry mentors to learn what customers want of the technology and develop viable ways to reach the marketplace.

Lance Wheeler and Robert Tenent, the program lead for window technology at NREL and co-author on the paper, teamed up to develop a market strategy for a product they called SwitchGlaze. The effort was funded by the Emerging Technologies program within the Department of Energy’s Building Technologies Office.

Wheeler said the technology could be integrated into vehicles, buildings, and beyond. The electricity generated by the solar cell window could charge batteries to power smartphones or on-board electronics such as fans, rain sensors, and motors that would open or close the windows as programmed.

NREL is the U.S. Department of Energy’s primary national laboratory for renewable energy and energy efficiency research and development. NREL is operated for the Energy Department by The Alliance for Sustainable Energy, LLC.

UCLA: Solar supercapacitor creates electricity and hydrogen fuel on the cheap


Hydrogen-powered vehicles are slowly hitting the streets, but although it’s a clean and plentiful fuel source, a lack of infrastructure for mass producing, distributing and storing hydrogen is still a major roadblock.

But new work out of the University of California, Los Angeles (UCLA) could help lower the barrier to entry for consumers, with a device that uses sunlight to produce both hydrogen and electricity.

The UCLA device is a hybrid unit that combines a supercapacitor with a hydrogen fuel cell, and runs the whole shebang on solar power.

Along with the usual positive and negative electrodes, the device has a third electrode that can either store energy electrically or use it to split water into its constituent hydrogen and oxygen atoms – a process called water electrolysis.

To make the electrodes as efficient as possible, the team maximized the amount of surface area that comes into contact with water, right down to the nanoscale. That increases the amount of hydrogen the system can produce, as well as how much energy the supercapacitor can store.

“People need fuel to run their vehicles and electricity to run their devices,” says Richard Kaner, senior author of the study. “Now you can make both fuel and electricity with a single device.”

Hydrogen itself may be clean, but producing it on a commercial scale might not be. It’s often created by converting natural gas, which not only results in a lot of carbon dioxide emissions but can be costly.

Using renewable sources like solar can help solve both of those problems at once. And it helps that the UCLA device uses materials like nickel, iron and cobalt, which are much more abundant than the precious metals like platinum that are currently used to produce hydrogen.

“Hydrogen is a great fuel for vehicles: It is the cleanest fuel known, it’s cheap and it puts no pollutants into the air – just water,” says Kaner. “And this could dramatically lower the cost of hydrogen cars.”

The new system could also help solve some of the infrastructure woes as well. Hydrogen vehicles can’t really take off until consumers can easily find places to fill up, and while strides are being made in that department, with the UCLA device users can hook into the sun almost anywhere to produce their own fuel, which could be particularly handy for those living in rural or remote areas.

As an added bonus, the supercapacitor part of the system can chemically store the harvested solar energy as hydrogen. Doing so could help bolster energy storage for the grid. Although the current device is palm-sized, the researchers say that it should be relatively easy to scale up for those applications.

The research was published in the journal Energy Storage Materials.

Source: UCLA

MIT: Making renewable power more viable for the grid


Making renewable power more viable for the grid

“Air-breathing” battery can store electricity for months, for about a fifth the cost of current technologies.

Wind and solar power are increasingly popular sources for renewable energy. But intermittency issues keep them from connecting widely to the U.S. grid: They require energy-storage systems that, at the cheapest, run about $100 per kilowatt hour and function only in certain locations.

Now MIT researchers have developed an “air-breathing” battery that could store electricity for very long durations for about one-fifth the cost of current technologies, with minimal location restraints and zero emissions. The battery could be used to make sporadic renewable power a more reliable source of electricity for the grid.

For its anode, the rechargeable flow battery uses cheap, abundant sulfur dissolved in water. An aerated liquid salt solution in the cathode continuously takes in and releases oxygen that balances charge as ions shuttle between the electrodes. Oxygen flowing into the cathode causes the anode to discharge electrons to an external circuit. Oxygen flowing out sends electrons back to the anode, recharging the battery.

“This battery literally inhales and exhales air, but it doesn’t exhale carbon dioxide, like humans — it exhales oxygen,” says Yet-Ming Chiang, the Kyocera Professor of Materials Science and Engineering at MIT and co-author of a paper describing the battery.

The research appears today in the journal Joule.

The battery’s total chemical cost — the combined price of the cathode, anode, and electrolyte materials — is about 1/30th the cost of competing batteries, such as lithium-ion batteries. Scaled-up systems could be used to store electricity from wind or solar power, for multiple days to entire seasons, for about $20 to $30 per kilowatt hour.

Co-authors with Chiang on the paper are: first author Zheng Li, who was a postdoc at MIT during the research and is now a professor at Virginia Tech; Fikile R. Brushett, the Raymond A. and Helen E. St. Laurent Career Development Professor of Chemical Engineering; research scientist Liang Su; graduate students Menghsuan Pan and Kai Xiang; and undergraduate students Andres Badel, Joseph M. Valle, and Stephanie L. Eiler.

Finding the right balance

Development of the battery began in 2012, when Chiang joined the Department of Energy’s Joint Center for Energy Storage Research, a five-year project that brought together about 180 researchers to collaborate on energy-saving technologies. Chiang, for his part, focused on developing an efficient battery that could reduce the cost of grid-scale energy storage.

A major issue with batteries over the past several decades, Chiang says, has been a focus on synthesizing materials that offer greater energy density but are very expensive. The most widely used materials in lithium-ion batteries for cellphones, for instance, have a cost of about $100 for each kilowatt hour of energy stored.

“This meant maybe we weren’t focusing on the right thing, with an ever-increasing chemical cost in pursuit of high energy-density,” Chiang says. He brought the issue to other MIT researchers. “We said, ‘If we want energy storage at the terawatt scale, we have to use truly abundant materials.’”

The researchers first decided the anode needed to be sulfur, a widely available byproduct of natural gas and petroleum refining that’s very energy dense, having the lowest cost per stored charge next to water and air. The challenge then was finding an inexpensive liquid cathode material that remained stable while producing a meaningful charge.

That seemed improbable — until a serendipitous discovery in the lab.

On a short list of candidates was a compound called potassium permanganate. If used as a cathode material, that compound is “reduced” — a reaction that draws ions from the anode to the cathode, discharging electricity. However, the reduction of the permanganate is normally impossible to reverse, meaning the battery wouldn’t be rechargeable.

Still, Li tried. As expected, the reversal failed. However, the battery was, in fact, recharging, due to an unexpected oxygen reaction in the cathode, which was running entirely on air. “I said, ‘Wait, you figured out a rechargeable chemistry using sulfur that does not require a cathode compound?’ That was the ah-ha moment,” Chiang says.

Using that concept, the team of researchers created a type of flow battery, where electrolytes are continuously pumped through electrodes and travel through a reaction cell to create charge or discharge.

The battery consists of a liquid anode (anolyte) of polysulfide that contains lithium or sodium ions, and a liquid cathode (catholyte) that consists of an oxygenated dissolved salt, separated by a membrane.

Upon discharging, the anolyte releases electrons into an external circuit and the lithium or sodium ions travel to the cathode.

At the same time, to maintain electroneutrality, the catholyte draws in oxygen, creating negatively charged hydroxide ions. When charging, the process is simply reversed. Oxygen is expelled from the catholyte, increasing hydrogen ions, which donate electrons back to the anolyte through the external circuit.

“What this does is create a charge balance by taking oxygen in and out of the system,” Chiang says.

Because the battery uses ultra-low-cost materials, its chemical cost is one of the lowest — if not the lowest — of any rechargeable battery to enable cost-effective long-duration discharge. Its energy density is slightly lower than today’s lithium-ion batteries.

“It’s a creative and interesting new concept that could potentially be an ultra-low-cost solution for grid storage,” says Venkat Viswanathan, an assistant professor of mechanical engineering at Carnegie Mellon University who studies energy-storage systems.

Lithium-sulfur and lithium-air batteries — where sulfur or oxygen are used in the cathode — exist today. But the key innovation of the MIT research, Viswanathan says, is combining the two concepts to create a lower-cost battery with comparable efficiency and energy density. The design could inspire new work in the field, he adds: “It’s something that immediately captures your imagination.”

Making renewables more reliable

The prototype is currently about the size of a coffee cup. But flow batteries are highly scalable, Chiang says, and cells can be combined into larger systems.

As the battery can discharge over months, the best use may be for storing electricity from notoriously unpredictable wind and solar power sources. “The intermittency for solar is daily, but for wind it’s longer-scale intermittency and not so predictable.

When it’s not so predictable you need more reserve — the capability to discharge a battery over a longer period of time — because you don’t know when the wind is going to come back next,” Chiang says. Seasonal storage is important too, he adds, especially with increasing distance north of the equator, where the amount of sunlight varies more widely from summer to winter.

Chiang says this could be the first technology to compete, in cost and energy density, with pumped hydroelectric storage systems, which provide most of the energy storage for renewables around the world but are very restricted by location.

“The energy density of a flow battery like this is more than 500 times higher than pumped hydroelectric storage. It’s also so much more compact, so that you can imagine putting it anywhere you have renewable generation,” Chiang says.

The research was supported by the Department of Energy.

MIT: Researchers Develop Nanoparticles that Deliver the CRISPR genome-editing system – Big Step Forward for Cancer Research


In a new study, MIT researchers have developed nanoparticles that can deliver the CRISPR genome-editing system and specifically modify genes in mice.

The team used nanoparticles to carry the CRISPR components, eliminating the need to use viruses for delivery.

Using the new delivery technique, the researchers were able to cut out certain genes in about 80 percent of liver cells, the best success rate ever achieved with CRISPR in adult animals.

“What’s really exciting here is that we’ve shown you can make a nanoparticle that can be used to permanently and specifically edit the DNA in the liver of an adult animal,” says Daniel Anderson, an associate professor in MIT’s Department of Chemical Engineering and a member of MIT’s Koch Institute for Integrative Cancer Research and Institute for Medical Engineering and Science (IMES).

One of the genes targeted in this study, known as Pcsk9, regulates cholesterol levels. Mutations in the human version of the gene are associated with a rare disorder called dominant familial hypercholesterolemia, and the FDA recently approved two antibody drugs that inhibit Pcsk9.

However these antibodies need to be taken regularly, and for the rest of the patient’s life, to provide therapy. The new nanoparticles permanently edit the gene following a single treatment, and the technique also offers promise for treating other liver disorders, according to the MIT team.

Anderson is the senior author of the study, which appears in the Nov. 13 issue of Nature Biotechnology. The paper’s lead author is Koch Institute research scientist Hao Yin.

Other authors include David H. Koch Institute Professor Robert Langer of MIT, professors Victor Koteliansky and Timofei Zatsepin of the Skolkovo Institute of Science and Technology, and Professor Wen Xue of the University of Massachusetts Medical School.

Targeting Disease

Many scientists are trying to develop safe and efficient ways to deliver the components needed for CRISPR, which consists of a DNA-cutting enzyme called Cas9 and a short RNA that guides the enzyme to a specific area of the genome, directing Cas9 where to make its cut.

In most cases, researchers rely on viruses to carry the gene for Cas9, as well as the RNA guide strand. In 2014, Anderson, Yin, and their colleagues developed a nonviral delivery system in the first-ever demonstration of curing a disease (the liver disorder tyrosinemia) with CRISPR in an adult animal. However, this type of delivery requires a high-pressure injection, a method that can also cause some damage to the liver.

Later, the researchers showed they could deliver the components without the high-pressure injection by packaging messenger RNA (mRNA) encoding Cas9 into a nanoparticle instead of a virus. Using this approach, in which the guide RNA was still delivered by a virus, the researchers were able to edit the target gene in about 6 percent of hepatocytes, which is enough to treat tyrosinemia.

While that delivery technique holds promise, in some situations it would be better to have a completely nonviral delivery system, Anderson says.

One consideration is that once a particular virus is used, the patient will develop antibodies to it, so it couldn’t be used again.

Also, some patients have pre-existing antibodies to the viruses being tested as CRISPR delivery vehicles.

In the new Nature Biotechnology paper, the researchers came up with a system that delivers both Cas9 and the RNA guide using nanoparticles, with no need for viruses.

To deliver the guide RNAs, they first had to chemically modify the RNA to protect it from enzymes in the body that would normally break it down before it could reach its destination.

The researchers analyzed the structure of the complex formed by Cas9 and the RNA guide, or sgRNA, to figure out which sections of the guide RNA strand could be chemically modified without interfering with the binding of the two molecules. Based on this analysis, they created and tested many possible combinations of modifications.

“We used the structure of the Cas9 and sgRNA complex as a guide and did tests to figure out we can modify as much as 70 percent of the guide RNA,” Yin says. “We could heavily modify it and not affect the binding of sgRNA and Cas9, and this enhanced modification really enhances activity.”

Reprogramming the Liver

The researchers packaged these modified RNA guides (which they call enhanced sgRNA) into lipid nanoparticles, which they had previously used to deliver other types of RNA to the liver, and injected them into mice along with nanoparticles containing mRNA that encodes Cas9.

They experimented with knocking out a few different genes expressed by hepatocytes, but focused most of their attention on the cholesterol-regulating Pcsk9 gene. The researchers were able to eliminate this gene in more than 80 percent of liver cells, and the Pcsk9 protein was undetectable in these mice. They also found a 35 percent drop in the total cholesterol levels of the treated mice.

The researchers are now working on identifying other liver diseases that might benefit from this approach, and advancing these approaches toward use in patients.

“I think having a fully synthetic nanoparticle that can specifically turn genes off could be a powerful tool not just for Pcsk9 but for other diseases as well,” Anderson says.

“The liver is a really important organ and also is a source of disease for many people. If you can reprogram the DNA of your liver while you’re still using it, we think there are many diseases that could be addressed.”

“We are very excited to see this new application of nanotechnology open new avenues for gene editing,” Langer adds.

Materials provided by MIT News.Note: Content may be edited for style and length. 

Why This New Quantum Computing Startup Has a Real Shot at Beating Its Competition


A startup called Quantum Circuits plans to compete with the likes of IBM, Google, Microsoft, and Intel to bring quantum computing out of the lab and into the wider world.

There’s one good reason to think it might be able to beat them all.

That’s because Quantum Circuits was founded by Robert Schoelkopf, a professor at Yale, whose work in many ways has helped kick-start this exciting new era of quantum advances.

Quantum computers exploit two strange features of quantum physics, entanglement and superposition, to process information in a fundamentally different way from traditional computers.

The approach allows the power of such machines to scale dramatically with even just a few quantum bits, or qubits. Those racing to build practical quantum computers are nearing the point where quantum machines will be capable of doing things that no conventional machine could—an inflection point known as quantum supremacy.

The promise of reaching such a milestone has transformed the field from a mostly academic endeavor into a high-stakes competition between the research arms of several big companies and a few startups. And everyone is using the superconducting circuits Schoelkopf pioneered.

He and colleagues were the first to create a “quantum bus” for entangling qubits using wires, as well as the first to demonstrate quantum algorithms and error correction techniques for quantum circuits.

Quantum Circuits’s other two founders are Michel Devoret, a professor of applied physics at Yale, and Luigi Frunzio, a research scientist in Schoelkopf’s lab (all three are in the photo above, with Frunzio, Schoelkopf, and Devoret starting from left).

“No team has done more to pioneer the superconducting approach,” Isaac Chuang, an MIT professor working on quantum computing and an advisor to the company, said in a release issued by Yale. “[The people behind Quantum Circuits] are responsible for a majority of the breakthroughs in solid-state quantum computing in the past decade.”

SOURCE: YALE UNIVERSIT

The Fuel Tank of Tomorrow – A Super Capacitor? +YouTube Video


 

KiloWatt Labs CEO Omer Ghani explains in the above interview, filmed at the IDTechEX Show!, that his company has overcome these challenges and has begun shipping large-scale, super capacitor-based energy storage solutions for applications such as microgrid, renewable, utility and mobility. He indicates their solution is a cost-competitive replacement for traditional battery approaches,

 

Fisker Claims New Graphene Based Battery Breakthrough – 500 Mile Range and ONE Minute Charging!


When Henrik Fisker relaunched its electric car startup last year, he announced that their first car will be powered by a new graphene-based hybrid supercapacitor technology, but he later announced that they put those plans on the backburner and instead will use more traditional li-ion batteries.

Now the company is announcing a “breakthrough” in solid-state batteries to power their next-generation electric cars and they are filing for patents to protect their IP.

Get ready for some crazy claims here.

Solid-state batteries are thought to be a lot safer than common li-ion cells and could have more potential for higher energy density, but they also have limitations, like temperature ranges, electrode current density, and we have yet to see a company capable of producing it in large-scale and at an attractive price point competitive with li-ion.

Now Fisker announced that they are patenting a new solid-state electrode structure that would enable a viable battery with some unbelievable specs.

Here’s what they claim (via GreenCarCongress):

“Fisker’s solid-state batteries will feature three-dimensional electrodes with 2.5 times the energy density of lithium-ion batteries. Fisker claims that this technology will enable ranges of more than 500 miles on a single charge and charging times as low as one minute—faster than filling up a gas tank.”

Here’s a representation of the three-dimensional electrodes:

Fisker has been all over the place with its new Emotion electric car and we have highlighted that in our look at Fisker’s unbelievable claims.

But its latest solid-state project is led by Dr. Fabio Albano, VP of battery systems at Fisker and the co-founder of Sakti3, which adds credibility to the effort.

Albano commented on the announcement:

“This breakthrough marks the beginning of a new era in solid-state materials and manufacturing technologies. We are addressing all of the hurdles that solid-state batteries have encountered on the path to commercialization, such as performance in cold temperatures; the use of low cost and scalable manufacturing methods; and the ability to form bulk solid-state electrodes with significant thickness and high active material loadings. We are excited to build on this foundation and move the needle in energy storage.”

Electrek’s Take

Like any battery breakthrough announcement, it should be taken with a grain of salt. Most of those announcements never result in any kind of commercialization.

For this particular technology, Fisker says that it will be automotive production grade ready around 2023.

A lot of things can happen over the next 5 years.

In the meantime, Fisker plans to launch its Emotion electric car at CES 2018 in just 2 months. Fisker already unveiled a prototype of the new electric car and started taking pre-orders this summer.

Graphene water filter turns whisky clear – How Can Graphene Help Desalination? +Video


graphenewateCredit: University of Manchester

Previously graphene-oxide membranes were shown to be completely impermeable to all solvents except for water. However, a study published in Nature Materials, now shows that we can tailor the molecules that pass through these membranes by simply making them ultrathin.

The research team led by Professor Rahul Nair at the National Graphene Institute and School of Chemical Engineering and Analytical Science at The University of Manchester tailored this membrane to allow all solvents to pass through but without compromising it’s ability to sieve out the smallest of particles.

In the newly developed ultrathin membranes, graphene-oxide sheets are assembled in such a way that pinholes formed during the assembly are interconnected by graphene nanochannels, which produces an atomic-scale sieve allowing the large flow of solvents through the membrane.

This new research allows for expansion in the applications of graphene based membranes from sea  desalination to organic  nanofiltration (OSN). Unlike sea water desalination, which separate salts from water, OSN technology separates charged or uncharged organic compounds from an organic solvent.

As an example, Manchester scientists demonstrated that graphene-oxide membranes can be designed to completely remove various organic dyes as small as a nanometre dissolved in methanol.

Graphene water filter turns whisky clear
Credit: University of Manchester

Prof. Nair said, “Just for a fun, we even filtered whisky and cognac through the graphene-oxide membrane. The membrane allowed the alcohol to pass through but removed the larger molecules, which gives the amber colour. The clear whisky smells similar to the original whisky but we are not allowed to drink it in the lab, however it was a funny Friday night experiment!”

The newly developed membranes not only filter out small molecules but it boosts the filtration efficiency by increasing the solvent flow rate.

Prof. Nair added “Chemical separation is all about energy, various chemical separation processes consume about half of industrial energy useage. Any new efficient separation process will minimize the consumption of energy, which is in high demand now. By 2030, the world is projected to consume 60% more energy than today.”

Dr. Su, who led the experiment added “The developed membranes are not only useful for filtering alcohol, but the precise sieve size and high flux open new opportunity to separate molecules from different organic solvents for chemical and pharmaceutical industries. This development is particularly important because most of the existing polymer-based membranes are unstable in organic solvents whereas the developed graphene-oxide  is highly stable.”

How Can Graphene Help Desalination?

 

Graphene-oxide membranes developed at the National Graphene Institute have attracted widespread attention for water filtration and desalination applications, providing a potential solution to the water scarcity.

By using ultra-thin membranes, this is the first clear-cut experiment to show how other solvents can be filtered out, proving that there is potential for organic solvent nanofiltration.

Graphene- the world’s first two-dimensional material is known for its versatile superlatives, it can be both hydrophobic and hydrophilic, stronger than steel, flexible, bendable and one million times thinner than a human hair.

This research has changed the perception of what graphene-oxide membranes are capable of and how we can use them. By being able to design these membranes to filter specific molecules or solvents, it opens up new potential uses that have previously not been explored.

 Explore further: Graphene sieve turns seawater into drinking water

More information: Q. Yang et al. Ultrathin graphene-based membrane with precise molecular sieving and ultrafast solvent permeation, Nature Materials (2017). DOI: 10.1038/nmat5025

 

Strong current of energy runs through MIT: Robust community focused on fueling the world’s future +Video


MIT-Energy-Past-Future-borders-01 small_0Top row (l-r): Tata Center spinoff Khethworks develops affordable irrigation for the developing world; students discuss utility research in Washington; thin, lightweight solar cell developed by Professor Vladimir Bulović and team. Bottom row (l-r): MIT’s record-setting Alcator tokamak fusion research reactor; a researcher in the MIT Energy Laboratory’s Combustion Research Facility; Professor Kripa Varanasi, whose research on slippery surfaces has led to a spinoff co-founded with Associate Provost Karen Gleason.

Photos: Tata Center for Technology and Design, MITEI, Joel Jean and Anna Osherov, Bob Mumgaard/PSFC, Energy Laboratory Archives, Bryce Vickmark

Research, education, and student activities help create a robust community focused on fueling the world’s future.

On any given day at MIT, undergraduates design hydro-powered desalination systems, graduate students test alternative fuels, and professors work to tap the huge energy-generating potential of nuclear fusion, biomaterials, and more. While some MIT researchers are modeling the impacts of policy on energy markets, others are experimenting with electrochemical forms of energy storage.

This is the robust energy community at MIT. Developed over the past 10 years with the guidance and support of the MIT Energy Initiative (MITEI) — and with roots extending back into the early days of the Institute — it has engaged more than 300 faculty members and spans more than 900 research projects across all five schools.

In addition, MIT offers a multidisciplinary energy minor and myriad energy-related events and activities throughout the year. Together, these efforts ensure that students who arrive on campus with an interest in energy have free rein to pursue their ambitions.

Opportunities for students

“The MIT energy ecosystem is an incredible system, and it’s built from the ground up,” says Robert C. Armstrong, a professor of chemical engineering and the director of MITEI, which is overseen at the Institute level by Vice President for Research Maria Zuber. “It begins with extensive student involvement in energy.” MITnano_ 042216 InfCorrTerraceView_label (1)

Opportunities begin the moment undergraduates arrive on campus, with a freshman pre-orientation program offered through MITEI that includes such hands-on activities as building motors and visiting the Institute’s nuclear research reactor.

“I got accepted into the pre-orientation program and from there, I was just hooked. I learned about solar technology, wind technology, different types of alternative fuels, bio fuels, even wave power,” says graduate student Priyanka Chatterjee ’15, who minored in energy studies and majored in mechanical and ocean engineering.

Those who choose the minor take a core set of subjects encompassing energy science, technology, and social science. Those interested in a deep dive into research can participate in the Energy Undergraduate Research Opportunities Program (UROP), which provides full-time summer positions. UROP students are mentored by graduate students and postdocs, many of them members of the Society of Energy Fellows, who are also conducting their own energy research at MIT.

For extracurricular activities, students can join the MIT Energy Club, which is among the largest student-run organizations at MIT with more than 5,000 members. They can also compete for the MIT Clean Energy Prize, a student competition that awards more than $200,000 each year for energy innovation. And there are many other opportunities.

The Tata Center for Technology and Design, now in its sixth year, extends MIT’s reach abroad. It supports 65 graduate students every year who conduct research central to improving life in developing countries — including lowering costs of rural electrification and using solar energy in novel ways.

Students have other opportunities to conduct and share energy research internationally as well.

“Over the years, MITEI has made it possible for several of the students I’ve advised to engage more directly in global energy and climate policy negotiations,” says Valerie Karplus, an assistant professor of global economics and management. “In 2015, I joined them at the Paris climate conference, which was a tremendous educational and outreach experience for all of us.”

Holistic problem-solving

“What is important is to provide our students a holistic understanding of the energy challenges,” says MIT Associate Dean for Innovation Vladimir Bulović.

Adds Karplus: “There’s been an evolution in thinking from ‘How do we build a better mousetrap?’ to ‘How do we bring about change in society at a system level?’”

This kind of thinking is at the root of MIT’s multidisciplinary approach to addressing the global energy challenge — and it has been since MITEI was conceived and launched by then-MIT President Susan Hockfield, a professor of neuroscience. While energy research has been part of the Institute since its founding (MIT’s first president, William Barton Rogers, famously collapsed and died after uttering the words “bituminous coal” at the 1882 commencement), the concerted effort to connect researchers across the five schools for collaborative projects is a more recent development.

“The objective of MITEI was really to solve the big energy problems, which we feel needs all of the schools’ and departments’ contributions,” says Ernest J. Moniz, a professor emeritus of physics and special advisor to MIT’s president. Moniz was the founding director of MITEI before serving as U.S. Secretary of Energy during President Obama’s administration.

Hockfield says great technology by itself “can’t go anywhere without great policy.”

“It’s the economics, it’s the sociology, it’s the science and the engineering, it’s the architecture — it’s all of the pieces of MIT that had to come together if we were going to develop really impactful sustainable energy solutions,” she says.

This multidisciplinary approach is evident in much of MIT’s energy research — notably the series of comprehensive studies MITEI has conducted on such topics as the future of solar energy, natural gas, the electric grid, and more.

“To make a better world, it’s essential that we figure out how to take what we’ve learned at MIT in energy and get that out into the world,” Armstrong says.

Fostering collaborations

MITEI’s eight low-carbon energy research centers — focused on a range of topics from materials design to solar generation to carbon capture and storage — similarly address challenges on multiple technology and policy fronts. These centers are a core component of MIT’s five-year Plan for Action on Climate Change, announced by President L. Rafael Reif in October 2015. The centers employ a strategy that has been fundamental to MIT’s energy work since the founding of MITEI: broad, sustained collaboration with stakeholders from industry, government, and the philanthropic and non-governmental organization communities.

“It’s one thing to do research that’s interesting in a laboratory. It’s something very different to take that laboratory discovery into the world and deliver practical applications,” Hockfield says. “Our collaboration with industry allowed us to do that with a kind of alacrity that we could never have done on our own.”

For example, MITEI’s members have supported more than 160 energy-focused research projects, representing $21.4 million in funding over the past nine years, through the Seed Fund Program. Projects have led to follow-on federal and industry funding, startup companies, and pilot plants for solar desalinization systems in India and Gaza, among other outcomes.

What has MIT’s energy community as a whole accomplished over the past decade? Hockfield says it’s raised the visibility of the world’s energy problems, contributed solutions — both technical and sociopolitical — and provided “an army of young people” to lead the way to a sustainable energy future.

“I couldn’t be prouder of what MIT has contributed,” she says. “We are in the midst of a reinvention of how we make energy and how we use energy. And we will develop sustainable energy practices for a larger population, a wealthier population, and a healthier planet.”