Saving Us From AI’s Worst Case Scenarios – An Interview with MIT Professor Max Tegmark


artificial-intelligence-people-mit-00_2

(AI) “… Instead, the largest threat would be if it turns extremely competent. This is because the competent goals may not be aligned with our goals either because it is controlled by someone who does not share our goals, or because the machine itself has power over us.”

Artificial intelligence (AI) is one of the hottest trends pursued by the private sector, academics, and government institutions. The promise of AI is to make our lives better: to have an electronic brain to complement our own, to take over menial tasks so that we can focus on higher value activities, to allow us to make better decisions in our personal and professional lives.

There is also a darker side to AI that many fear. What happens when bad actors leverage AI for bad uses? How will we ensure that AI is not a wedge to divide the haves and have-nots further apart? Moreover, what happens when our jobs are fundamentally changed or go away when we derive so much of what defines us from what we do professionally?

Max Tegmark has studied these issues intimately from his perch as a professor at MIT and as the  co-founder of the Future of Life Institute. He has synthesized his own thoughts into a powerful book called Life 3.0: Being Human in the Age of Artificial Intelligence. As the title suggests, AI will redefine what it means to be human due to the scale of the changes it will bring about.

                                                                     

Tegmark likes the analogy of the automobile to make the case for what is necessary for AI to be beneficial for humanity. He notes that the three things that are necessary are that it have an engine (the power to create value), it needs steering (so that it can be moved toward good rather than evil ends), and it must have direction or a roadmap for how to get to the beneficial destination. He notes that “the way    to create a good future with technology is to continuously win the wisdom race. As technology grows more powerful, the wisdom in which we manage it must keep up.” He describes all of this and more in this interview.  professor mark tegmark https___blogs-images.forbes.com_peterhigh_files_2019_01_maxresdefault-300x169

MIT Professor and Author, Max Tegmark CREDIT: MIT 

(To listen to an unabridged podcast version of this interview, please click this link. This is the 31st interview in the Tech Influencers series. To listen to past interviews with the likes of former Mexican President Vicente Fox, Sal Khan, Sebastian Thrun, Steve Case, Craig Newmark, Stewart Butterfield, and Meg Whitman, please visit this link. To read future articles in this series, please follow me on on Twitter @PeterAHigh.)

The Interview by Peter High

Peter High is President of Metis Strategy, a business and IT advisory firm. His latest book is Implementing World Class IT Strategy. He is also the author of World Class IT: Why Businesses Succeed When IT Triumphs.

 

Peter High: Congratulations on your book, Life 3.0: Being Human in the Age of Artificial Intelligence. When and where did your interest in the topic of Artificial Intelligence [AI] begin?

High: When you have described your efforts to figure out where AI might take us, you make an analogy to driving a car. First, you need the engine and the power to make AI work. Second, you need steering because AI must be steered in one direction or another. Lastly, there needs to be a destination. Can you elaborate on each of those topics, and could you give us your hypothesis as to where we are heading?

Tegmark: If you are building a rocket or a car, it would be nuts to exclusively focus on the engine’s power while ignoring how to steer it. Even if you have the steering sorted out, you are going to have trouble if you are unable to determine where you are trying to go with it. Unfortunately, I believe this is what we are doing as we continue to build more powerful technology, especially with AI. To be as ambitious as possible, we need to think about all three elements, which are the power, the steering, and the destination of the technology.

Because it is so important, I spend a great deal of time at MIT focused on steering. Along with Jaan Tallinn and several other colleagues, I co-founded the Future of Life Institute, which [focuses on] the destination. While we are making AI more powerful, it is critical to know what type of society we are aspiring to create with this technology. If society accomplishes the original goal of AI research, which is to make so-called “Artificial General Intelligence” [AGI] that can do all jobs better than humans, we have to determine what it will mean to be a human in the future. I am convinced that if we succeed, it will either be the best or the worst advancement ever, and it will come down to the amount of planning we do now. If we have no clue about where we want to go, it is unlikely that we are going to end up in an ideal situation. However, if we plan accordingly and steer technology in the right direction, we can create an inspiring future that will allow humanity to flourish in a way that we have never seen before.

I believe this to be true because the reason that today’s society is better than the Stone Age is because of technology. Everything I love about civilization is the product of intelligence. Technology is the reason why the life expectancy is no longer 32 years. If we can take this further and amplify our intelligence with AI, we have the potential to solve humanity’s greatest challenges. These technologies can help us cure other diseases that we are currently told are incurable because we have not been smart enough to solve them. Further, technology can lift everybody out of poverty, solve the issues in our climate, and allow us to go in inspiring directions that we have not even thought of yet. It is clear that there is an enormous upside if we get this right, and that is why I am incredibly motivated to work on that.

High: I am struck by the caveman analogy. We are so far removed from cavemen and cavewomen that a modern human and caveman would not be able to recognize each other in terms of life expectancy, the ability to communicate, and the time we have to reflect and ponder our situation, among other differences.

Tegmark: That is so true, and you said something super interesting there. While we are so far removed, we are largely stuck in the caveman mindset. When we were cavemen, the most powerful technology we had were rocks and sticks, which limited our ancestors’ ability to cause significant damage. While there were always cavemen that wanted to harm as many people as possible, there was only so much damage one could do with a rock and a stick.

Unfortunately, with nuclear weapons, the damage can be devastating, and as technology gets more powerful, it becomes easier to mess up. However, at the same time, we now have more power to use technology for good. Because of both of these factors, the more powerful the technology gets, the more important the steering becomes. Technology is neither good nor evil, so when people ask me if I am for AI or against AI, I ask them if they are for fire or against fire. Fire can obviously be used to keep your house warm in the winter, or it can be used for arson. To keep this under control, we have put a great deal of effort into the steering of fire. We have fire extinguishers and fire departments, and we created ways to punish people who use fire in ways that are not appropriate.

We have to step out of our caveman mindset. The way to create a good future with technology is to continuously win the wisdom race. As technology grows more powerful, the wisdom in which we manage it must keep up. This was true with fire and with the automobile engine, and I believe we were successful in those missions. While we continuously messed up, we learned from our mistakes and invented the seat belt, the airbag, traffic lights, and laws against speeding. Ever since we were cavemen, we have been able to stay ahead in the wisdom race by learning from our mistakes. However, as technology gets more powerful, the margin for error is evaporating, and one mistake in the future may be one too many. We obviously do not want to have an “accidental” nuclear war with Russia and just brush it off as a mistake that we can learn from and be more careful of the next time. It is far more effective to be proactive and plan ahead, rather than reactive. I believe we need to implement this mindset before we build technology that can do everything better than us.

High: You mentioned there are some attributes that we still share with our distant ancestors. Even if AGI does not come for decades, the change will be almost the same in magnitude as the change from cavemen to the present day. For example, it potentially has the power to change the way in which we work. You have written persuasively about the possibility of what we do being taken over by AI. In a society where many of us are defined by the work that we do, it is quite unsettling to know that, what I love about my day job today will be done better by AI. We may need to redefine ourselves as a result. What are your perspectives on that?

Tegmark: I agree with that, and I would take it a step further and say that the jump from today to AGI is a bigger one than the jump from cavemen to the present day. When we were cavemen, we were the smartest species on the planet, and we still are today. With AGI, we will not be, which is a huge game changer. While we have doubled our life expectancy and seen new technologies emerge, we are still stuck on this tiny planet, and the majority of people still die within a century. However, if we can build AGI, the opportunities will be limitless.

People are not realizing this, and because we are still stuck in this caveman mindset, we continue to think that it will take us thousands of years to find a way to live 200, or even 1,000 years. Moreover, the mindset that we have to invent all the technologies ourselves has led us to believe that it will take thousands of years to move to another solar system. However, this is far from true because, by definition, AGI has the ability to do all jobs better than us, including jobs that can invent better AI among other technologies. This capability has led many to believe that AGI could be the last invention that we need to make. We may end up with a future where life on Earth and beyond flourishes for billions of years, not just for the next election cycle. This could all start on Earth if we can solve intelligence and use it to go in amazing directions. If we get this right, the upside will be far more significant than the benefits we reaped going from cavemen to the present day.

Regarding what it means to be a human if all jobs can be done better by machines, that is why the subtitle of my book is, Being Human in the Age of Artificial Intelligence. Jobs do not just give us an income, they give us meaning and a sense of purpose in our lives. Even if we can produce all that we need with machines and figure out how to share the wealth, it does not solve the question of how that purpose and meaning will be replaced. This crucial dilemma absolutely cannot be left to tech nerds such as myself because AI programmers are not world experts on what makes humans happy. We need to broaden this conversation to get everyone on board and discuss what type of future we want to create. This is essential, and unfortunately, I do not believe that we are going about this the right way.

Students often walk into my office asking for career advice, and in response, I always start by asking them about where they want to be in the future. If all the student can say is that they may get cancer, be murdered, or run over by a truck, that is a terrible strategy for career planning. I want these people to come in with fire in their eyes and say, “This is where I want to be.” From there, we can figure out what the challenges are and come up with a strong strategy to avoid them so that they can get to where they want to be. While we should take this same approach as a species, it is not the one we are taking. Every time I go to the movies and see something about the future, it showcases one dystopia after another. This approach makes us paranoid, and it divides us in the same way that fear always has. It is crucial for us to have a conversation around the type of futures we are excited about. I am not talking about getting 10 percent richer or curing a minor disease, but I want people to think big. If machines can do everything with technology, what kind of future would fire us up? What type of society do we want to live in? What would your typical day look like? If we can articulate a shared, positive vision that catches on around the world, I believe we have a real chance of getting there.

High: What happens if AGI gets to the point where the work that you are doing at MIT and at the Future of Life Institute is no longer meaningful?

Tegmark: That is a hard-hitting question. I get an incredible amount of joy from figuring stuff out, and if I could just press a button and the computer would write my papers for me, would it be as much fun? This is not an easy topic.

In my book, I discuss twelve different futures that people can choose between. Just because we can think about a future that we are convinced is perfect, does not mean that we should do nothing. At a minimum, we should do the necessary thinking that will allow us to steer our future in the right direction. There are some obvious decisions that need to be made now, such as how income inequality will be handled. While we may be able to dramatically grow the overall world GDP, we must be able to share this economic pie so that everybody is better off. As more and more jobs get replaced by machines, incomes that have typically been paid in salaries will go towards whoever owns the machines. This concept is why Facebook, a high-tech company, is twelve times more valuable than Ford, despite the fact that it has eight times fewer employees. Unfortunately, we have not begun to make these decisions, and if we are unable to do so to the point where everyone benefits, then shame on us. As companies become more high-tech, we must make twists to the system to avoid leaving more people behind and ending up with far more income inequality. If this problem does not get solved, we will end up with more and more angry people, which will make democracy more and more unworkable. However, on the bright side, all that wealth makes this problem relatively easy to fix. All that needs to be done is to bring in enough tax revenue so that everyone can be better off.

The second aspect, which I believe is a no-brainer, is that we must ensure that we avoid a damaging arms race with the lethal autonomous weapons. Fortunately, nearly all the research in AI is going towards helping people in various ways, and most AI researchers want to keep it that way. Around the time I was born, we were on the cusp of a horrible arms race with bioweapons. When this happened, the biologists pushed hard to get an international ban on bioweapons, and as a result, most people cannot remember the last time they read about a bioweapon terrorist attack in the newspaper. If you ask a hundred random people on the street about their opinions on biology, they are all going to smile and associate it with new cures, rather than with bioweapons. It is critical that we handle AI weapons in a similar way.

We need to put a greater focus on the steering aspect of AI. Nearly all of the funding going into AI has been around making it more powerful, and little is going towards AI safety research. Even increasing this a little bit will make an impactful difference. As we put AI in charge of more infrastructure-level decisions, we must transform buggy and hackable computers into robust AI systems that can be trusted. If we fail to do so, all these fascinating new technologies can malfunction, harm us, or be hacked and used against us.ai-davenport-artificial-intelligence-pilots-innovators-early-adopters-implementation-industry-production-1200

As AI becomes more and more capable, we have to work on the value alignment problems of AI. The real threat with AGI is not that it is going to turn evil in the way that it does in the silly Hollywood movies. Instead, the largest threat would be if it turns extremely competent. This is because the competent goals may not be aligned with our goals either because it is controlled by someone who does not share our goals, or because the machine itself has power over us. We must solve some tough technical challenges in order to neutralize this threat. We have to figure out how to make machines understand our goals, adopt our goals, and then keep these goals if they get smarter. Although work has begun in this area, these problems are hard, and it may take roughly 30 years to solve them. It is absolutely critical that we focus on this problem now so that we have the answers by the time we need them. We have to stop looking at these issues as an afterthought.

High: What role do private sector, academic, and governmental institutions play? Each is exerting influence in their own ways, and they are progressing at different rates. How do you see that balance?

mit tegmark bkawytw4szvjjak4s5xa8e-320-80Tegmark: Academia is great for developing solutions to AI safety problems while making them publicly available so that everyone in the world can use them. You want safety solutions to be free because if someone owns the IP on them, it will cause a worse outcome.

I believe private companies have mostly played a constructive role in helping encourage the safety work around AI. For example, most of the big players in AI, such as Google, IBM, Microsoft, Facebook, and many international companies, have joined together in an AI partnership to encourage safety development.

On the flip side, governments need to step it up and provide more funding for the safety research. No government should fund nuclear reactor research without funding reactor safety research. Similarly, no country should fund computer science research without putting a decent slice towards the steering part.

That is my wish list as to what we should focus on in the current day to maximize the chances of this going well. In parallel, everyone else needs to ask themselves what future they want to see. They should remember that the next time they vote and whenever they exert influence, we want to create a future for everybody.

High: How do you keep up with the progress or lack thereof of these advances?

Tegmark: Both through the research taking place at MIT and through the nerdy AI conferences that I go to. Additionally, the non-profit work that I have been doing has been fascinating. I have spent a great deal of time speaking with top researchers and CEOs who are making incredible progress on this. I am encouraged, and I find that the leaders are mostly an idealistic bunch. I do not believe that they are doing this exclusively for the money. Instead, they want this technology to represent an opportunity to create a better future. We need to make sure that the society at large shares this goal of channeling AI for good, instead of using it to hack elections and create new ways to murder people anonymously. That would be an incredibly sad result of all these good intentions.

Peter High is President of Metis Strategy, a business and IT advisory firm. His latest book is Implementing World Class IT Strategy. He is also the author of World Class IT: Why Businesses Succeed When IT Triumphs. Peter moderates the Forum on World Class IT podcast series. He speaks at conferences around the world. Follow him on Twitter @PeterAHigh.

 

I am the president of Metis Strategy, a business and IT strategy firm that I founded in 2001. I have advised many of the best chief information officers at multi-billion dollar corporations in the United States and abroad. I’ve written for the Wall Street Journal, CIO Magazi… MORE

Advertisements

The US and China are in a Quantum Arms Race that will Transform Future Warfare


stealth bomber 03f9261bb3c481551b60cbf6fc87adc9

Radar that can spot stealth aircraft and other quantum innovations could give their militaries a strategic edge

In the 1970s, at the height of the Cold War, American military planners began to worry about the threat to US warplanes posed by new, radar-guided missile defenses in the USSR and other nations. In response, engineers at places like US defense giant Lockheed Martin’s famous “Skunk Works” stepped up work on stealth technology that could shield aircraft from the prying eyes of enemy radar.

The innovations that resulted include unusual shapes that deflect radar waves—like the US B-2 bomber’s “flying wing” design (above)—as well as carbon-based materials and novel paints. Stealth technology isn’t yet a Harry Potter–like invisibility cloak: even today’s most advanced warplanes still reflect some radar waves. But these signals are so small and faint they get lost in background noise, allowing the aircraft to pass unnoticed.

China and Russia have since gotten stealth aircraft of their own, but America’s are still better. They have given the US the advantage in launching surprise attacks in campaigns like the war in Iraq that began in 2003.

This advantage is now under threat. In November 2018, China Electronics Technology Group Corporation (CETC), China’s biggest defense electronics company, unveiled a prototype radar that it claims can detect stealth aircraft in flight. The radar uses some of the exotic phenomena of quantum physics to help reveal planes’ locations.

It’s just one of several quantum-inspired technologies that could change the face of warfare. As well as unstealthing aircraft, they could bolster the security of battlefield communications and affect the ability of submarines to navigate the oceans undetected. The pursuit of these technologies is triggering a new arms race between the US and China, which sees the emerging quantum era as a once-in-a-lifetime opportunity to gain the edge over its rival in military tech.

Stealth spotter

How quickly quantum advances will influence military power will depend on the work of researchers like Jonathan Baugh. A professor at the University of Waterloo in Canada, Baugh is working on a device that’s part of a bigger project to develop quantum radar. Its intended users: stations in the Arctic run by the North American Aerospace Defense Command, or NORAD, a joint US-Canadian organization.

Baugh’s machine generates pairs of photons that are “entangled”—a phenomenon that means the particles of light share a single quantum state. A change in one photon immediately influences the state of the other, even if they are separated by vast distances.

Quantum radar operates by taking one photon from every pair generated and firing it out in a microwave beam. The other photon from each pair is held back inside the radar system.

Equipment from a prototype quantum radar system made by China Electronics Technology Group Corporation IMAGINECHINA VIA AP IMAGES

Only a few of the photons sent out will be reflected back if they hit a stealth aircraft. A conventional radar wouldn’t be able to distinguish these returning photons from the mass of other incoming ones created by natural phenomena—or by radar-jamming devices. But a quantum radar can check for evidence that incoming photons are entangled with the ones held back. Any that are must have originated at the radar station. This enables it to detect even the faintest of return signals in a mass of background noise.

Baugh cautions that there are still big engineering challenges. These include developing highly reliable streams of entangled photons and building extremely sensitive detectors. It’s hard to know if CETC, which already claimed in 2016 that its radar could detect objects up to 100 kilometers (62 miles) away, has solved these challenges; it’s keeping the technical details of its prototype a secret.

Seth Lloyd, an MIT professor who developed the theory underpinning quantum radar, says that in the absence of hard evidence, he’s skeptical of the Chinese company’s claims. But, he adds, the potential of quantum radar isn’t in doubt. When a fully functioning device is finally deployed, it will mark the beginning of the end of the stealth era.

China’s ambitions

CETC’s work is part of a long-term effort by China to turn itself into a world leader in quantum technology. The country is providing generous funding for new quantum research centers at universities and building a national research center for quantum science that’s slated to open in 2020. It’s (China) already leaped ahead of the US in registering patents in quantum communications and cryptography.

A study of China’s quantum strategy published in September 2018 by the Center for a New American Security (CNAS), a US think tank, noted that the Chinese People’s Liberation Army (PLA) is recruiting quantum specialists, and that big defense companies like China Shipbuilding Industry Corporation (CSIC) are setting up joint quantum labs at universities. Working out exactly which projects have a military element to them is hard, though. “There’s a degree of opacity and ambiguity here, and some of that may be deliberate,” says Elsa Kania, a coauthor of the CNAS study.

China’s efforts are ramping up just as fears are growing that the US military is losing its competitive edge. A commission tasked by Congress to review the Trump administration’s defense strategy issued a report in November 2018 warning that the US margin of superiority “is profoundly diminished in key areas” and called for more investment in new battlefield technologies.

One of those technologies is likely to be quantum communication networks. Chinese researchers have already built a satellite that can send quantum-encrypted messages between distant locations, as well as a terrestrial network that stretches between Beijing and Shanghai. Both projects were developed by scientific researchers, but the know-how and infrastructure could easily be adapted for military use.

The networks rely on an approach known as quantum key distribution (QKD). Messages are encoded in the form of classical bits, and the cryptographic keys needed to decode them are sent as quantum bits, or qubits. These qubits are typically photons that can travel easily across fiber-optic networks or through the atmosphere. If an enemy tries to intercept and read the qubits, this immediately destroys their delicate quantum state, wiping out the information they carry and leaving a telltale sign of an intrusion.

QKD technology isn’t totally secure yet. Long ground networks require way stations  similar to the repeaters that boost signals along an ordinary data cable. At these stations, the keys are decoded into classical form before being re-encoded in a quantum form and sent to the next station. While the keys are in classical form, an enemy could hack in and copy them undetected.

To overcome this issue, a team of researchers at the US Army Research Laboratory in Adelphi, Maryland, is working on an approach called quantum teleportation. This involves using entanglement to transfer data between a qubit held by a sender and another held by a receiver, using what amounts to a kind of virtual, one-time-only quantum data cable. (There’s a more detailed description here.)

Michael Brodsky, one of the researchers, says he and his colleagues have been working on a number of technical challenges, including finding ways to ensure that the qubits’ delicate quantum state isn’t disrupted during transmission through fiber-optic networks. The technology is still confined to a lab, but the team says it’s now robust enough to be tested outside. “The racks can be put on trucks, and the trucks can be moved to the field,” explains Brodsky. china teleport 2014-10-22_quantum

It may not be long before China is testing its own quantum teleportation system. Researchers are already building the fiber-optic network for one that will stretch from the city of Zhuhai, near Macau, to some islands in Hong Kong.

Quantum compass

Researchers are also exploring using quantum approaches to deliver more accurate and foolproof navigation tools to the military. US aircraft and naval vessels already rely on precise atomic clocks to help keep track of where they are. But they also count on signals from the Global Positioning System (GPS), a network of satellites orbiting Earth. This poses a risk because an enemy could falsify, or “spoof,” GPS signals—or jam them altogether.

Lockheed Martin thinks American sailors could use a quantum compass based on microscopic synthetic diamonds with atomic flaws known as nitrogen-vacancy centers, or NV centers. These quantum defects in the diamond lattice can be harnessed to form an extremely accurate magnetometer. Shining a laser on diamonds with NV centers makes them emit light at an intensity that varies according to the surrounding magnetic field.

Ned Allen, Lockheed’s chief scientist, says the magnetometer is great at detecting magnetic anomalies—distinctive variations in Earth’s magnetic field caused by magnetic deposits or rock formations. There are already detailed maps of these anomalies made by satellite and terrestrial surveys. By comparing anomalies detected using the magnetometer against these maps, navigators can determine where they are. Because the magnetometer also indicates the orientation of magnetic fields, ships and submarines can use them to work out which direction they are heading.

China’s military is clearly worried about threats to its own version of GPS, known as BeiDou. Research into quantum navigation and sensing technology is under way at various institutes across the country, according to the CNAS report.

As well as being used for navigation, magnetometers can also detect and track the movement of large metallic objects, like submarines, by fluctuations they cause in local magnetic fields. Because they are very sensitive, the magnetometers are easily disrupted by background noise, so for now they are used for detection only at very short distances. But last year, the Chinese Academy of Sciences let slip that some Chinese researchers had found a way to compensate for this using quantum technology. That might mean the devices could be used in the future to spot submarines at much longer ranges.

A tight race

It’s still early days for militaries’ use of quantum technologies. There’s no guarantee they will work well at scale, or in conflict situations where absolute reliability is essential. But if they do succeed, quantum encryption and quantum radar could make a particularly big impact. Code-breaking and radar helped change the course of World War II. Quantum communications could make stealing secret messages much harder, or impossible. Quantum radar would render stealth planes as visible as ordinary ones. Both things would be game-changing.

It’s also too early to tell whether it will be China or the US that comes out on top in the quantum arms race—or whether it will lead to a Cold War–style stalemate. But the money China is pouring into quantum research is a sign of how determined it is to take the lead.

China has also managed to cultivate close working relationships between government research institutes, universities, and companies like CSIC and CETC. The US, by comparison, has only just passed legislation to create a national plan for coordinating public and private efforts. The delay in adopting such an approach has led to a lot of siloed projects and could slow the development of useful military applications. “We’re trying to get the research community to take more of a systems approach,” says Brodsky, the US army quantum expert.

qubit-type-and-year

U.S. Leads World in Quantum Computing Patent Filings with IBM Leading the Charge

Still, the US military does have some distinct advantages over the PLA. The Department of Defense has been investing in quantum research for a very long time, as have US spy agencies. The knowledge generated helps explains why US companies lead in areas like the development of powerful quantum computers, which harness entangled qubits to generate immense amounts of processing power.

The American military can also tap into work being done by its allies and by a vibrant academic research community at home. Baugh’s radar research, for instance, is funded by the Canadian government, and the US is planning a joint research initiative with its closest military partners—Canada, the UK, Australia, and New Zealand—in areas like quantum navigation.

All this has given the US has a head start in the quantum arms race. But China’s impressive effort to turbocharge quantum research means the gap between them is closing fast.

MIT: Physicists record ‘lifetime’ of graphene qubits – Foundation for Advancing Quantum Computing


 

Researchers from MIT and elsewhere have recorded, for the first time, the “temporal coherence” of a graphene qubit

The demonstration, which used a new kind of graphene-based qubit, meaning how long it can maintain a special state that allows it to represent two logical states simultaneously, represents a critical step forward for practical quantum computing, the researchers say.

Superconducting quantum bits (simply, qubits) are artificial atoms that use various methods to produce bits of quantum information, the fundamental component of quantum computers. Similar to traditional binary circuits in computers, qubits can maintain one of two states corresponding to the classic binary bits, a 0 or 1.

But these qubits can also be a superposition of both states simultaneously, which could allow quantum computers to solve complex problems that are practically impossible for traditional computers.

The amount of time that these qubits stay in this superposition state is referred to as their “coherence time.” The longer the coherence time, the greater the ability for the qubit to compute complex problems.

Recently, researchers have been incorporating graphene-based materials into superconducting quantum computing devices, which promise faster, more efficient computing, among other perks.

Until now, however, there’s been no recorded coherence for these advanced qubits, so there’s no knowing if they’re feasible for practical quantum computing. In a paper published today in Nature Nanotechnology, the researchers demonstrate, for the first time, a coherent qubit made from graphene and exotic materials.

These materials enable the qubit to change states through voltage, much like transistors in today’s traditional computer chips — and unlike most other types of superconducting qubits. Moreover, the researchers put a number to that coherence, clocking it at 55 nanoseconds, before the qubit returns to its ground state.

The work combined expertise from co-authors William D. Oliver, a physics professor of the practice and Lincoln Laboratory Fellow whose work focuses on quantum computing systems, and Pablo Jarillo-Herrero, the Cecil and Ida Green Professor of Physics at MIT who researches innovations in graphene.

“Our motivation is to use the unique properties of graphene to improve the performance of superconducting qubits,” says first author Joel I-Jan Wang, a postdoc in Oliver’s group in the Research Laboratory of Electronics (RLE) at MIT.

“In this work, we show for the first time that a superconducting qubit made from graphene is temporally quantum coherent, a key requisite for building more sophisticated quantum circuits. Ours is the first device to show a measurable coherence time — a primary metric of a qubit — that’s long enough for humans to control.”

There are 14 other co-authors, including Daniel Rodan-Legrain, a graduate student in Jarillo-Herrero’s group who contributed equally to the work with Wang; MIT researchers from RLE, the Department of Physics, the Department of Electrical Engineering and Computer Science, and Lincoln Laboratory; and researchers from the Laboratory of Irradiated Solids at the École Polytechnique and the Advanced Materials Laboratory of the National Institute for Materials Science.

A pristine graphene sandwich

Superconducting qubits rely on a structure known as a “Josephson junction,” where an insulator (usually an oxide) is sandwiched between two superconducting materials (usually aluminum).

In traditional tunable qubit designs, a current loop creates a small magnetic field that causes electrons to hop back and forth between the superconducting materials, causing the qubit to switch states.

But this flowing current consumes a lot of energy and causes other issues. Recently, a few research groups have replaced the insulator with graphene, an atom-thick layer of carbon that’s inexpensive to mass produce and has unique properties that might enable faster, more efficient computation.

To fabricate their qubit, the researchers turned to a class of materials, called van der Waals materials — atomic-thin materials that can be stacked like Legos on top of one another, with little to no resistance or damage.

These materials can be stacked in specific ways to create various electronic systems. Despite their near-flawless surface quality, only a few research groups have ever applied van der Waals materials to quantum circuits, and none have previously been shown to exhibit temporal coherence.

For their Josephson junction, the researchers sandwiched a sheet of graphene in between the two layers of a van der Waals insulator called hexagonal boron nitride (hBN). Importantly, graphene takes on the superconductivity of the superconducting materials it touches.

The selected van der Waals materials can be made to usher electrons around using voltage, instead of the traditional current-based magnetic field. Therefore, so can the graphene — and so can the entire qubit.

 

When voltage gets applied to the qubit, electrons bounce back and forth between two superconducting leads connected by graphene, changing the qubit from ground (0) to excited or superposition state (1). The bottom hBN layer serves as a substrate to host the graphene.

The top hBN layer encapsulates the graphene, protecting it from any contamination. Because the materials are so pristine, the traveling electrons never interact with defects. This represents the ideal “ballistic transport” for qubits, where a majority of electrons move from one superconducting lead to another without scattering with impurities, making a quick, precise change of states.

How voltage helps

The work can help tackle the qubit “scaling problem,” Wang says. Currently, only about 1,000 qubits can fit on a single chip. Having qubits controlled by voltage will be especially important as millions of qubits start being crammed on a single chip.

“Without voltage control, you’ll also need thousands or millions of current loops too, and that takes up a lot of space and leads to energy dissipation,” he says.

Additionally, voltage control means greater efficiency and a more localized, precise targeting of individual qubits on a chip, without “cross talk.” That happens when a little bit of the magnetic field created by the current interferes with a qubit it’s not targeting, causing computation problems.

For now, the researchers’ qubit has a brief lifetime. For reference, conventional superconducting qubits that hold promise for practical application have documented coherence times of a few tens of microseconds, a few hundred times greater than the researchers’ qubit.

But the researchers are already addressing several issues that cause this short lifetime, most of which require structural modifications. They’re also using their new coherence-probing method to further investigate how electrons move ballistically around the qubits, with aims of extending the coherence of qubits in general.

Coherent control of a hybrid superconducting circuit made with graphene-based van der Waals heterostructures
Joel I-Jan Wang, Daniel Rodan-Legrain, Landry Bretheau, Daniel L. Campbell, Bharath Kannan, David Kim, Morten Kjaergaard, Philip Krantz, Gabriel O. Samach, Fei Yan, Jonilyn L. Yoder, Kenji Watanabe, Takashi Taniguchi, Terry P. Orlando, Simon Gustavsson, Pablo Jarillo-Herrero & William D. Oliver
Nature Nanotechnology (2018)
DOI: 10.1038_s41565-018-0329-2

Contact information:

William D. Oliver
MIT Physics Professor of the Practice
oliver@ll.mit.edu URL: http://www.rle.mit.edu/

Pablo Jarillo-Herrero
MIT Physics Professor
pjarillo@mit.edu URL: http://jarilloherrero.mit.edu/

Massachusetts Institute of Technology (MIT)

 

A New-Nano Approach to Liquid-Repelling Surfaces


mit-dew-omniphobicity-01_0

This photo shows water droplets placed on the nanostructured surface developed by MIT researchers. The colors are caused by diffraction of visible light from the tiny structures on the surface, ridges with a specially designed shape. Images: Kyle Wilke

Novel surface design overcomes problem of condensation that bedeviled previous systems.

 

“Omniphobic” might sound like a way to describe someone who is afraid of everything, but it actually refers to a special type of surface that repels virtually any liquid. Such surfaces could potentially be used in everything from ship hulls that reduce drag and increase efficiency, to coverings that resist stains and protect against damaging chemicals. But the omniphobic surfaces developed so far suffer from a major problem: Condensation can quickly disable their liquid-shedding properties.

Now, researchers at MIT have found a way to overcome this effect, producing a surface design that drastically reduces the effects of condensation, although at a slight sacrifice in performance. The new findings are described in the journal ACS Nano, in a paper by graduate student Kyle Wilke, professor of mechanical engineering and department head Evelyn Wang, and two others.

Creating a surface that can shed virtually all liquids requires a precise kind of texture that creates an array of microscopic air pockets separated by pillars or ridges. These air pockets keep most of the liquid away from direct contact with the surface, preventing it from “wetting,” or spreading out to cover a whole surface. Instead, the liquid beads up into droplets.

“Many liquids are perfectly wetting, meaning the liquid completely spreads out,” says Wilke. These include many of the refrigerants used in air conditioners and refrigerators, hydrocarbons such as those used as fuels and lubricants, and many alcohols. “Those are very difficult to repel. The only way to do it is through very specific surface geometry, which is not that easy to make,” he adds.

Various groups are working on fabrication methods, he says, but with surface features measured in tens of microns (millionths of a meter) or less, “it can make it quite hard to fabricate, and can make the surfaces quite fragile.”

If such surfaces are damaged — for example, if one of the tiny pillars is bent or broken — it can defeat the whole process. “One local defect can destroy the entire surface’s ability to repel liquids,” he says. And condensation, such as dew forming because of a temperature difference between the air and the surface, acts in the same way, destroying the omniphobicity.

“We considered: How can we lose some of the repellency but make the surface robust” against both damage and dew, Wilke says. “We wanted a structure that one defect wouldn’t destroy.” After much calculation and experimentation, they found a geometry that meets that goal thanks, in part, to microscopic air pockets that are disconnected rather than connected on the surfaces, making spreading between pockets much less likely.

The features have to be very small, he explains, because when droplets form they are initially at the scale of nanometers, or billionths of a meter, and the spacing between these growing droplets can be less than a micrometer.

The key architecture the team developed is based on ridges whose profiles resemble a letter T, or in some cases a letter T with serifs (the tiny hooks at the ends of letter strokes in some typefaces). Both the shape itself and the spacing of these ridges are important to achieving the surface’s resistance to damage and condensation. The shapes are designed to use the surface tension of the liquid to prevent it from penetrating the tiny surface pockets of air, and the way the ridges connect prevents any local penetration of the surface cavities from spreading to others nearby — as the team has confirmed in laboratory tests.

The ridges are made in a multistep process using standard microchip manufacturing systems, first etching away the spaces between ridges, then coating the edges of the pillars, then etching away those coatings to create the indentation in the ridges’ sides, leaving a mushroom-like overhang at the top.

Because of the limitations of the current technology, Wilke says, omniphobic surfaces are rarely used today, but improving their durability and resistance to condensation could enable many new uses. The system will need further refinement, though, beyond this initial proof of the concept. Potentially, it could be used to make self-cleaning surfaces, and to improve resistance to ice buildup, to improve the efficiency of heat transfer in industrial processes including power generation, and to reduce drag on surfaces such as the hulls of ships.

Such surfaces could also provide protection against corrosion, by reducing contact between the material surface and any corrosive liquids that it may be exposed to, the researchers say. And because the new method offers a way of precisely designing the surface architecture, Wilke says it can be used for “tailoring how a surface interacts with liquids, such as for tailoring the heat transfer for thermal management in high-performance devices.”

Chang-Jin Kim, a professor of mechanical and aerospace engineering at the University of California at Los Angeles who was not involved in this work, says “One of the most significant limitations of omniphobic surfaces is that, while such a surface has a superior liquid repellency, the entire surface is wetted once the liquid gets into the voids in the textured surface at some locations. This new approach addresses this very limitation.”

Kim adds that “I like that their key idea was based on fundamental science, while their goal was to solve a key real-life problem. The problem they addressed is an important but very difficult one.” And, he says, “This approach can potentially make some of the omniphobic surfaces useful and practical for some important applications.”

The research team also included former graduate students Daniel Preston and Zhengmao Lu. The work was supported by the cooperative agreement between MIT and the Masdar Institute of Science and Technology in Abu Dhabi (now Khalifa University), the Abu Dhabi National Oil Company, the Office of Naval Research, the Air Force Office of Scientific Research, and the National Science Foundation.

From: David L. Chandler | MIT News Office

MIT: Wearable Medical Tech Key to Our Future Health – Provides more Targeted, Cheaper, Personalized Treatment with Fewer Negative Side Effects


11-18-wiredworld-medicine__2

Wearables are already replacing traditional drugs and therapies – this year, they’ll go further still

Medical treatment today primarily takes the form of drugs and therapy. But a third option is slowly emerging: on-body, digital devices that can treat both mental and physical conditions. Such “wearable” therapy offers unique advantages in that it is often more targeted, cheaper, personalised and has fewer negative side effects.

Mobile and wearable devices such as phones or fitness trackers are now routinely used for preventive health. They monitor physiological data and behaviour, increase self-awareness and encourage behaviour change. They are also starting to be used by medical professionals to diagnose and monitor diseases. So far, the use of these devices for intervention and treatment has been limited to apps that issue reminders to exercise, guide us through meditation, or provide support for cognitive behavioural therapy. In 2019 this technology will expand into the world of mainstream therapeutic intervention.

2018-08-14-wearable-technologyRead More About: “Your Weekly Check-Up: The Future of Wearable and Implantable Medical Technology

Therapy by means of digital devices is so far mostly limited to information on a screen, but so much more is possible. Early experiments in both academia and industry labs point at the potential for wearable devices that don’t just collect data about our bodies – they also stimulate them through our various senses to improve our body and mind. Vibrational, temperature-based, olfactory and electrical stimulation all offer significant, largely unexplored opportunities for solving both physical and mental health issues.

I am not talking about direct brain stimulation (TMS and tDCS), which for a while now has garnered excitement among professionals as well as fearless, self-experimenting amateurs. The promise of those approaches mostly remains to be proven through rigorous, controlled studies. Instead, a relatively new approach consists of using devices that stimulate a part of the body or peripheral nervous system to solve a specific problem. These devices have the potential to be more precise, safer and easier to use than brain stimulation.

One great example is the Emma device developed by researcher Haiyan Zhang at Microsoft. This simple wristband uses a noisy vibration signal to stimulate the hand of a Parkinson’s patient who has a tremor. The result is life-changing in that the patient is once again able to perform tasks such as drawing or writing that require precise motor movements. Caitlyn Seim, a PhD student at Georgia Tech, has had similar success improving arm function after a stroke using a computerised glove that provides vibro-tactile stimulation. Her solution is not just cheaper than physical therapy, but also mobile, and requires less effort.

At the MIT Media Lab, post-doctoral associate Nataliya Kosmyna has designed a device called AttentivU that, in real time, measures a person’s attention to external stimuli using EEG and provides haptic feedback when attention is low to nudge the person to pay attention again. Her experiments show that subjects are more attentive and perform better on comprehension tasks.

The system is currently being integrated in the form of simple eye glasses to make the device socially acceptable and easy to put on or take off. In comparison with the drug-based solutions currently adopted by many of the ten per cent of schoolchildren diagnosed with ADD/ADHD, this wearable form of therapy has fewer side effects, and can be used when the moment requires.

Other researchers, such as Jean Costa at Cornell, have demonstrated how false feedback of heart rate can be used to help a person regulate their emotions. And BrightBeat, software developed by MIT Media Lab PhD student Asma Ghandeharioun, can slow a person’s breathing rate by embedding a barely noticeable rhythmic pattern in the music they listen to. In the commercial realm, a new product called Livia promises to alleviate menstrual cramps with a small, simple device that attaches to the skin of the lower abdomen and provides electric nerve stimulation to produce pain relief.

While we are already dependent on our mobile technologies for our everyday tasks and goals, we will soon also rely on digital technologies for optimal functioning of our bodies. In the true sense of the concept of cybernetics, technology is becoming a part of us, integral to our daily lives and regulating some functions on our behalf. wearable med tech 1 images

This makes a lot of sense: as our devices are with us 24/7, they not only have the potential to know us better than even our closest friend or family member, but they are able to support us in the moment, intervening when a situation calls for it. In addition, they can be highly personalised and can potentially adapt and optimise their functionality based on observed user data and machine learning. While we need to be careful to make sure these designs safeguard privacy, give complete control to the user and avoid dependency whenever possible, there are countless possibilities for digital, wearable technologies to supplement and even replace traditional drugs and therapy.

Pattie Maes is professor of media technology at MIT Media Lab

MIT Team invents method to shrink objects to the nanoscale – “Implosion Manufacturing” – Applications from Optics to Medicine to Robotics – Materials from Quantum Dots, Metals and DNA


MIT Implosion mfg mitteaminvenAccording to professor Ed Boyden, many research labs are already stocked with the equipment required for this kind of fabrication. Credit: The researchers

” … These tiny structures could have applications in many fields, from optics to medicine to robotics, the researchers say.”

MIT researchers have invented a way to fabricate nanoscale 3-D objects of nearly any shape. They can also pattern the objects with a variety of useful materials, including metals, quantum dots, and DNA.

“It’s a way of putting nearly any kind of material into a 3-D pattern with nanoscale precision,” says Edward Boyden, an associate professor of biological engineering and of brain and cognitive sciences at MIT.

Using the , the researchers can create any shape and structure they want by patterning a  with a laser. After attaching other useful materials to the scaffold, they shrink it, generating structures one thousandth the volume of the original.

These tiny structures could have applications in many fields, from optics to medicine to robotics, the researchers say. The technique uses equipment that many biology and materials science labs already have, making it widely accessible for researchers who want to try it.

Boyden, who is also a member of MIT’s Media Lab, McGovern Institute for Brain Research, and Koch Institute for Integrative Cancer Research, is one of the senior authors of the paper, which appears in the Dec. 13 issue of Science. The other senior author is Adam Marblestone, a Media Lab research affiliate, and the paper’s lead authors are graduate students Daniel Oran and Samuel Rodriques.

MIT-Implosion-Fabrication-01Implosion fabrication

Existing techniques for creating nanostructures are limited in what they can accomplish. Etching patterns onto a surface with light can produce 2-D nanostructures but doesn’t work for 3-D structures. It is possible to make 3-D nanostructures by gradually adding layers on top of each other, but this process is slow and challenging. And, while methods exist that can directly 3-D print nanoscale objects, they are restricted to specialized materials like polymers and plastics, which lack the functional properties necessary for many applications. Furthermore, they can only generate self-supporting structures. (The technique can yield a solid pyramid, for example, but not a linked chain or a hollow sphere.)

To overcome these limitations, Boyden and his students decided to adapt a technique that his lab developed a few years ago for high-resolution imaging of brain tissue. This technique, known as expansion microscopy, involves embedding tissue into a hydrogel and then expanding it, allowing for high resolution imaging with a regular microscope. Hundreds of research groups in biology and medicine are now using expansion microscopy, since it enables 3-D visualization of cells and tissues with ordinary hardware.

By reversing this process, the researchers found that they could create large-scale objects embedded in expanded hydrogels and then shrink them to the nanoscale, an approach that they call “implosion fabrication.”

As they did for , the researchers used a very absorbent material made of polyacrylate, commonly found in diapers, as the scaffold for their nanofabrication process. The scaffold is bathed in a solution that contains molecules of fluorescein, which attach to the scaffold when they are activated by laser light.

Using two-photon microscopy, which allows for precise targeting of points deep within a structure, the researchers attach fluorescein molecules to specific locations within the gel. The fluorescein molecules act as anchors that can bind to other types of molecules that the researchers add.

“You attach the anchors where you want with light, and later you can attach whatever you want to the anchors,” Boyden says. “It could be a quantum dot, it could be a piece of DNA, it could be a gold nanoparticle.”

“It’s a bit like film photography—a latent image is formed by exposing a sensitive material in a gel to light. Then, you can develop that latent image into a real image by attaching another material, silver, afterwards. In this way implosion fabrication can create all sorts of structures, including gradients, unconnected structures, and multi-material patterns,” Oran says.

Once the desired molecules are attached in the right locations, the researchers shrink the entire structure by adding an acid. The acid blocks the negative charges in the polyacrylate gel so that they no longer repel each other, causing the gel to contract. Using this technique, the researchers can shrink the objects 10-fold in each dimension (for an overall 1,000-fold reduction in volume). This ability to shrink not only allows for increased resolution, but also makes it possible to assemble materials in a low-density scaffold. This enables easy access for modification, and later the material becomes a dense solid when it is shrunk.

“People have been trying to invent better equipment to make smaller nanomaterials for years, but we realized that if you just use existing systems and embed your  in this gel, you can shrink them down to the nanoscale, without distorting the patterns,” Rodriques says.

Currently, the researchers can create objects that are around 1 cubic millimeter, patterned with a resolution of 50 nanometers. There is a tradeoff between size and resolution: If the researchers want to make larger objects, about 1 cubic centimeter, they can achieve a resolution of about 500 nanometers. However, that resolution could be improved with further refinement of the process, the researchers say.

Better optics

The MIT team is now exploring potential applications for this technology, and they anticipate that some of the earliest applications might be in optics—for example, making specialized lenses that could be used to study the fundamental properties of light. This technique might also allow for the fabrication of smaller, better lenses for applications such as cell phone cameras, microscopes, or endoscopes, the researchers say. Farther in the future, the researchers say that this approach could be used to build nanoscale electronics or robots.

“There are all kinds of things you can do with this,” Boyden says. “Democratizing nanofabrication could open up frontiers we can’t yet imagine.”

Many research labs are already stocked with the equipment required for this kind of fabrication. “With a laser you can already find in many biology labs, you can scan a pattern, then deposit metals, semiconductors, or DNA, and then shrink it down,” Boyden says.

 Explore further: High-resolution imaging with conventional microscopes

More information: D. Oran el al., “3D nanofabrication by volumetric deposition and controlled shrinkage of patterned scaffolds,” Science (2018). science.sciencemag.org/cgi/doi … 1126/science.aau5119

T.E. Long el al., “Printing nanomaterials in shrinking gels,” Science (2018). science.sciencemag.org/cgi/doi … 1126/science.aav5712

 

MIT – Nanoparticles Deliver Potential Arthritis Treatment and could Prevent Cartilage Breakdown – Potential to Heal Tissue Damaged by Osteoarthritis


MIT-Cartilage-Drug-Delivery-01_0

Six days after treatment with IGF-1 carried by dendrimer nanoparticles (blue), the particles have penetrated through the cartilage of the knee joint. Image: Brett Geiger and Jeff Wyckof

Courtesy of MIT News

Injectable material made of nanoscale particles can deliver arthritis drugs throughout cartilage.

Osteoarthritis, a disease that causes severe joint pain, affects more than 20 million people in the United States. Some drug treatments can help alleviate the pain, but there are no treatments that can reverse or slow the cartilage breakdown associated with the disease.

In an advance that could improve the treatment options available for osteoarthritis, MIT engineers have designed a new material that can administer drugs directly to the cartilage. The material can penetrate deep into the cartilage, delivering drugs that could potentially heal damaged tissue.

“This is a way to get directly to the cells that are experiencing the damage, and introduce different kinds of therapeutics that might change their behavior,” says Paula Hammond, head of MIT’s Department of Chemical Engineering, a member of MIT’s Koch Institute for Integrative Cancer Research, and the senior author of the study.

In a study in rats, the researchers showed that delivering an experimental drug called insulin-like growth factor 1 (IGF-1) with this new material prevented cartilage breakdown much more effectively than injecting the drug into the joint on its own.

Brett Geiger, an MIT graduate student, is the lead author of the paper, which appears in the Nov. 28 issue of Science Translational Medicine. Other authors are Sheryl Wang, an MIT graduate student, Robert Padera, an associate professor of pathology at Brigham and Women’s Hospital, and Alan Grodzinsky, an MIT professor of biological engineering.

Better delivery

Osteoarthritis is a progressive disease that can be caused by a traumatic injury such as tearing a ligament; it can also result from gradual wearing down of cartilage as people age. A smooth connective tissue that protects the joints, cartilage is produced by cells called chondrocytes but is not easily replaced once it is damaged.

Previous studies have shown that IGF-1 can help regenerate cartilage in animals. However, many osteoarthritis drugs that showed promise in animal studies have not performed well in clinical trials.

The MIT team suspected that this was because the drugs were cleared from the joint before they could reach the deep layer of chondrocytes that they were intended to target. To overcome that, they set out to design a material that could penetrate all the way through the cartilage.

The sphere-shaped molecule they came up with contains many branched structures called dendrimers that branch from a central core. The molecule has a positive charge at the tip of each of its branches, which helps it bind to the negatively charged cartilage. Some of those charges can be replaced with a short flexible, water-loving polymer, known as PEG, that can swing around on the surface and partially cover the positive charge. Molecules of IGF-1 are also attached to the surface.

When these particles are injected into a joint, they coat the surface of the cartilage and then begin diffusing through it. This is easier for them to do than it is for free IGF-1 because the spheres’ positive charges allow them to bind to cartilage and prevent them from being washed away. The charged molecules do not adhere permanently, however. Thanks to the flexible PEG chains on the surface that cover and uncover charge as they move, the molecules can briefly detach from cartilage, enabling them to move deeper into the tissue.

“We found an optimal charge range so that the material can both bind the tissue and unbind for further diffusion, and not be so strong that it just gets stuck at the surface,” Geiger says.

Once the particles reach the chondrocytes, the IGF-1 molecules bind to receptors on the cell surfaces and stimulate the cells to start producing proteoglycans, the building blocks of cartilage and other connective tissues. The IGF-1 also promotes cell growth and prevents cell death.

Joint repair

When the researchers injected the particles into the knee joints of rats, they found that the material had a half-life of about four days, which is 10 times longer than IGF-1 injected on its own. The drug concentration in the joints remained high enough to have a therapeutic effect for about 30 days. If this holds true for humans, patients could benefit greatly from joint injections — which can only be given monthly or biweekly — the researchers say.

In the animal studies, the researchers found that cartilage in injured joints treated with the nanoparticle-drug combination was far less damaged than cartilage in untreated joints or joints treated with IGF-1 alone. The joints also showed reductions in joint inflammation and bone spur formation.

“This is an important proof-of-concept that builds on the recent advances in the identification of anabolic growth factors with clinical promise (such as IGF-1), with promising disease-modifying results in a clinically relevant model. Delivery of growth factors using nanoparticles in a manner that sustains and improves treatments for osteoarthritis is a significant step for nanomedicines,” says Kannan Rangaramanujam, a professor of ophthalmology and co-director of the Center for Nanomedicine at Johns Hopkins School of Medicine, who was not involved in the research.

Cartilage in rat joints is about 100 microns thick, but the researchers also showed that their particles could penetrate chunks of cartilage up to 1 millimeter — the thickness of cartilage in a human joint.

“That is a very hard thing to do. Drugs typically will get cleared before they are able to move through much of the cartilage,” Geiger says. “When you start to think about translating this technology from studies in rats to larger animals and someday humans, the ability of this technology to succeed depends on its ability to work in thicker cartilage.”

The researchers began developing this material as a way to treat osteoarthritis that arises after traumatic injury, but they believe it could also be adapted to treat age-related osteoarthritis. They now plan to explore the possibility of delivering different types of drugs, such as other growth factors, drugs that block inflammatory cytokines, and nucleic acids such as DNA and RNA.

The research was funded by the Department of Defense Congressionally Funded Medical Research Program and a National Science Foundation fellowship.

MIT – Measuring cancer cell “fitness” reveals drug susceptibility and the potential to treat non-responsive cancer cells


MIT-Genome-Bio_0

MIT engineers have designed a system that can repeatedly measure cancer cells as they flow through an array of mass sensors. Once the cells reach the end, they are collected for RNA-sequencing. Image courtesy of the researchers.

Courtesy of MIT News

Together, cell growth rate and gene expression shed light on why some tumor cells survive treatment.

 

By studying both the physical and genomic features of cancer cells, MIT researchers have come up with a new way to investigate why some cancer cells survive drug treatment while others succumb.

Their new approach, which combines measurements of cell mass and growth rate with analysis of a cell’s gene expression, could be used to reveal new drug targets that would make cancer treatment more effective. Exploiting these targets could help knock out the defenses that cells use to overcome the original drug treatment, the researchers say.

In a paper appearing in the Nov. 28 issue of the journal Genome Biology, the researchers identified a growth signaling pathway that is active in glioblastoma cells that are resistant to an experimental type of drug known as an MDM2 inhibitor.

“By measuring a cell’s mass and growth rate immediately prior to single-cell RNA-sequencing, we can now use a cell’s ‘fitness’ to classify it as responsive or nonresponsive to a drug, and to relate this to underlying molecular pathways,” says Alex K. Shalek, the Pfizer-Laubach Career Development Assistant Professor of Chemistry, a member of MIT’s Institute for Medical Engineering and Science (IMES), an extramural member of the Koch Institute for Integrative Cancer Research, and an associate member of the Ragon and Broad Institutes.

Shalek and Scott Manalis, the Andrew and Erna Viterbi Professor in the MIT departments of Biological Engineering and Mechanical Engineering and a member of the Koch Institute, are the senior authors of the study. The paper’s lead author is Robert Kimmerling, a recent MIT PhD recipient.

Cancer cell analysis

About a decade ago, Manalis’ lab invented a technology that allows researchers to measure the mass of single cells. In recent years, they have adapted the device, which measures cells’ masses as they flow through tiny channels, so that it can also measure cell growth rates by repeatedly weighing the cells over short periods of time.

Last year, working with researchers at Dana-Farber Cancer Institute (DFCI), Manalis and his colleagues used this approach to test drug responses of tumor cells from patients with multiple myeloma, a type of blood cancer. After treating the cells with three different drugs, the researchers measured the cells’ growth rates and found they were correlated with the cells’ susceptibility to the treatment.

“Single-cell biophysical properties such as mass and growth rate provide early indicators of drug response, thereby offering the potential to delineate sensitive cells from resistant cells while they are still viable,” Manalis says.

In their new study, the researchers wanted to add a genomic component, which they hoped could help reveal why only certain cells are susceptible to a particular drug. “We wanted to be able to take those measurements and add on some of the biological context for why a cell is growing a certain way or behaving a certain way,” Kimmerling says.

To accomplish this, Kimmerling and Manalis teamed up with Shalek, who has extensive experience in sequencing the messenger RNA (mRNA) of individual cells. This information can provide a snapshot of which genes are being expressed in a single cell at a particular moment.

The researchers modified the cell-weighing system so that cells would be spaced evenly as they flowed through, making it easier to collect them one at a time when they exit the system. The cells are weighed several times over the course of 20 minutes to determine growth rate, and as soon as they reach the end of the channel, they are immediately captured and ruptured to release their RNA for analysis. Shalek’s lab then sequenced the RNA of each of the cells. This approach enabled the mass and growth rate of each cell to be directly linked to its gene expression.

Once they had the system working, the researchers collaborated with Keith Ligon and his lab at DFCI to analyze cancer cells derived from a patient with glioblastoma, an aggressive type of brain cancer. The researchers treated the cells with an MDM2 inhibitor, a type of drug that helps to boost the function of p53, a protein that helps cells stop tumor formation. Such drugs are now in clinical trials to treat glioblastoma. In animal studies, this drug has been effective against tumors, but the tumors often grow back later.

In this study, the researchers hoped to find out why some glioblastoma cells survive MDM2 treatment. They treated the cells, measured their growth rates about 16 hours after the treatment, and then sequenced their RNA. “Before the cells have lost viability, we can measure their mass and their growth rate to reveal drug response heterogeneity to that treatment, and then link that with their gene expression,” Kimmerling says.

Importantly, the researchers found subpopulations of cells that were not responsive to the drug. RNA sequencing revealed that in cells that were responsive, genes required for programmed cell death were turned on. Meanwhile, in cells that did not seem to be vulnerable to the drug, genes involved in mTOR, a signaling pathway involved in growth and survival, were turned up.

“What we’re excited about here is we now have this list of biological targets to look into,” Kimmerling says. “We can start to generate testable hypotheses from these gene expression signatures that are more highly expressed in the cells that continue to grow after drug treatment.”

Possible drug targets

The researchers now plan to explore the possibility of targeting some of the genes that were turned up on the non-responding cells, in hopes of developing drugs that could be used together with the original MDM2 inhibitor. They also hope to adapt this approach for other types of cancers. Some, such as blood cancers, are easier to study than solid tumors, which are more difficult to separate into single cells.

“The hope is that we’ll be able to apply this technology to any sample that can be dissociated into a single-cell population,” Kimmerling says.

Another possible application of the cell-growth measurement technology is studying tumor cells from individual patients to try to predict how they will respond to a particular drug. Kimmerling, Manalis, and others have founded a company called Travera, which has licensed the technology and hopes to develop it for patient use. The company is currently not working on the RNA sequencing aspect of the technology, but that element could also be valuable to incorporate in the future, Kimmerling says.

The research was funded by the Cancer Systems Biology Consortium U54 Research Center and the Cancer Center Support (core) Grant from the National Cancer Institute; the Searle Scholars Program; the Beckman Young Investigator Program; the National Institutes of Health, including an NIH New Innovator Award; the Pew-Stewart Scholars; and a Sloan Fellowship in Chemistry.

BIG … News from the LA Auto Show and MIT: “Rivian” unveils electric vehicles for the future – Startup founded by MIT alumnus


MIT-Rivian_0

One of the two models unveiled at the Los Angeles Auto Show this week, Rivian’s R1S, will sell for $65,000, according to the company. Courtesy of Rivian

Courtesy of MIT News

Rivian Automotive is showing off its first products at the Los Angeles Auto Show this week.

 

Electric vehicle startup Rivian Automotive has spent the first nine years of its existence in stealth mode working to design vehicles around what it believes are future trends in mobility, such as electrification, subscription-based ownership, and autonomy. This week the company is finally revealing what it’s been up to, dropping the curtains on its first two products, an all-electric pickup truck and SUV, at the Los Angeles Auto Show.

Rivian has garnered interest over the years for quietly securing some of the building blocks of mass production, including raising nearly $500 million in capital and purchasing a 2.6-million-square-foot manufacturing facility in Illinois that once produced 200,000 cars a year for Mitsubishi. Now Rivian says it will begin shipping its vehicles to customers in 2020.

The abrupt transition from stealth mode to large vehicle supplier is all part of the plan for Rivian founder and CEO R.J. Scaringe SM ’07 PhD ’09. Scaringe didn’t want to hype up the company until he could show something off that customers could actually drive in a reasonable amount of time.

“It would’ve been easy to make statements early on and show sketches,” Scaringe says. “But we wanted to get all the pieces aligned: To build out a robust team with robust processes, get capital in place, line up key suppliers, acquire a large-scale production facility, and align it with our products. All that is done now. It’s been blood, sweat, and tears for a period of years to get in a position where we’re very comfortable showing our products.”

Designing a vehicle from the ground up has taken time, but the process has allowed Rivian to create some novel vehicles with intriguing performance specifications. The company describes its first two products, named the R1T and R1S, as high-end adventure vehicles that can be driven on- or off-road. MIT-Rivian 2

“They’re designed to be comfortable to use and invite you to get dirty,” Scaringe says. “When I say truck or SUV, you’re thinking inefficient and not particularly sophisticated. But we’ve used technology to make the traditional weaknesses of these vehicles strengths.”

Users purchasing trucks or SUVs have traditionally had to make compromises in areas like acceleration, control, and gas mileage in return for more space and towing capacity. Rivian uses an innovative design and powertrain to change that.

A high-tech transportation solution

Both the R1T and R1S will come with a hardware suite including cameras and sensors, which gives them self-driving capabilities on highways. The vehicles have a unique quad-motor setup that allows the electronic control unit to send 147 kilowatts of power to each wheel.

The fastest versions of the vehicles go from 0 to 60 miles per hour in three seconds and 0 to 100 miles per hour in less than seven seconds. Scaringe says the products’ ride and handling feel more like a sports sedan than a truck or SUV. He also says the vehicles can “go off-road better than any vehicle on the planet today” thanks to high ground clearance and wheel articulation that’s helped by a suspension system that adjusts to the environment, stiffening on the road and immediately loosening off the road.

Rivian’s battery configuration has been referred to as “skateboard architecture” because the battery pack stretches across the floor of the vehicle. The packs come in different sizes, the largest of which gives the vehicles over 400 miles in range. Rivian assembles its own battery packs, using proprietary cooling systems to achieve energy efficiency that Scaringe claims is better than anything on the EV market today.

Rivian-autonotive-governor-rauner-illinois-620x350“We’re doing all of the electronics, control systems, and battery packaging in-house,” Scaringe says. “And the digital architecture of the vehicle is a complete clean-sheet approach. So we’ve done the hardware design, the software design, the full stack development. It gives us complete control over how we move data around the vehicle and synchronize it with our cloud platform. We have a real-time sense of the health of all of our assets in the field.”

The high-tech platform comes inside two spacious vehicles that are designed to be stylish and functional. Both models include a 330-liter front trunk and a long compartment under the rear seats that Scaringe says is perfect for objects like surfboards, skis, and golf bags.

Rivian is listing the R1S at $65,000 and the R1T at $61,500 after federal tax rebates. The company is planning to release lower-priced cars in the future.

MIT past helps change the future

Scaringe studied mechanical engineering  for his master’s and PhD in the Sloan Automotive Laboratory, where he was a member of the automotive research team. He worked with some of the biggest car companies in the world in that role, and realized how difficult it would be for them to reorient around the big changes in transportation that he believed were coming.

Immediately after earning his PhD in 2009, in a year when General Motors and Chrysler would declare for bankruptcy, Scaringe founded Rivian. At a time when many people were wondering if America’s biggest car companies would make it another day, Scaringe set out to start a company that would lead the market decades into the future.

“In 2020, we’d love to have you use one of our vehicles. But in 2035, when you’re thinking about those trips to the beach or hiking, we want you to immediately think about using a Rivian,” Scaringe says. “The brand position we set up in 2020 lays the foundation for us.”

Scaringe knew fulfilling his vision would be difficult, but he believes his time at MIT helped him persevere in the face of the major challenges that come with starting something as complex and capital-intensive as a automotive company.

“MIT draws together some of the smartest minds in the world to study and work on deeply challenging problems,” Scaringe says. “That environment helps demonstrate that even the most challenging problems can be solved through the application of time and effort. … The foundation around solving complex and difficult problems is precisely what has enabled Rivian to this point.”

Now that Rivian’s first vehicles have been revealed, Scaringe hopes the company can move beyond thinking about these trends and start accelerating their arrival.

“It comes back to these big fundamental shifts in how we think of mobility,” Scaringe says. “The change in how we power our vehicles; how the vehicles are controlled and operated, going from human operation to machine operation; and because of those changes, the significant changes to how we think about the business model. Like how consumers purchase vehicles and how manufacturers make money, shifting away from the traditional asset sale model. We think it’s really important to line up the megatrends with our business strategy, and now it’s about making sure the strategy helps drive those megatrends.”

MIT: Mass producing cell-sized robots that could monitor conditions inside oil/gas pipelines or search out disease while floating through the bloodstream


This photo shows circles on a graphene sheet where the sheet is draped over an array of round posts, creating stresses that will cause these discs to separate from the sheet. The gray bar across the sheet is liquid being used to lift the discs from the surface. Credit: Felice Frankel

Tiny robots no bigger than a cell could be mass-produced using a new method developed by researchers at MIT. The microscopic devices, which the team calls “syncells” (short for synthetic cells), might eventually be used to monitor conditions inside an oil or gas pipeline, or to search out disease while floating through the bloodstream.

The key to making such tiny devices in large quantities lies in a method the team developed for controlling the natural fracturing process of atomically-thin, brittle , directing the fracture lines so that they produce miniscule pockets of a predictable size and shape. Embedded inside these pockets are electronic circuits and materials that can collect, record, and output data.

The novel process, called “auto-perforation,” is described in a paper published today in the journal Nature Materials, by MIT Professor Michael Strano, postdoc Pingwei Liu, graduate student Albert Liu, and eight others at MIT.

The system uses a two-dimensional form of carbon called graphene, which forms the outer structure of the tiny syncells. One layer of the material is laid down on a surface, then tiny dots of a polymer material, containing the electronics for the devices, are deposited by a sophisticated laboratory version of an inkjet printer. Then, a second layer of graphene is laid on top.

Controlled fracturing

People think of graphene, an ultrathin but extremely strong material, as being “floppy,” but it is actually brittle, Strano explains. But rather than considering that brittleness a problem, the team figured out that it could be used to their advantage.

“We discovered that you can use the brittleness,” says Strano, who is the Carbon P. Dubbs Professor of Chemical Engineering at MIT. “It’s counterintuitive. Before this work, if you told me you could fracture a material to control its shape at the nanoscale, I would have been incredulous.”

But the new system does just that. It controls the fracturing process so that rather than generating random shards of material, like the remains of a broken window, it produces pieces of uniform shape and size. “What we discovered is that you can impose a strain field to cause the fracture to be guided, and you can use that for controlled fabrication,” Strano says.

When the top layer of graphene is placed over the array of polymer dots, which form round pillar shapes, the places where the graphene drapes over the round edges of the pillars form lines of high strain in the material.

As Albert Liu describes it, “imagine a tablecloth falling slowly down onto the surface of a circular table. One can very easily visualize the developing circular strain toward the table edges, and that’s very much analogous to what happens when a flat sheet of graphene folds around these printed polymer pillars.”

As a result, the fractures are concentrated right along those boundaries, Strano says. “And then something pretty amazing happens: The graphene will completely fracture, but the fracture will be guided around the periphery of the pillar.” The result is a neat, round piece of graphene that looks as if it had been cleanly cut out by a microscopic hole punch.

Because there are two layers of graphene, above and below the polymer pillars, the two resulting disks adhere at their edges to form something like a tiny pita bread pocket, with the polymer sealed inside. “And the advantage here is that this is essentially a single step,” in contrast to many complex clean-room steps needed by other processes to try to make microscopic robotic devices, Strano says.

The researchers have also shown that other two-dimensional materials in addition to graphene, such as molybdenum disulfide and hexagonal boronitride, work just as well.

Cell-like robots

Ranging in size from that of a human red blood cell, about 10 micrometers across, up to about 10 times that size, these tiny objects “start to look and behave like a living biological cell. In fact, under a microscope, you could probably convince most people that it is a cell,” Strano says. mit_logo

This work follows up on earlier research by Strano and his students on developing syncells that could gather information about the chemistry or other properties of their surroundings using sensors on their surface, and store the information for later retrieval, for example injecting a swarm of such particles in one end of a pipeline and retrieving them at the other to gain data about conditions inside it.

While the new syncells do not yet have as many capabilities as the earlier ones, those were assembled individually, whereas this work demonstrates a way of easily mass-producing such devices.

Apart from the syncells’ potential uses for industrial or biomedical monitoring, the way the tiny devices are made is itself an innovation with great potential, according to Albert Liu. “This general procedure of using controlled fracture as a production method can be extended across many length scales,” he says. “[It could potentially be used with] essentially any 2-D materials of choice, in principle allowing future researchers to tailor these atomically thin surfaces into any desired shape or form for applications in other disciplines.”

This is, Albert Liu says, “one of the only ways available right now to produce stand-alone integrated microelectronics on a large scale” that can function as independent, free-floating devices. Depending on the nature of the electronics inside, the devices could be provided with capabilities for movement, detection of various chemicals or other parameters, and memory storage.

There are a wide range of potential new applications for such cell-sized robotic devices, says Strano, who details many such possible uses in a book he co-authored with Shawn Walsh, an expert at Army Research Laboratories, on the subject, called “Robotic Systems and Autonomous Platforms,” which is being published this month by Elsevier Press.

As a demonstration, the team “wrote” the letters M, I, and T into a memory array within a syncell, which stores the information as varying levels of electrical conductivity. This information can then be “read” using an electrical probe, showing that the material can function as a form of electronic memory into which data can be written, read, and erased at will.

It can also retain the data without the need for power, allowing information to be collected at a later time. The researchers have demonstrated that the particles are stable over a period of months even when floating around in water, which is a harsh solvent for electronics, according to Strano.

“I think it opens up a whole new toolkit for micro- and nanofabrication,” he says.

More information: 
Pingwei Liu et al, Autoperforation of 2D materials for generating two-terminal memristive Janus particles, Nature Materials(2018).  DOI: 10.1038/s41563-018-0197-z

Provided by: Massachusetts Institute of Technology