The University of Texas at Arlington has successfully patented (Europe) an implantable medical device that attracts and kills circulating cancer cells


slide_3

The University of Texas at Arlington has successfully patented in Europe an implantable medical device that attracts and kills circulating cancer cells that was invented by a faculty member. This cancer trap can be used for early diagnosis and treatment of metastasized cancer.

“Our cancer trap works just like a roach motel, where you put in some bait and the roach goes there and dies,” said Liping Tang, UTA bioengineering professor and leader of the research. “We are putting biological agents in a cancer trap to attract and kill cancer cells.

“This method is effective for both diagnosing and treating metastasis cancer and can be used in combination with traditional chemotherapy and radiation therapy,” he added.

Mdanderson_logo

Currently, there are many treatments for primary tumors but they do little to prevent metastasis and stray cancer cells from relocating to another part of the body. Surgical removal of cancerous tissue also can spur the spread of cancer in the body. While there are drugs given to patients after surgery to prevent cancer cells from adhering to each other or other tissues, these drugs do not rid the body of cancer cells or collect them to allow an assessment of the patient’s status.

“We have made a nano-sized device that we can put under the skin using an injection needle to recruit the cancer cells into a small area where we can treat them with less overall side effects to the whole body,” Tang said.

“So the cancer trap is really complementary to current cancer treatments and especially beneficial at the early stages when it is difficult to see if the cancer is spreading as there are few cancer cells. We have also found it very effective in late stage cancers to stop the spread of the disease and to prolong lifespan,” he added.

The cancer trap works by releasing different chemokines or regulatory proteins to attract circulating cancer cells and then expose them to chemotherapeutic agents to eradicate potential spreading. The trap has been tested in the lab and proved effective on many kinds of cancer cells, including melanoma, prostate cancer, breast cancer, lung cancer, leukemia and esophageal cancer.

“We are hoping to move toward clinical trials in the next few years as this technology could potentially significantly increase the lifespan of cancer patients,” Tang said.

This work on cancer forms part of a larger program at UTA where more than 30 faculty from different colleges and disciplines are developing new solutions to attack this disease.

With more than $4 million in research expenditures in 2017, UTA’s program for cancer encompasses basic cancer research, identification and diagnostics, as well as in noninvasive, midterm, invasive and postoperative therapies. UTA’s multidisciplinary research teams harness proficiencies from across science, engineering, computer science, nursing and kinesiology to tackle the challenges of precision oncology and cancer treatment.

Tang’s expertise encompasses a broad area, including stem cells, tissue engineering, nanotechnology, biocompatibility, biomaterials, inflammation, infection and fibrosis. He has published many of his work in high impact journals, including BiomaterialsJournal of Clinical InvestigationProceedings of the National Academy of SciencesBloodJournal of Experimental Medicine, and Tissue Engineering.

“Tang is a remarkable innovator and internationally recognized researcher,” said Michael Cho, UTA’s chair of bioengineering. “His work is a clear example of UTA’s strategic focus on health and the human condition and of the strength of multidisciplinary work.”

Source

Advertisements

New Simple Blood Test can Detect Alzheimer’s 30 Years in Advance + Can Also Detect 8 Cancers: Videos


New Simple Blood Test can Detect Alzheimer’s 30 Years in Advance + Can Also Detect 8 Cancers

#GreatThingsFromSmallThings

Watch the Videos Below

Detecting Alzheimer’s 30 Years in Advance

8 Cancers Detected with ONE Simple Blood Test

Remote-control shoots laser at nano-gold to turn on cancer-killing immune cells – could one day send immune cells on a rampage against a malignant tumor


Nano Thermo Cancer 55092A heat-sensitive gene switch implanted in a sample of T-cells works in an in vitro check. Gentle pulses from a near-infrared laser directed at gold nanoparticles, which are also in the sample with the T-cells, transform into gentle heat and flip the switch on, activating the T-cells. The resulting signal appears as orange dots on a monitor in the background. CREDIT Georgia Tech / Allison Carter

Abstract:
A remote command could one day send immune cells on a rampage against a malignant tumor. The ability to mobilize, from outside the body, targeted cancer immunotherapy inside the body has taken a step closer to becoming reality.

Remote-control shoots laser at nano-gold to turn on cancer-killing immune cells

Bioengineers at the Georgia Institute of Technology have installed a heat-sensitive switch into T-cells that can activate the T-cells when heat turns the switch on. The method, tested in mice and published in a new study, is locally targeted and could someday help turn immunotherapy into a precision instrument in the fight against cancer.

Immunotherapy has made headlines with startling high-profile successes like saving former U.S. President Jimmy Carter from brain cancer. But the treatment, which activates the body’s own immune system against cancer and other diseases, has also, unfortunately, proved to be hit-or-miss.

“In patients where radiation and traditional chemotherapies have failed, this is where T-cell therapies have shined, but the therapy is still new,” said principal investigator Gabe Kwong. “This study is a step toward making it even more effective.”

Laser, gold, and T-cells

In the study, Kwong’s team successfully put their remote-control method through initial tests in mice with implanted tumors (so-called tumor phantoms, specially designed for certain experiments). The remote works via three basic components.

First, the researchers modified T-cells, a type of white blood cell, to include a genetic switch that, when switched on, increased the cells’ expression of specific proteins by more than 200 times. That ability could be used to guide T-cells’ cancer-fighting activities.

The T-cells, with the switch off, were introduced into the tumor phantom which was placed into the mice. The tumor phantom also included gold nanorods, just dozens of atoms in size. The researchers shone pulses of a gentle laser in the near-infrared (NIR) range from outside the mouse’s body onto the spot where the tumor was located.

The nanorods receiving the light waves turned them into useful, localized mild heat, allowing the researchers to precisely warm the tumor. The elevated heat turned on the T-cells’ engineered switch.

Hyper-activated T-cells

This study honed the method and confirmed that its components worked in living animals. It was not the intention of the study to treat cancer yet, although undertaking that is the next step, which is already on its way.

“In upcoming experiments, we are implementing this approach to treat aggressive tumors and establish cancer-fighting effectiveness,” said Kwong, who is an assistant professor in the Wallace H. Coulter Department of Biomedical Engineering at Georgia Tech and Emory University.

The researchers published their results in the current edition of the journal ACS Synthetic Biology. The study’s first author was graduate research assistant Ian Miller. The research was funded by the National Institutes of Health, the National Science Foundation, the Burroughs Wellcome Fund, and the Shurl and Kay Curci Foundation.

Better immunotherapy

Bioengineers have been able to do a lot with T-cells already when they’re outside of the body.

“Right now, we’re adept at harvesting a patient’s own T-cells, modifying to target cancer, growing them outside the body until there are hundreds of millions of them,” Kwong said. “But as soon as we inject them back into a patient, we lose control over the T-cells’ activity inside the body.”

Cancer is notoriously wily, and when T-cells crawl into a tumor, the tumor tends to switch off the T-cells’ cancer-killing abilities. Researchers have been working to switch them back on.

Kwong’s remote control has done this in the lab, while also boosting T-cell activity.

T-cell toxicities

Having an off-switch is also important. If T-cells were engineered to be always-on and hyper-activated, as they moved through the body, they could damage healthy tissue.

“There would be off-target toxicities, so you really want to pinpoint their activation,” Kwong said. “Our long-term goal for them is to activate site-specifically, so T-cells can overcome immunosuppression by the tumor and become better killers there.”

When the heat remote is turned off, so are Kwong’s engineered T-cells, because customary body temperatures are not high enough to activate their switch.

Heat-shock switch

The switch is a natural safety mechanism in human cells that has evolved to protect against heat shock and turns on when tissue temperatures rise above the body’s normal operating range, which centers on 37 degrees Celsius (98.6 F). But the researchers re-fitted T-cells with the switch to make it turn on other functions, and it could be used to hyper-activate the cells.

The Georgia Tech bioengineers found that the switch worked in a range of 40 to 42 degrees Celsius (104 – 107.6 F), high enough to not react to the majority of high fevers and low enough to not damage healthy tissue nor the engineered T-cells.

“When the local temperature is raised to 45 degrees (113 F), some cells in our body don’t like it,” Kwong said. “But if heating is precisely controlled in a 40 to 42 degrees window with short pulses of the NIR light, then it turns on the T-cells’ switch, and body cells are still very comfortable.”

Immuno-goals and dreams

The researchers want to combine the switch with some additional cancer-fighting weapons they envision engineering into T-cells.

For example, secreted molecules called cytokines can boost immune cells’ ability to kill cancer, but cytokines, unfortunately, can also be toxic. “Our long-term goal is to engineer T-cells to make and release powerful immune system stimulants like cytokines on command locally and sparingly,” Kwong said.

In other studies, gently heated gold nanorods have been shown to kill tumors or hinder metastasis. But T-cell treatments could be even more thorough and, in addition, hopefully, one day give patients treated with them a long-lasting memory immune response to any recurrence of their cancer.

###

Citation: This experimental method is in laboratory stages in mice and is not yet available as a treatment of any type for human patients. The study was co-authored by Marielena Castro, Joe Maenza and Jason Weis of Coulter BME at Georgia Tech. The research was funded by the National Institutes of Health Director’s New Innovator Award (grant #DP2HD091793), the NIH National Center for Advancing Translational Sciences (grant #UL1TR000454), the NIH GT BioMAT Training Grant (#5T32EB006343), the National Science Foundation (grant # DGE-1451512), the Shurl and Kay Curci Foundation, and the Burroughs Wellcome Fund. Any findings or opinions are those of the authors and not necessarily of the funding agencies.

Novel Nanomedicine Inhibits Progression of Pancreatic Cancer in Mice – Tel Aviv University


Nanomedicine I download

Survival rates in pancreatic cancer linked to inverse correlation between specific oncogene and tumor suppressant, Tel Aviv University researchers say

A new Tel Aviv University study pinpoints the inverse correlation between a known oncogene — a gene that promotes the development of cancer — and the expression of an oncosuppressor microRNA as the reason for extended pancreatic cancer survival. The study may serve as a basis for the development of an effective cocktail of drugs for this deadly disease and other cancers.

Nanomedicine III imagesThe study, which was published in Nature Communications, was led by Prof. Ronit Satchi-Fainaro, Chair of the Department of Physiology and Pharmacology at TAU’s Sackler Faculty of Medicine, and conducted by Hadas Gibori and Dr. Shay Eliyahu, both of Prof. Satchi-Fainaro’s multidisciplinary laboratory, in collaboration with Prof. Eytan Ruppin of TAU’s Computer Science Department and the University of Maryland and Prof. Iris Barshack and Dr. Talia Golan of Chaim Sheba Medical Center, Tel Hashomer.

Pancreatic cancer is among the most aggressive cancers known today. The overwhelming majority of pancreatic cancer patients die within just a year of diagnosis. “Despite all the treatments afforded by modern medicine, some 75% of all pancreatic cancer patients die within 12 months of diagnosis, including many who die within just a few months,” Prof. Satchi-Fainaro says.

“But around seven percent of those diagnosed will survive more than five years. We sought to examine what distinguishes the survivors from the rest of the patients,” Prof. Satchi-Fainaro continues. “We thought that if we could understand how some people live several years with this most aggressive disease, we might be able to develop a new therapeutic strategy.”

Nanomedicine I downloadCalling a nano-taxi

The research team examined pancreatic cancer cells and discovered an inverse correlation between the signatures of miR-34a, a tumor suppressant, and PLK1, a known oncogene. The levels of miR-34a were low in pancreatic cancer mouse models, while the levels of the oncogene were high. This correlation made sense for such an aggressive cancer. But the team needed to see if the same was true in humans.

The scientists performed RNA profiling and analysis of samples taken from pancreatic cancer patients. The molecular profiling revealed the same genomic pattern found earlier in mouse models of pancreatic cancer.

The scientists then devised a novel nanoparticle that selectively delivers genetic material to a tumor and prevents side effects in surrounding healthy tissues.

“We designed a nanocarrier to deliver two passengers: (1) miR-34a, which degrades hundreds of oncogenes; and (2) a PLK1 small interfering RNA (siRNA), that silences a single gene,” Prof. Satchi-Fainaro says. “These were delivered directly to the tumor site to change the molecular signature of the cancer cells, rendering the tumor dormant or eradicating it altogether.Nanomedicine II pancreatic-cancer-1140x641

“The nanoparticle is like a taxi carrying two important passengers,” Prof. Satchi-Fainaro continues. “Many oncology protocols are cocktails, but the drugs usually do not reach the tumor at the same time. But our ‘taxi’ kept the ‘passengers’ — and the rest of the body — safe the whole way, targeting only the tumor tissue. Once it ‘parked,’ an enzyme present in pancreatic cancer caused the carrier to biodegrade, allowing the therapeutic cargo to be released at the correct address — the tumor cells.”

Improving the odds

To validate their findings, the scientists injected the novel nanoparticles into pancreatic tumor-bearing mice and observed that by balancing these two targets — bringing them to a normal level by increasing their expression or blocking the gene responsible for their expression — they significantly prolonged the survival of the mice.

“This treatment takes into account the entire genomic pattern, and shows that affecting a single gene is not enough for the treatment of pancreatic cancer or any cancer type in general,” according to Prof. Satchi-Fainaro.

###

Research for the study was funded by the European Research Council (ERC), Tel Aviv University’s Cancer Biology Research Center (CBRC) and the Israel Science Foundation (ISF).

American Friends of Tel Aviv University (AFTAU) supports Israel’s most influential, comprehensive and sought-after center of higher learning, Tel Aviv University (TAU). TAU is recognized and celebrated internationally for creating an innovative, entrepreneurial culture on campus that generates inventions, startups and economic development in Israel. For three years in a row, TAU ranked 9th in the world, and first in Israel, for alumni going on to become successful entrepreneurs backed by significant venture capital, a ranking that surpassed several Ivy League universities. To date, 2,400 patents have been filed out of the University, making TAU 29th in the world for patents among academic institutions.

Fighting Cancer and Drug Resistance – A ‘Nanosystem’ Does Both


Cancer is often referred to as “smart,” and this term often refers to the ability of these cells to proliferate without purpose or restraint.

The ability of cancer cells to develop multidrug resistance (MDR), a major problem that patients can face, making treatment against this disease even more elusive.

In an effort to combat both cancer cell proliferation and MDR, a recent study conducted by researchers from the National Health Research Institutes of Taiwan and the National Science Council of Taiwan have developed a nanosystem capable of addressing both challenges in the field of cancer therapy.

Drug Resistance and Cancer

Patients with several forms of blood cancer and solid tumors in the breast, ovaries, lungs and lower gastrointestinal tract can become untreatable as a result of multidrug resistance (MDR).

In MDR, the cancer cells of these patients become resistant to commonly used therapeutic drugs as a result of an overexpression of ATP-binding cassette (ABC) transporters that effectively push out drug molecules following administration.

P-glycoprotein and what is termed as the multidrug resistance-associated protein (MRP) are two of the most studied pumps present in cancer cells that are capable of rejecting chemotherapeutic drugs.

By avoiding the toxic effects of these drugs, cancer cells are able to continue to proliferate and metastasize to other organs of the body.

Unfortunately, some of the most commonly used cancer therapeutic drugs such as colchicine, vinblastine, doxorubicin, etoposide, paclitaxel, certain vinca alkaloids and other small molecules have shown resistance in various cancer cells.

Current research efforts in the field of anticancer drug discovery have looked towards the administration of combinatorial technology to be administered with cancer to effectively prevent cancer cells from physically removing therapeutic drugs when administered together.

While blocking the action of pumps like MRP and P-glycoprotein has shown some efficacy, transcription factors, such as c-Jun, which plays a role in cell, proliferation and MDR, can still potentiate metastasis.

Therefore, there remains a need to develop cancer therapies that work against drug resistance and simultaneously prevent further metastasis.

Related Stories

Multi-Functional Nanoparticles and Their Role in Cancer Drug Delivery – A Review

82% of Americans Looking for Hassle-Free Clothes That Go the Extra Mile – News Item

Cancer Cooking Lesson, A Basic Look At How Nanotechnology Can Be Used To Physically Destroy Cancer Cells and Cure The Body of Cancer

The Efficacy of Administering Doxorubicin Mesoporous Silica Nanoparticles (MSNs)

Mesoporous silica nanoparticles (MSNs) are well-documented drug delivery vehicles that allow for a high drug loading capacity with minimal side effects upon administration.

The tunable size properties, thermal stability, photostability and ease of functionalization to different applications make MSNs one of the most promising options for therapeutic delivery systems.

In the recent study published in Nano Futures, the group of scientists led by Leu-Wei Lo covalently conjugated MSNs with doxorubicin and tested the ability of these nanosystems to be taken up by cancer cells in vitro.

The PC-3 cell line of metastatic human prostate carcinoma cells were treated with 100 μg/ml of either Dox-MSNs that were conjugated with DNAzyme, (Dox-MSN-Dz), Dox-MSNs or control MSNs for 24 hours to study the ability of these cells to survive following treatment.

The researchers found the Dox-MSN-Dz reduced cell survival rates by over 80%, whereas the Dox-MSNs alone still reduced cell survival rates by 60%.

The results of this study confirm the therapeutic potential of the developed multifunctional nanosystem, which incorporates doxorubicin, a widely used chemotherapeutic drug, MSNs and DNAzyme.

Not only did this nanosystem improve the cytotoxicity of doxorubicin to a resistance cancer cell line, but it also successfully reduced migration of cancer cells by inhibiting c-Jun.

While further in vivo studies need to be conducted to fully evaluate the ability of Dox-MSN-Dz to prevent metastasis and invade highly resistance cancer cells, the results of this study are promising.

Future research initiatives that incorporate different chemotherapeutic drugs into a similar nanosystem design could also show similar bifunctional properties as presented here.

Image Credit:

fusebulb/Shutterstock.com

References:

1 “A co-delivery nanosystem of chemotherapeutics and DNAzyme overcomes cancer drug resistance and metastasis” S. Sun, C. Liu, et al. Nano Futures. (2017). DOI: 10.1088/2399-1984/aa996f.

Rice – MD Anderson use Fluorescent Carbon Nanotube probes to detect ovarian cancer – Achieve first In – Vivo Success


 

 

Rice CNTs 57f79f2812948

Abstract:
Researchers at Rice University and the University of Texas MD Anderson Cancer Center have refined and, for the first time, run in vivo tests of a method that may allow nanotube-based probes to locate specific tumors in the body. Their ability to pinpoint tumors with sub-millimeter accuracy could eventually improve early detection and treatment of ovarian cancer.

The noninvasive technique relies on single-walled carbon nanotubes that can be optically triggered to emit shortwave infrared light. The Rice lab of chemist Bruce Weisman, a pioneer in the discovery and interpretation of the phenomenon, reported the new results in the American Chemical Society journal ACS Applied Materials and Interfaces.

Rice Optical Sensor CNTs 0523_SPECTRAL-1-web-txhgun

For this study, the researchers used the technique to pinpoint small concentrations of nanotubes inside rodents. The lab of co-author Dr. Robert Bast Jr., an expert in ovarian cancer and vice president for translational research at MD Anderson, inserted gel-bound carbon nanotubes into the ovaries of rodents to mimic the accumulations that are expected for nanotubes linked to special antibodies that recognize tumor cells. The rodents were then scanned with the Rice lab’s custom-built optical device to detect the faint emission signatures of as little as 100 picograms of nanotubes.

The device irradiated the rodents with intense red light from an array of light-emitting diodes and read fluorescent signals with a specialized sensitive detector. Because different types of tissue absorb emissions from the nanotubes differently, the scanner took readings from many locations to triangulate the tumor’s exact location, as confirmed by later MRI scans.

Weisman said it should be possible to noninvasively find small ovarian tumors within rodents used for medical research by linking nanotubes to antibody biomarkers and administering the biomarkers intravenously. The biomarkers would accumulate at the tumor site. He said more refined versions of the optical scanner may then be able to locate a tumor within seconds, and further advances may extend the method’s application to human cancer detection. The new results suggested that antibody-nanotube probes could potentially detect tumors with as few as 100 ovarian cancer cells, which could make it a valuable tool for early detection. Rice MD Anderson Cancer CNTs 54864

Rice graduate student Ching-Wei Lin is lead author of the paper. Co-authors from the Bast group at MD Anderson are researcher Dr. Hailing Yang and senior research assistants Weiqun Mao and Lan Pang. Rice co-authors are chemistry graduate student Stephen Sanchez and Kathleen Beckingham, a professor of biosciences.

The research was supported by the National Science Foundation, the Welch Foundation, the National Institutes of Health, the John S. Dunn Foundation Collaborative Research Award Program, the National Cancer Institute, the Cancer Prevention and Research Institute of Texas, the National Foundation for Cancer Research, the Mossy Foundation, Golfers Against Cancer, the Roberson Endowment and Stuart and Gaye Lynn Zarrow.

####

Rice logo_rice3

 

About Rice University
Located on a 300-acre forested campus in Houston, Rice University is consistently ranked among the nation’s top 20 universities by U.S. News & World Report. Rice has highly respected schools of Architecture, Business, Continuing Studies, Engineering, Humanities, Music, Natural Sciences and Social Sciences and is home to the Baker Institute for Public Policy.

Rice U: Nano-Shells could deliver more chemo with fewer side effects


Rice Nano shells 171108143658_1_540x360
Researchers from Rice University and Northwestern University loaded light-activated nano-shells (gold and light blue) with the anticancer drug lapatinib (yellow) by encasing the drug in an envelope of albumin (blue). Light from a near-infrared laser (center) was used to remotely trigger the release of the drug (right) after the nano-shells were taken up by cancer cells. Credit: A. Goodman/Rice University

Researchers investigating ways to deliver high doses of cancer-killing drugs inside tumors have shown they can use a laser and light-activated gold nanoparticles to remotely trigger the release of approved cancer drugs inside cancer cells in laboratory cultures.

The study by researchers at Rice University and Northwestern University Feinberg School of Medicine appears in this week’s online Early Edition of the Proceedings of the National Academy of Sciences. It employed gold nanoshells to deliver toxic doses of two drugs — lapatinib and docetaxel — inside breast cancer cells. The researchers showed they could use a laser to remotely trigger the particles to release the drugs after they entered the cells.

Though the tests were conducted with cell cultures in a lab, the research was designed to demonstrate clinical applicability: The nanoparticles are nontoxic, the drugs are widely used and the low-power, infrared laser can noninvasively shine through tissue and reach tumors several inches below the skin.

“In future studies, we plan to use a Trojan-horse strategy to get the drug-laden nanoshells inside tumors,” said Naomi Halas, an engineer, chemist and physicist at Rice University who invented gold nanoshells and has spent more than 15 years researching their anticancer potential. “Macrophages, a type of white blood cell that’s been shown to penetrate tumors, will carry the drug-particle complexes into tumors, and once there we use a laser to release the drugs.”

Co-author Susan Clare, a research associate professor of surgery at the Northwestern University Feinberg School of Medicine, said the PNAS study was designed to demonstrate the feasibility of the Trojan-horse approach. In addition to demonstrating that drugs could be released inside cancer cells, the study also showed that in macrophages, the drugs did not detach prior to triggering.

“Getting chemotherapeutic drugs to penetrate tumors is very challenging,” said Clare, also a Northwestern Medicine breast cancer surgeon. “Drugs tend to get pushed out of tumors rather than drawn in. To get an effective dose at the tumor, patients often have to take so much of the drug that nausea and other side effects become severe. Our hope is that the combination of macrophages and triggered drug-release will boost the effective dose of drugs within tumors so that patients can take less rather than more.”

If the approach works, Clare said, it could result in fewer side effects and potentially be used to treat many kinds of cancer. For example, one of the drugs in the study, lapatinib, is part of a broad class of chemotherapies called tyrosine kinase inhibitors that target specific proteins linked to different types of cancer. Other Federal Drug Administration-approved drugs in the class include imatinib (leukemia), gefitinib (breast, lung), erlotinib (lung, pancreatic), sunitinib (stomach, kidney) and sorafenib (liver, thyroid and kidney).

“All the tyrosine kinase inhibitors are notoriously insoluble in water,” said Amanda Goodman, a Rice alumna and lead author of the PNAS study. “As a drug class, they have poor bioavailability, which means that a relatively small proportion of the drug in each pill is actually killing cancer cells. If our method works for lapatinib and breast cancer, it may also work for the other drugs in the class.”

Halas invented nanoshells at Rice in the 1990s. About 20 times smaller than a red blood cell, they are made of a sphere of glass covered by a thin layer of gold. Nanoshells can be tuned to capture energy from specific wavelengths of light, including near-infrared (near-IR), a nonvisible wavelength that passes through most tissues in the body. Nanospectra Biosciences, a licensee of this technology, has performed several clinical trials over the past decade using nanoshells as photothermal agents that destroy tumors with infrared light.

Clare and Halas’ collaboration on nanoshell-based drug delivery began more than 10 years ago. In earlier work, they showed that a near-IR continuous-wave laser — the same kind that produces heat in the photothermal applications of nanoshells — could be used to trigger the release of drugs from nanoshells.

In the latest study, Goodman contrasted the use of continuous-wave laser triggering and triggering with a low-power pulse laser. Using each type of laser, she demonstrated the remotely triggered release of drugs from two types of nanoshell-drug conjugates. One type used a DNA linker and the drug docetaxel, and the other employed a coating of the blood protein albumin to trap and hold lapatinib. In each case, Goodman found she could trigger the release of the drug after the nanoshells were taken up inside cancer cells. She also found no measureable premature release of drugs in macrophages in either case.

Halas and Clare said they hope to begin animal tests of the technology soon and have an established mouse model that could be used for the testing.

“I’m particularly excited about the potential for lapatinib,” Clare said. “The first time I heard about Naomi’s work, I wondered if it might be the answer to delivering drugs into the anoxic (depleted of oxygen) interior of tumors where some of the most aggressive cancer cells lurk. As clinicians, we’re always looking for ways to keep cancer from coming back months or years later, and I am hopeful this can do that.”

Story Source:

Materials provided by Rice UniversityNote: Content may be edited for style and length.

Converging on Cancer at the Nanoscale


MIT-KI-Marble-Center-Faculty-00_0The Marble Center for Cancer Nanomedicine’s faculty is made up of Koch Institute members who are committed to fighting cancer with nanomedicine through research, education, and collaboration. Top row (l-r) Sangeeta Bhatia, director; Daniel Anderson; and Angela Belcher. Bottom row: Paula Hammond; Darrell Irvine; and Robert Langer. Photo: Koch Institute Marble Center for Cancer Nanomedicine

 Koch Institute – July 2017

Marking its first anniversary, the Koch Institute’s Marble Center for Cancer Nanomedicine goes full steam ahead.

This summer, the Koch Institute for Integrative Cancer Research at MIT marks the first anniversary of the launch of the Marble Center for Cancer Nanomedicine, established through a generous gift from Kathy and Curt Marble ’63.

Bringing together leading Koch Institute faculty members and their teams, the Marble Center for Cancer Nanomedicine focuses on grand challenges in cancer detection, treatment, and monitoring that can benefit from the emerging biology and physics of the nanoscale.

These challenges include detecting cancer earlier than existing methods allow, harnessing the immune system to fight cancer even as it evolves, using therapeutic insights from cancer biology to design therapies for previously undruggable targets, combining existing drugs for synergistic action, and creating tools for more accurate diagnosis and better surgical intervention. cancer-shapeshiftin

Koch Institute member Sangeeta N. Bhatia, the John J. and Dorothy Wilson Professor of Health Sciences and Technology and Electrical Engineering and Computer Science, serves as the inaugural director for the center.

”A major goal for research at the Marble Center is to leverage the collaborative culture at the Koch Institute to use nanotechnology to improve cancer diagnosis and care in patients around the world,” Bhatia says.

Transforming nanomedicine

The Marble Center joins MIT’s broader efforts at the forefront of discovery and innovation to solve the urgent global challenge that is cancer. The concept of “convergence” — the blending of the life and physical sciences with engineering — is a hallmark of MIT, the founding principle of the Koch Institute, and at the heart of the Marble Center’s mission.

“The center galvanizes the MIT cancer research community in efforts to use nanomedicine as a translational platform for cancer care,” says Tyler Jacks, director of the Koch Institute and a David H. Koch Professor of Biology. “It’s transformative by applying these emerging technologies to push the boundaries of cancer detection, treatment, and monitoring — and translational by promoting their development and application in the clinic.”

The center’s faculty — six prominent MIT professors and Koch Institute members — are committed to fighting cancer with nanomedicine through research, education, and collaboration. They are:

Sangeeta Bhatia (director), the John J. and Dorothy Wilson Professor of Health Sciences and Technology and Electrical Engineering and Computer Science;

Daniel G. Anderson, the Samuel A. Goldblith Professor of Applied Biology in the Department of Chemical Engineering and the Institute for Medical Engineering and Science;

Angela M. Belcher, the James Mason Crafts Professor in the departments of Biological Engineering and Materials Science and Engineering;

Paula T. Hammond, the David H. Koch Professor of Engineering and head of the Department of Chemical Engineering;

Darrell J. Irvine, professor in the departments of Biological Engineering and Materials Science and Engineering; and

Robert S. Langer, the David H. Koch Institute Professor.

Extending their collaboration within the walls of the Institute, Marble Center members benefit greatly from the support of the Peterson (1957) Nanotechnology Materials Core Facility in the Koch Institute’s Robert A. Swanson (1969) Biotechnology Center. The Peterson Facility’s array of technological resources and expertise is unmatched in the United States, and gives members of the center, and of the Koch Institute, a distinct advantage in the development and application of nanoscale materials and technologies.

Looking ahead

Figure-1-11-Nanocarriers-for-cancer-theranostics-Nanoparticles-based-strategies-can-beThe Marble Center has wasted no time getting up to speed in its first year, and has provided support for innovative research projects including theranostic nanoparticles that can both detect and treat cancers, real-time imaging of interactions between cancer and immune cells to better understand response to cancer immunotherapies, and delivery technologies for several powerful RNA-based therapeutics able to engage specific cancer targets with precision.

As part of its efforts to help foster a multifaceted science and engineering research force, the center has provided fellowship support for trainees — as well as valuable opportunities for mentorship, scientific exchange, and professional development.

Promoting broader engagement, the Marble Center serves as a bridge to a wide network of nanomedicine resources, connecting its members to MIT.nano, other nanotechnology researchers, and clinical collaborators across Boston and beyond. The center has also convened a scientific advisory board, whose members hail from leading academic and clinical centers around the country, and will help shape the center’s future programs and continued expansion.

As the Marble Center begins another year of collaborations and innovation, there is a new milestone in sight for 2018. Nanomedicine has been selected as the central theme for the Koch Institute’s 17th Annual Cancer Research Symposium. Scheduled for June 15, 2018, the event will bring together national leaders in the field, providing an ideal forum for Marble Center members to share the discoveries and advancements made during its sophomore year.

“Having next year’s KI Annual Symposium dedicated to nanomedicine will be a wonderful way to further expose the cancer research community to the power of doing science at the nanoscale,” Bhatia says. “The interdisciplinary approach has the power to accelerate new ideas at this exciting interface of nanotechnology and medicine.”

To learn more about the people and projects of the Koch Institute Marble Center for Cancer Nanomedicine, visit nanomedicine.mit.edu.

Ginseng nanoparticles for cancer treatment



A recent editorial in Nanomedicine (“Ginseng nanoparticles: a budding tool for cancer treatment”) by scientists in Korea states that use of ginsenoside nanoconjugates could be a promising candidate against cancer and various other diseases, such as inflammation, osteoporosis and obesity in the future.

Researchers have found that nanoparticles of ginsenoside by various nanocarriers, such as, polymers, proteins, micelles and liposomes result in an increased water solubility and anticancer activity.

In addition, the cytotoxicity of the conjugates is often similar or superior compared with bare ginsenosides in cancer cells with relatively low cytotoxicity in normal cells.


Ginseng

Ginseng has been considered one of the highly valued medicinal plants in traditional Chinese medicine for more than thousands of years.

Ginseng phytochemicals, such as, ginsenoside (unique triterpenoid saponins), phenols and acidic polysaccharides have been known to exhibit numerous pharmacological efficacies including anticancer, anti-inflammatory, antidiabetic, antiaging, enhanced immunization and liver functions and protective effects against Alzheimer’s disease. Their administration often results in adaptogenic effects.

Regular intake of ginseng products has been demonstrated to prevent the occurrence of various cancers, ameliorate cancer-related fatigue and enhance life span.

Among ginseng phytochemicals, ginsenosides have been thoroughly researched and scrutinized over the years to flaunt various pharmacological activities.

As the scientists point out, though, there are considerable limitation sto these benefits: After oral administration, crude and major ginsenosides are mainly converted into minor ginsenosides due to hydrolysis of glucose molecules by intestinal microbiota.

Biomolecular conjugations of ginsenosides and drug delivery techniques play significant roles to solve these problematic issues.

Most reported nanodrug delivery carriers, such as, polymer–drug conjugates, nanoparticles, liposomes and metal nanoparticles are designed to increase solubility, improve lipid membrane penetration, enhance anticancer efficacy, ameliorate sustainability in gastrointestinal environment and reduce or eliminate loss during oral administration.

Polymer–ginsenoside nanoconjugates have been recently studied as a potential drug carrier to tumor sites owing to the improved solubility and efficient drug-release mechanisms.

The enhanced oral bioavailability, oncogene MDM2 targeting and anticancer activities were reported in both in vitro and in vivo of PEG-PLGA loaded 25–OCH3–PPD nanoparticles than nonloaded drug.

The phytochemicals in plant extracts have a direct relationship in the efficacy of tailor-made nanoparticles used as drug delivery and as therapeutic agents.

The phytochemicals in ginseng provide binary functions in the nanoparticle synthesis as competent reducing agents to convert macrosized salts into nanosized metal nanoparticles as well as stabilizers to cater a potent coating on the metal nanoparticles.

Source: Future Medicine

Mayo Clinic Researchers develop new tumor-shrinking nanoparticle to fight breast cancer – prevent recurrence


Cancer New Nano Particle 58e378ef3aa34Credit: CC0 Public Domain

A Mayo Clinic research team has developed a new type of cancer-fighting nanoparticle aimed at shrinking breast cancer tumors, while also preventing recurrence of the disease. In the study, published today in Nature Nanotechnology, mice that received an injection with the nanoparticle showed a 70 to 80 percent reduction in tumor size. Most significantly, mice treated with these nanoparticles showed resistance to future tumor recurrence, even when exposed to cancer cells a month later.

The results show that the newly designed nanoparticle produced potent anti- immune responses to HER2-positive breast cancers. Breast cancers with higher levels of HER2 protein are known to grow aggressively and spread more quickly than those without the mutation.

“In this proof-of-concept study, we were astounded to find that the animals treated with these nanoparticles showed a lasting anti- effect,” says Betty Y.S. Kim, M.D., Ph.D., principal investigator, and a neurosurgeon and neuroscientist who specializes in brain tumors at Mayo Clinic’s Florida campus. “Unlike existing cancer immunotherapies that target only a portion of the immune system, our custom-designed nanomaterials actively engage the entire immune system to kill cancer , prompting the body to create its own memory system to minimize tumor recurrence. These nanomedicines can be expanded to target different types of cancer and other human diseases, including neurovascular and neurodegenerative disorders.”

Dr. Kim’s team developed the nanoparticle, which she has named “Multivalent Bi-specific Nano-Bioconjugate Engager,” a patented technology with Mayo Clinic Ventures, a commercialization arm of Mayo Clinic. It’s coated with antibodies that target the HER2 receptor, a common molecule found on 40 percent of breast cancers. It’s also coated with molecules that engage two distinct facets of the body’s immune system. The nanoparticle hones in on the tumor by recognizing HER2 and then helps the identify the tumor cells to attack them.

The molecules attached to the nanoparticle rev up the body’s nonspecific, clean-up cells (known as macrophages and phagocytes) in the immune system that engulf and destroy any foreign material. The design of the nanoparticle prompts these cells to appear in abundance and clear up abnormal cancer cells. These clean-up cells then relay information about the cancer cells to highly specialized T-cells in the immune system that help eradicate remaining , while maintaining a memory of these cells to prevent cancer recurrence. It’s the establishment of disease-fighting memory in the cells that makes the nanoparticle similar to a cancer vaccine. Ultimately, the body’s own cells become capable of recognizing and destroying recurrent tumors.

Since the late 1990s, the field of nanomedicine has focused on developing as simple drug delivery vehicles that can propel chemotherapy drugs to tumors. One pitfall is that the body tends to purge the particles before they reach their destination.

“Our study represents a novel concept of designing nanomedicine that can actively interact with the immune cells in our body and modulate their functions to treat human diseases,” says Dr. Kim. “It builds on recent developments in cancer immunotherapy, which have been successful in treating some types of tumors; however, most immunotherapy developed so far does not harness the power of the entire immune system. We’ve developed a new platform that reaches and also recruits abundant clean-up cells for a fully potent immune response.”

Future studies in the lab will explore the ability of the nanoparticle to prevent long-term recurrence of tumors, including metastases at sites distant from the primary tumor. What’s more, the nanoparticle is designed to be modular, meaning it can carry molecules to fight other types of disease. “This approach hopefully will open new doors in the design of new nanomedicine-based immunotherapies,” she says.

Explore further: Nanoparticles target and kill cancer stem cells that drive tumor growth

More information: Multivalent Bi-Specific Nano-Bioconjugate Engager for Targeted Cancer Immunotherapy, Nature Nanotechnology (2017). nature.com/articles/doi:10.1038/nnano.2017.69