Mind Reading and Mind Control Technologies Are Coming – Are We Ready?

Mind Control 1 973DA81D-E9E4-4F8A-829DBDDD07992188_source Credit: Alfred Pasieka Getty Images

” … What’s more, five minutes of monitoring electrical activity flowing through your brain, while you do nothing but let your mind wander, can reveal how your individual brain is wired.”

We need to figure out the ethical implications before they arrive

The ability to detect electrical activity in the brain through the scalp, and to control it, will soon transform medicine and change society in profound ways. Patterns of electrical activity in the brain can reveal a person’s cognition—normal and abnormal. New methods to stimulate specific brain circuits can treat neurological and mental illnesses and control behavior. In crossing this threshold of great promise, difficult ethical quandaries confront us.


The ability to interrogate and manipulate electrical activity in the human brain promises to do for the brain what biochemistry did for the body. When you go to the doctor, a chemical analysis of your blood is used to detect your body’s health and potential disease. Forewarned that your cholesterol level is high, and you are at risk of having a stroke, you can take action to avoid suffering one. Likewise, in experimental research destined to soon enter medical practice, just a few minutes of monitoring electrical activity in your brain using EEG and other methods can reveal not only neurological illness but also mental conditions like ADHD and schizophrenia. What’s more, five minutes of monitoring electrical activity flowing through your brain, while you do nothing but let your mind wander, can reveal how your individual brain is wired.


Tapping into your wandering mind can measure your IQ, identify your cognitive strengths and weaknesses, perceive your personality and determine your aptitude for learning specific types of information. Electrical activity in a preschooler’s brain be used to can predict, for example, how well that child will be able to read when they go to school. As I recount in my new book, Electric Brain (BenBella, 2020), after having brainwaves in my idling mind recorded using EEG for only five minutes, neuropsychologist Chantel Prat at the University of Washington, in Seattle, pronounced that learning a foreign language would be difficult for me because of weak beta waves in a particular part of my cerebral cortex processing language. (Don’t ask me to speak German or Spanish, languages that I studied but never mastered.) How will this ability to know a person’s mind change education and career choices?

Neuroscientist Marcel Just and colleagues at Carnegie Mellon University are using fMRI brain imaging to decipher what a person is thinking. By using machine learning to analyze complex patterns of activity in a person’s brain when they think of a specific number or object, read a sentence, experience a particular emotion or learn a new type of information, the researchers can read minds and know the person’s specific thoughts and emotions. “Nothing is more private than a thought,” Just says, but that privacy is no longer sacrosanct.

Armed with the ability to know what a person is thinking, scientists can do even more. They can predict what a person might do. Just and his team are able to tell if a person is contemplating suicide, simply by watching how the person’s brain responds to hearing words like “death” or “happiness.” As the tragic deaths of comedian Robin Williams and celebrity chef Anthony Bourdain show, suicide often comes as a shock because people tend to conceal their thoughts of suicide, even from loved ones and therapists.

Such “brain hacking” to uncover that someone is thinking of suicide could be lifesaving. The technique applied to the Columbine high school mass murderers might have prevented the horror of two troubled teens slaughtering their classmates and teachers, as well as their own suicides. But this insight into suicidal ideation is gleaned by judging that the pattern of brain activity in an individual’s brain deviates from what is considered “normal” as defined as the average response from a large population. At what point do we remove a person from society because their brain activity deviates from what is considered normal?


The ability to control electrical activity in brain circuits has the potential to do for brain disorders what electrical stimulation has accomplished in treating cardiac disorders. By beaming electrical or magnetic pulses through the scalp, and by implanting electrodes in the brain, researchers and doctors can treat a vast array of neurological and psychiatric disorders, from Parkinson’s disease to chronic depression.


But the prospect of “mind control” frightens many, and brain stimulation to modify behavior and treat mental illness has a sordid history. In the 1970s neuropsychologist Robert Heath at Tulane University inserted electrodes into a homosexual man’s brain to “cure” him of his homosexual nature by stimulating his brain’s pleasure center. Spanish neuroscientist José Delgado used brain stimulation in monkeys, people and even a charging bull to understand how, at a neural circuit level, specific behaviors and functions are controlled—and to control them at will by pushing buttons on his radio-controlled device energizing electrodes implanted in the brain. Controlling movements, altering thoughts, evoking memories, rage and passion were all at Delgado’s fingertips. Delgado’s goal was to relieve the world of deviant behavior through brain stimulation and produce a “psychocivilized” society.

The prospect of controlling a person’s brain by electrical stimulation is disturbing for many, but current methods of treating mental and neurological disorders are woefully inadequate and far too blunt. Neurological and psychoactive drugs affect many different neural circuits in addition to the one targeted, causing wide-ranging side effects. Not only the brain but every cell in the body that interacts with the drugs, such as SSRIs for treating chronic depression, will be affected.

At present, drugs available for treating mental illness and neurological conditions are not always effective, and they are often prescribed in a trial-and-error manner. Psychosurgery, notoriously prefrontal lobotomy, also has a tragic history of abuse. Moreover, while any surgeon faces the prospect of losing the patient on the operating table, neurosurgeons face the unique risk of saving a patient’s life but losing the person. Surgical removal of brain tissue can leave patients with physical, cognitive, personality or mood dysfunctions by damaging healthy tissue, or failing to remove all the dysfunctional tissue. Electroconvulsive stimulation (ECT), to treat chronic depression and other mental illnesses, rocks the entire brain with seizure; in the wake of the electrical firestorm, the brain somehow resets itself, and many patients are helped, but not all, and sometimes there are debilitating side effects or the method fails to work.

Rather than blasting the whole brain with bolts of electricity or saturating it with drugs, it makes far more sense to stimulate the precise neural circuit that is malfunctioning. Following the success of deep brain stimulation in treating Parkinson’s disorder, doctors are now applying the same method to treat a wide range of neurological and psychiatric illnesses, from dystonia to OCD. But they are often doing so without the requisite scientific understanding of the disorder at a neural circuit level. This is especially so for mental illnesses, which are poorly represented in nonhuman animals used in research. How electrical stimulation is working to help these conditions, including Parkinson’s disease, is not fully understood. The necessary knowledge of where to put the electrodes or what strength and pattern of electrical stimulation to use is not always available. Such doctors are in effect doing experiments on their patients, but they are doing so because it helps.

Noninvasive means of modifying brainwaves and patterns of electrical activity in specific brain circuits, such as neurofeedback, rhythmic sound or flashing light, ultrasonic and magnetic stimulation through the scalp, can modify neural activity without implanting electrodes in the brain to treat neurological and mental illnesses and improve mood and cognition. The FDA approved treating depression by transcranial magnetic stimulation in 2008, and subsequently expanded approval for treating pain and migraine. Electrical current can be applied by an electrode on the scalp to stimulate or inhibit neurons from firing in appropriate brain regions.

The military is using this method to speed learning and enhance cognitive performance in pilots. The method is so simple, brain stimulation devices can be purchased over the internet or you can make one yourself from nine-volt batteries. But the DIY approach renders the user an experimental guinea pig.

New methods of precision brain stimulation are being developed. Electrical stimulation is notoriously imprecise, following the path of least resistance through brain tissue and stimulating neurons from distant regions of the brain that extend axons past the electrode. In experimental animals, very precise stimulation or inhibition of neuronal firing can be achieved by optogenetics. This method uses genetic engineering to insert light sensitive ion channels into specific neurons to control their firing very precisely using laser light beamed into the brain through a fiber-optic cable. Applied to humans, optogenetic stimulation could relieve many neurological and psychiatric disorders by precision control of specific neural circuits, but using this approach in people is not considered ethical.


Against the historical backdrop of ethical lapses and concerns that curtailed brain stimulation research for mental illnesses decades ago, we are reaching a point where it will become unethical to deny people suffering from severe mental or neurological illness treatments by optogenetic or electrical stimulation of their brain, or to withhold diagnosing their conditions objectively by reading their brain’s electrical activity. The new capabilities of being able to directly monitor and manipulate the brain’s electrical activity raise daunting ethical questions from technology that has not existed previously. But the genie is out of the bottle. We better get to know her.

By R. Douglas Fields for The Scientific American


Catalytic Gold Nanoclusters Promise Rich Chemical Yields

Gold Nano Cluster Wu-Overbury-Figure-Au25_hrOld thinking was that gold, while good for jewelry, was not of much use for chemists because it is relatively nonreactive. That changed a decade ago when scientists hit a rich vein of discoveries revealing that this noble metal, when structured into nanometer-sized particles, can speed up chemical reactions important in mitigating environmental pollutants and producing hard-to-make specialty chemicals.

Catalytic gold nanoparticles have since spurred hundreds of scientific journal articles. With the world catalyst market poised to hit $19.5 billion by 2016, gold nanoparticles may find commercial as well as intellectual importance, as they could ultimately lead to novel catalysts for energy, pharmacology and diverse consumer products.


The reaction mechanism of carbon monoxide oxidation is shown over intact and partially ligand-removed gold nanoclusters supported on cerium oxide rods. Image credit: Wu, Z.; Jiang, D.; Mann, A.; Mullins, D.; Qiao, Z.-A.; Allard, L.; Zeng, C.; Jin, R.; Overbury, S. Thiolate Ligands as a Double-Edged Sword for CO Oxidation on CeO2-Supported Au25(SCH2CH2Ph)18 Nanoclusters. J. Am. Chem. Soc. 2014, 136(16), 6111.

But before gold nanoparticles can be useful to consumers, researchers have to make them both stable and active. Recently, scientists learned to make tiny, highly ordered clusters with very specific numbers of gold atoms that are stabilized by compounds called ligands. These stabilized gold clusters plus ligands may be thought of as large molecules. In collaboration with scientists from Carnegie Mellon University, researchers at the Department of Energy’s Oak Ridge National Laboratory have found one new gold molecule, a catalyst containing exactly 25 gold atoms, that is powerful as well as sophisticated. It catalyzes the conversion of a variety of molecules, including the transformation of poisonous carbon monoxide into harmless carbon dioxide, a reaction that may find application in devices near gas flues or wood-burning stoves. Unfortunately, the ligands that create and stabilize the engineered clusters also block the very sites needed to catalyze the conversion of carbon monoxide into carbon dioxide.

“The ligands are double-edged swords,” said study leader Zili Wu of ORNL, whose investigation was conducted in ORNL’s catalysis group, which is led by Steve Overbury. “We’re interested in using gold clusters as catalysts or catalyst precursors. Ligands on the one hand stabilize the gold particle structure but on the other hand decrease their catalytic performance. Balancing those two factors is the key to creating a new catalytic system. One way is to utilize a metal oxide (here, cerium oxide) as an inorganic ligand to stabilize the gold clusters when the organic ligand has to be removed for catalysis.”

Many catalytic systems consist of metal particles with catalytic properties placed on a metal oxide support with catalytic properties of its own. The metal and metal oxide work together to create a new type of catalytic activity. “We’re trying to understand how that happens,” Wu said.

Their study, published in the Journal of the American Chemical Society, described how ligands enabled the gold nanocluster to dock on a cerium oxide support shaped like a rod. The catalysts produced were all identical. The researchers would like to engineer future oxide supports in the shapes of cubes or octahedra to find out how those nanostructures could alter the configuration of the gold and the reactivity of the final component system. Better understanding of stabilizing agents may aid design of novel catalysts for critical chemical reactions including oxidation, hydrogenation and coupling.

Carnegie Mellon Professor Rongchao Jin, his student Chenjie Zeng and ORNL postdoctoral fellows Amanda Mann and Zhen-An Qiao synthesized the gold clusters. Mann made the cerium oxide rods. Wu and Mann placed the gold clusters on the supports and performed chemical reaction studies. David Mullins of ORNL performed measurements of extended X-ray absorption fine structure to learn how sizes of clusters change with temperature. ORNL’s Larry Allard verified the nature of the structures with aberration-corrected microscopy, and De-en Jiang, formerly of ORNL but now at the University of California–Riverside, used the Oak Ridge Institutional Cluster to computationally explore structures of ligand-bound gold clusters.

Activating gold

“These ligands affect the reactivity—they essentially poison the gold surface—so the gold really has to be activated,” Overbury, the study’s senior author, explained. “We put the gold onto a support, and it’s got these ligands protecting it. We have to remove those ligands, so we basically heat this [gold nanocluster] up or treat it in some gas to elevated temperatures.”

When the gold clusters are heated, the ligands start to come off and gold’s catalytic activity increases. The optimal temperature for producing gold nanocluster catalysts for carbon monoxide oxidation is 498 Kelvin (225 degrees Celsius or 437 degrees Fahrenheit), Wu said. If heating increases further, catalytic activity decreases because the gold particles become fluid and aggregate on the support.

Next the scientists are interested in varying the gold-cluster size and stabilizing the new clusters to make novel uniform catalysts. “We want to understand how other kinds of reactions can be catalyzed by these. So far we’ve only looked at carbon monoxide oxidation, which is kind of a test reaction,” Overbury said. “Our primary interest is using the gold-nanocluster complex as a toolbox for learning about how other complex reactions occur.”

Added Overbury, “We’re only just starting to mine all the catalytic possibilities for gold.”

DOE’s Office of Science sponsored the research described in the Journal of the American Chemical Society paper. Raman and Fourier transform infrared spectroscopies and catalytic measurements were conducted at the Center for Nanophase Materials Sciences, a DOE Office of Science User Facility at ORNL. Extended X-ray absorption fine structure work was performed at the National Synchrotron Light Source, which is also a DOE Office of Science User Facility, at Brookhaven National Laboratory.

UT-Battelle manages ORNL for DOE’s Office of Science. The single largest supporter of basic research in the physical sciences in the United States, the Office of Science is working to address some of the most pressing challenges of our time.

Reference: Wu, Z.; Jiang, D.; Mann, A.; Mullins, D.; Qiao, Z.-A.; Allard, L.; Zeng, C.; Jin, R.; Overbury, S. Thiolate Ligands as a Double-Edged Sword for CO Oxidation on CeO2-Supported Au25(SCH2CH2Ph)18 Nanoclusters. J. Am. Chem. Soc. 2014, 136(16), 6111.

Source: By Dawn Levy, Oakridge National Laboratory

Battery Technology Grows to Meet Demands of Renewable Energy

Axion PC 0


Those skeptical of renewable energy as a viable power source often note that the wind doesn’t always blow nor does the sun always shine.

But advancements in battery technology are helping keep energy flowing on those dark, windless days.

“It’s happening at a record pace,” said Lisa Salley, vice president and general manager of energy and power technologies at Underwriters Laboratories, a Northbrook, Ill.-based independent safety consulting and certification organization.

The goal is to increase the usability of renewable energy, which currently accounts for 21 percent of all electricity generated worldwide but just 11 percent of consumption, according to the Energy Information Administration.

“One of the areas that’s been neglected in the past has been the storage component of renewable energy sources, and that includes wind and solar, of course,” said Tom Granville, CEO of Axion Power International.

That, however, is changing. Power, chemical and material science companies, locally and elsewhere, are investing heavily in battery technology. Some are improving existing technology while others are developing new chemistry to create entirely new battery structures.

The development is driven by a variety of factors. Battery technology got a huge boost from the mobile device boom of the past 20 years as one of the biggest complaints about high-tech smart phones is short battery life. Those same chemistries used to improved mobile device batteries can be scaled to store renewable energy.

Government action — either by mandate or incentive — has increased the demand for energy storage. The state of California is requiring that its utilities develop 1.3 gigawatts of energy storage by 2020, which has helped spur development in the industry. And federal solar credits have increased demand for solar panels, which in turn have increased the need for storage.

Similar mandates and incentives for smart grid technology, which modernizes electrical grids to act more immediately, have spurred the battery market.

New Castle-based Axion Power developed PowerCube, a large-scale energy storage unit that can send power to or receive power from the electricity grid. PowerCube, which can send up to one megawatt of power for 30 minutes or 100 kilowatts for 10 hours, is about the size of a semi-truck trailer.

Axion 2012_Power_Cube_web_image

The company recently sold four 500-kw PowerCube to a New Jersey-based solar installer for $1.1 million, its largest order.

Unlike the two leading chemistries used in large-scale batteries — lead acid, first developed in the 1800s, and lithium ion, which emerged on the commercial market in the past 25 years — Axion’s PowerCube is based off activated carbon technology.

Lawrenceville-based Aquion Energy developed its Aqueous Hybrid Ion battery using saltwater electrolyte, manganese oxide cathode, carbon composite anode and synthetic cotton separator. Its battery, like Axion’s PowerCube, can be used to supply power and receive power from the grid. It also can be incorporated into micro-grids to service locations that are otherwise unconnected to the electric grid.

Aquion Energy received $5 million in federal grant money to help develop its Aqueous Hybrid Ion battery as part of smart grid development.

The company, which spun out of Carnegie Mellon University in 2009 and began pilot production in 2010, has produced more than two megawatt hours of batteries in its manufacturing facility this year, and one line at the facility has the capability to produce 200 megawatt hours of storage per year.

Ted Wiley, vice president of product and corporate strategy for Aquion, said while production is fast-paced for the industry, it might seem slow compared to other technological innovations. Computer processors typically double their performance level every 18 months. That type of evolution is not possible for batteries, which require material science development.

Both Axion’s and Aquion’s batteries are more costly than lead acid batteries — sometimes twice as expensive. But they last nearly four times as long.

Solvay, a Belgian chemical group that recently acquired Plextronics of Harmar, is using the conductive ink technology Plextronics developed to help increase the battery life and capacity of lithium ion batteries.

“There are hundreds of competing technologies, and every day I hear of one more,” said Ms. Salley of Underwriters Laboratories, adding it is hard to predict which technology will emerge as an industry standard.

Since a lot of battery development is based on developing new chemistries, safety is a big component, she said. The firm recently opened a battery lab in Taiwan to test new components as well as entire systems connected to battery technology.

Battery failure can be catastrophic, she said, sometimes even leading to fires and explosions.

“How do we ensure that the technology is safe, how do we make sure that tech is validated in independent and safe ways?” she said. “Having a collaborative push on that is really, really powerful for the good of the common movement of renewables as a whole.”

But all agree that battery development is essential to growing renewables.

“I think the renewables are going to be easier to deploy and integrate more readily to the regular grid if they are coupled with energy storage,” Mr. Wiley said, adding it will give renewable energy sources the same type of reliability as traditional electricity generation sources.

Michael Sanserino: msanserino@post-gazette.com, 412-263-1969 begin_of_the_skype_highlighting 412-263-1969 FREE  end_of_the_skype_highlighting and Twitter @msanserino.

UPDATE: Axion Power International sold four PowerCubes to a New Jersey-based solar installer for $1.1 million. The PowerCubes can send up to one megawatt of power for 30 minutes or 100 kilowatts for 10 hours. An earlier version of this article misstated the number of units sold and the capability of the units.