“The solar energy business has been trying to overcome … challenge for years. The cost of installing solar panels has fallen dramatically but storing the energy produced for later use has been problematic.”
“In a single hour, the amount of power from the sun that strikes the Earth is more than the entire world consumes in an year.” To put that in numbers, from the US Department of Energy
Each hour 430 quintillion Joules of energy from the sun hits the Earth. That’s 430 with 18 zeroes after it! In comparison, the total amount of energy that all humans use in a year is 410 quintillion Joules. For context, the average American home used 39 billion Joules of electricity in 2013.
Read About: What are the Most Efficient Solar Panels on the Market?
Clearly, we have in our sun “a source of unlimited renewable energy”. But how can we best harness this resource? How can we convert and “store” this energy resource on for sun-less days or at night time … when we also have energy needs?
Now therein lies the challenge!
Would you buy a smartphone that only worked when the sun was shining? Probably not. What it if was only half the cost of your current model: surely an upgrade would be tempting? No, thought not.
The solar energy business has been trying to overcome a similar challenge for years. The cost of installing solar panels has fallen dramatically but storing the energy produced for later use has been problematic.
Now scientists in Sweden have found a new way to store solar energy in chemical liquids. Although still in an early phase, with niche applications, the discovery has the potential to make solar power more practical and widespread.
Until now, solar energy storage has relied on batteries, which have improved in recent years. However, they are still bulky and expensive, and they degrade over time.

Trap and release solar power on demand
A research team from Chalmers University of Technology in Gothenburg made a prototype hybrid device with two parts. It’s made from silica and quartz with tiny fluid channels cut into both sections.
The top part is filled with a liquid that stores solar energy in the chemical bonds of a molecule. This method of storing solar energy remains stable for several months. The energy can be released as heat whenever it is required.
The lower section of the device uses sunlight to heat water which can be used immediately. This combination of storage and water heating means that over 80% of incoming sunlight is converted into usable energy.
Suddenly, solar power looks a lot more practical. Compared to traditional battery storage, the new system is more compact and should prove relatively inexpensive, according to the researchers. The technology is in the early stages of development and may not be ready for domestic and business use for some time.
From the lab to off-grid power stations or satellites?
The researchers wrote in the journal Energy & Environmental Science: “This energy can be transported, and delivered in very precise amounts with high reliability(…) As is the case with any new technology, initial applications will be in niches where [molecular storage] offers unique technical properties and where cost-per-joule is of lesser importance.”

The team now plans to test the real-world performance of the technology and estimate how much it will cost. Initially, the device could be used in off-grid power stations, extreme environments, and satellite thermal control systems.
Editor’s Note: As Solomon wrote in Ecclesiastes 1:9: “What has been will be again, what has been done will be done again; there is nothing new under the sun.”
Storing Solar Energy chemically and converting ‘waste heat’ has and is the subject of many research and implementation Projects around the globe. Will this method prove to be “the one?” This writer (IMHO) sees limited application, but not a broadly accepted and integrated solution.
Solar Energy to Hydrogen Fuel
So where does that leave us? We have been following the efforts of a number of Researchers/ Universities who are exploring and developing “Sunlight to Hydrogen Fuel” technologies to harness the enormous and almost inexhaustible energy source power-house … our sun! What do you think? Please leave us your Comments and we will share the results with our readers!
Read More
We have written and posted extensively about ‘Solar to Hydrogen Renewable Energy’ – here are some of our previous Posts:
Scientists using sunlight, water to produce renewable hydrogen power
Solar-Powered Hydrogen Fuel Cells
Researchers at Rice University are on to a relatively simple, low-cost way to pry hydrogen loose from water, using the sun as an energy source. The new system involves channeling high-energy “hot” electrons into a useful purpose before they get a chance to cool down. If the research progresses, that’s great news for the hydrogen […]
HyperSolar reaches new milestone in commercial hydrogen fuel production
HyperSolar has achieved a major milestone with its hybrid technology HyperSolar, a company that specializes in combining hydrogen fuel cells with solar energy, has reached a significant milestone in terms of hydrogen production. The company harnesses the power of the sun in order to generate the electrical power needed to produce hydrogen fuel. This is […]
Rice University Research Team Demonstrates Solar Water-Splitting Technology: Renewable Solar Energy + Clean – Low Cost Hydrogen Fuel
Rice University researchers have demonstrated an efficient new way to capture the energy from sunlight and convert it into clean, renewable energy by splitting water molecules. The technology, which is described online in the American Chemical Society journal Nano Letters, relies on a configuration of light-activated gold nanoparticles that harvest sunlight and transfer solar energy […]
NREL Establishes World Record for Solar Hydrogen Production
NREL researchers Myles Steiner (left), John Turner, Todd Deutsch and James Young stand in front of an atmospheric pressure MDCVD reactor used to grow crystalline semiconductor structures. They are co-authors of the paper “Direct Solar-to-Hydrogen Conversion via Inverted Metamorphic Multijunction Semiconductor Architectures” published in Nature Energy. Photo by Dennis Schroeder. Scientists at the U.S. […]
NREL & Colorado School of Mines Researchers Capture Excess Photon Energy to Produce Solar Fuels
Photo shows a lead sulfide quantum dot solar cell. A lead sulfide quantum dot solar cell developed by researchers at NREL. Photo by Dennis Schroeder.
Scientists at the U.S. Department of Energy’s National Renewable Energy Laboratory (NREL) have developed a proof-of-principle photo-electro-chemical cell capable of capturing excess photon energy normally lost to generating heat. Using quantum […]
You must be logged in to post a comment.