Major Expansion Plans Announced for Tesla

Tesla Charging I download

Tesla will double the number of its Superchargers and Destination Charging connectors in urban centers and on long distance routes in 2017. This is part of the company’s ongoing commitment to clean energy.


On the heels of announcements about a more affordable Model 3 and a Tesla pickup truck, Tesla has begun to prepare for the mass-market in earnest for the first time by making more charging stations for available for their vehicles. To that end, Tesla’s blog announced on Monday, April 24, that the company would be doubling the Tesla charging network in 2017. This includes expanding existing sites in city centers and along highways so drivers need never wait to charge before getting back on the road.

Tesla Charging II download

Since the charging network began in 2012, Tesla has constructed more than 5,400 Superchargers to make long distance travel possible and even convenient for Tesla owners. They’ve also built more than 9,000 Destination Charging connectors equipped with Wall Connectors at restaurants, hotels, and other locations.

Via Tesla
Credit: Tesla








By the end of 2017 Tesla plans to have more than 10,000 Superchargers and 15,000 Destination Chargers in place around the world. Superchargers will increase by 150 percent in North America, and 1,000 additional Superchargers will be built in California alone. Site selection is underway now so many will open before summer travel season begins. Tesla will place charging sites in urban centers for quicker charging. Larger sites, which will accommodate simultaneous charging for several dozen drivers, will be constructed along the most-used travel routes for Tesla drivers.


Tesla’s investment in infrastructure represents a vote of confidence in the success of its newest products as well as the potential for the auto industry to continue shifting toward electric vehicles. Tesla’s overall plan is to change the way we think about power and energy. Experts are already acknowledging that Tesla will be disrupting the auto industry, and the energy industry is next.

The Tesla Revolution [INFOGRAPHIC]
Click to View Full Infographic










Tesla’s newest solar panels integrate seamlessly with the Tesla Powerwall battery system and will be available this summer. By 2018, the Tesla Gigafactory will reach full capacity; when it does, it will be producing more lithium ion batteries than the rest of the world combined. These tools will allow Tesla owners to power their homes — and their vehicles — with solar power, greatly reducing their carbon footprints.

With the ability to harness and store enough renewable energy, we could end our reliance on fossil fuels once and for all — and Musk thinks that’s something Earth urgently needs.

MIT: Cheap – Solar Cells – On Paper

Prof. Karen Gleason has come up with a low-cost, environmentally friendly way to make solar cells on ordinary tracing paper. Photo: Len RubensteinSpring 2012

Solar Cells on Paper

Chemical engineer Karen K. Gleason would like to paper the world with solar cells. Glued to laptops, tacked onto roof tiles, tucked into pockets, lining window shades, she envisions ultrathin, ultra-flexible solar cells going where no solar cells have gone before.

Silvery blue solar cells seem to magically generate electricity from sunlight the way Rumpelstiltskin spun straw into gold but in their present form, they’re more akin to gold than straw. 

Karen Gleason develops a low-cost, environmentally friendly way to make solar cells on tracing paper, which one day might charge a cell phone.

The cost of manufacturing crystalline and thin-film solar cells with silicon, glass, and rare earth materials like tellurium and indium is high.


MIT’s New Paper Chase: Cheap – Paper Solar Cells

Gleason, the Alexander and I. Michael Kasser Professor of Chemical Engineering, has collaborated with Vladimir Bulovic, professor of electrical engineering; former chemical engineering graduate student Miles C. Barr; and others to come up with a low-cost, environmentally friendly way to make practically indestructible solar cells on ordinary tracing paper. 

One day, a paper solar cell might help us charge a cell phone. “A paper substrate is a thousand times cheaper than silicon and glass. What’s more, these solar cells can be scrunched up, folded a thousand times, and weatherproofed,” she says.

Using abundant, inexpensive organic elements like carbon, oxygen, and copper­­ — “nothing exotic,” she says — in a vacuum chamber, layers are “printed” through a process called vapor deposition, similar to frost forming on a window. At less than 120 degrees Celsius, the method is gentler and cooler than that normally used to manufacture photovoltaic materials, allowing it to be used on delicate paper, cloth, or plastic. “We repeat that five times and you end up with a solar cell,” she says; tweaking the composition of the five layers of materials determines the cells’ energy output. 

The research is funded by MITEI founding member Eni SpA, Italy’s biggest energy company, which is pursuing new advances in biofuels, solar, and other forms of alternative energy.

“The challenge of the project appealed to me,” she says. “I also thought it would be fun.” Her students display a prototype solar cell (a sheet of paper embossed with a pinstripe and chain-link design) folded into a paper airplane as a power source for an LCD clock. 
Gleason would like to see the first commercial solar paper devices hit the market in five years, but first the cells’ efficiency has to be ramped up from nearly 4 percent to at least 10 percent. (Commercial solar cells have an efficiency of around 15 percent.) MIT engineers believe this is doable

Then, the sky’s the limit — solar cells could power iPads, generate lighting inside tents, keep ski clothing toasty. 

“The paper cells’ portability could have a big impact in developing countries, where the cost of transporting solar cells has been prohibitive.

“Rather than confining solar power to rooftops or solar farms, paper photovoltaics can be used virtually anywhere, making energy ubiquitous,” Gleason says.

DOE: One small change makes Quantum Dot solar cells more efficient

The quest for more efficient solar cells has led to the search of new materials. For years, scientists have explored using tiny drops of designer materials, called quantum dots.

Now, we know that adding small amounts of manganese decreases the ability of quantum dots to absorb light but increases the current produced by an average of 300%. Under certain conditions, the current produced increased by 700%.

The enhancement is due to the faster rate that the electrons move from the quantum dot to the balance of the solar cell (what the scientists call the electron tunneling rate) in the presence of the manganese atoms at the interface.

Importantly, this observation is confirmed by theory, opening up possibilities for applying this approach to other systems (Applied Physics Letters, “Giant photocurrent enhancement by transition metal doping in quantum dot sensitized solar cells”).

The power conversion efficiency of quantum dot solar cells has reached about 12%. However, the overall efficiency of quantum dot solar cells is relatively low compared to photovoltaic systems in use today that are based on silicon. In addition, quantum dot solar cells are not as efficient as emerging next-generation solar cells.

The results obtained in this work point to a surprisingly straightforward alternative route. Scientists can significantly improve the performance of this family of solar cells by adding small amounts of alternate metals.

In the quest to replace more traditional solar materials, such as silicon, with more efficient and high-performing options, scientists have been studying quantum dot solar cells as an alternative to harvest sunlight for conversion to electricity.

In this solar cell design, quantum dots are used as the material that absorbs sunlight and converts it to electricity. Quantum dots are very small, nanometer-sized, particles, whose solar conversion properties, in this case a characteristic gap in the energy levels of the electrons called the “bandgap,” are tunable by changing the size or chemical composition.

This is in contrast to bulk materials whose bandgap is fixed by the chemical composition or choice of material(s) alone. This size dependence of bandgap makes quantum dots attractive for multi-junction solar cells, whose efficiency is enhanced by using a variety of materials that absorb different parts of the “rainbow” of wavelengths of light found in the solar spectrum.

This research team discovered that adding small amounts of the transition metal manganese (Mn), or “doping,” resulted in a huge enhancement in the efficiency rate of changing light to electricity for lead sulfide (PbS) quantum dot sensitized solar cells.

Relatively small concentrations of Mn (4 atomic percent) cause the current to increase by an average of 300% with a maximum increase of up to 700%.

Moreover, the mechanism by which this occurs cannot be explained by the light absorption alone because both the experimental and theoretical absorption spectra demonstrate a several times decrease in the absorption coefficient on the addition of Mn.

The team proposes that the dramatic increase is due to a mechanism of increased electron tunneling through the atom pairs at the quantum dot interface with the next layer of the solar cell.

The team used ab initio calculations, which is a computational approach that can describe new phenomena without the need to fit or extrapolate experimental data, to confirm this mechanism.

While typical doping approaches focus on improving exciton lifetime and light absorption channels, results obtained in this study provide an alternative route for significant improvement on the efficiency of quantum dot sensitized solar cells.

Source: U.S. Department of Energy, Office of Science

Experts Outline Pathway for Generating Up to Ten (10) Terawatts of Power from Sunlight by 2030: NREL – GA SERI

NREL IV energy-resources-renewables-fossil-fuel-uranium

The annual potential of solar energy far exceeds the world’s energy consumption, but the goal of using the sun to provide a significant fraction of global electricity demand is far from being realized.

Scientists from the U.S. Department of Energy’s National Renewable Energy Laboratory (NREL), their counterparts from similar institutes in Japan and Germany, along with researchers at universities and industry, assessed the recent trajectory of photovoltaics and outlined a potential worldwide pathway to produce a significant portion of the world’s electricity from solar power in the new Science paper, Terawatt-Scale Photovoltaics: Trajectories and Challenges.NREL I download

Fifty-seven experts met in Germany in March 2016 for a gathering of the Global Alliance of Solar Energy Research Institutes (GA-SERI), where they discussed what policy initiatives and technology advances are needed to support significant expansion of solar power over the next couple of decades.

“When we came together, there was a consensus that the global PV industry is on a clear trajectory to reach the multi-terawatt scale over the next decade,” said lead author Nancy Haegel, director of NREL’s Materials Science Center. “However, reaching the full potential for PV technology in the global energy economy will require continued advances in science and technology. Bringing the global research community together to solve challenges related to realizing this goal is a key step in that direction.”

NREL III pv global

Photovoltaics (PV) generated about 1 percent of the total electricity produced globally in 2015 but also represented about 20 percent of new installation. The International Solar Alliance has set a target of having at least 3 terawatts – or 3,000 gigawatts (GW) – of additional solar power capacity by 2030, up from the current installed capacity of 71 GW. But even the most optimistic projections have under-represented the actual deployment of PV over the last decade, and the GA-SERI paper discusses a realistic trajectory to install 5-10 terawatts of PV capacity by 2030.

Reaching that figure should be achievable through continued technology improvements and cost decreases, as well as the continuation of incentive programs to defray upfront costs of PV systems, according to the Science paper, which in addition to Haegel was co-authored by David Feldman, Robert Margolis, William Tumas, Gregory Wilson, Michael Woodhouse, and Sarah Kurtz of NREL.

GA-SERI’s experts predict 5-10 terawatts of PV capacity could be in place by 2030 if these challenges can be overcome:

  • A continued reduction in the cost of PV while also improving the performance of solar modules
  • A drop in the cost of and time required to expand manufacturing and installation capacity
  • A move to more flexible grids that can handle high levels of PV through increased load shifting, energy storage, or transmission
  • An increase in demand for electricity by using more for transportation and heating or cooling
  • Continued progress in storage for energy generated by solar power.

The Fraunhofer Institute for Solar Energy (Germany), the National Institute of Advanced Industrial Science and Technology (Japan), and the National Renewable Energy Laboratory (United States) are the member institutes of GA-SERI, which was founded in 2012.

NREL is the U.S. Department of Energy’s primary national laboratory for renewable energy and energy efficiency research and development. NREL is operated for the Energy Department by The Alliance for Sustainable Energy, LLC.

NREL Establishes World Record for Solar Hydrogen Production

NREL Solar to Hydrogen 20170412-42601NREL researchers Myles Steiner (left), John Turner, Todd Deutsch and James Young stand in front of an atmospheric pressure MDCVD reactor used to grow crystalline semiconductor structures. They are co-authors of the paper “Direct Solar-to-Hydrogen Conversion via Inverted Metamorphic Multijunction Semiconductor Architectures” published in Nature Energy. Photo by Dennis Schroeder.


Scientists at the U.S. Department of Energy’s (DOE) National Renewable Energy Laboratory (NREL) recaptured the record for highest efficiency in solar hydrogen production via a photo-electrochemical (PEC) water-splitting process.

The new solar-to-hydrogen (STH) efficiency record is 16.2 percent, topping a reported 14 percent efficiency in 2015 by an international team made up of researchers from Helmholtz-Zentrum Berlin, TU Ilmenau, Fraunhofer ISE and the California Institute of Technology. A paper in Nature Energy titled Direct Solar-to-hydrogen Conversion via Inverted Metamorphic Multijunction Semiconductor Architectures outlines how NREL’s new record was achieved. The authors are James Young, Myles Steiner, Ryan France, John Turner, and Todd Deutsch, all from NREL, and Henning Döscher of Philipps-Universität Marburg in Germany. Döscher has an affiliation with NREL.

solar-hydrogen-system-illustrationThe record-setting PEC cell represents a significant change from the concept device Turner developed at NREL in the 1990s.

Both the old and new PEC processes employ stacks of light-absorbing tandem semiconductors that are immersed in an acid/water solution (electrolyte) where the water-splitting reaction occurs to form hydrogen and oxygen gases. But unlike the original device made of gallium indium phosphide (GaInP2) grown on top of gallium arsenide (GaAs), the new PEC cell is grown upside-down, from top to bottom, resulting in a so-called inverted metamorphic multijunction (IMM) device.

This IMM advancement allowed the NREL researchers to substitute indium gallium arsenide (InGaAs) for the conventional GaAs layers, improving the device efficiency considerably. A second key distinguishing feature of the new advancement was depositing a very thin aluminum indium phosphide (AlInP) “window layer” on top of the device, followed by a second thin layer of GaInP2. These extra layers served both to eliminate defects at the surface that otherwise reduce efficiency and to partially protect the critical underlying layers from the corrosive electrolyte solution that degrades the semiconductor material and limits the lifespan of the PEC cell.

Turner’s initial breakthrough created an interesting new way to efficiently split water using sunlight as the only energy input to make renewable hydrogen. Other methods that use sunlight entail additional loss-generating steps. For example: Electricity generated by commercial solar cells can be sent through power conversion systems to an electrolyzer to decompose water into hydrogen and oxygen at an approximate STH efficiency of 12 percent. Turner’s direct method set a long-unmatched STH efficiency record of 12.4 percent, which has been surpassed by NREL’s new PEC cell.

Before the PEC technology can be commercially viable, the cost of hydrogen production needs to come down to meet DOE’s target of less than $2 per kilogram of hydrogen.solarhydrogen


Continued improvements in cell efficiency and lifetime are needed to meet this target. Further enhanced efficiency would increase the hydrogen production rate per unit area, which decreases hydrogen cost by reducing balance-of-system expenditures. In conjunction with efficiency improvements, durability of the current cell configuration needs to be significantly extended beyond its several hours of operational life to dramatically bring down costs. NREL researchers are actively pursuing methods of increasing the lifespan of the PEC device in addition to further efficiency gains.

While an alternative configuration where the device isn’t submerged in acidic electrolyte and instead is wired to an external electrolyzer would solve the durability challenge, a techno-economic analysis commissioned by DOE has shown that submerged devices have the potential to produce hydrogen at a lower cost.

The latest research was funded by the Energy Department’s Fuel Cell Technologies Office in the Office of Energy Efficiency and Renewable Energy.

NREL is the U.S. Department of Energy’s primary national laboratory for renewable energy and energy efficiency research and development. NREL is operated for the Energy Department by The Alliance for Sustainable Energy, LLC.

Making Solar Cells Obsolete with GIT’s Optical ‘Rectenna’ Technology ~ 40% to 90% Conversion Effciency: YouTube Video

Optical Rectenna download

Georgia Tech Professor of Mechanical Engineering, Dr. Bara Cola, shares how his childhood dreams of playing professional football turned into an exciting research career and important nanoengineering innovations. Dr. Cola’s breakthrough optical rectenna technology can be viewed here….”

Watch the YouTube Video:


e9cf3-nanorectannaA new kind of nanoscale rectenna (half antenna and half rectifier) can convert solar and infrared into electricity, plus be tuned to nearly any other frequency as a detector.

Right now efficiency is only one percent, but professor Baratunde Cola and colleagues at the Georgia Institute of Technology (Georgia Tech, Atlanta) convincingly argue that they can achieve 40 percent broad spectrum efficiency (double that of silicon and more even than multi-junction gallium arsenide) at a one-tenth of the cost of conventional solar cells (and with an upper limit of 90 percent efficiency for single wavelength conversion).

It is well suited for mass production, according to Cola. It works by growing fields of carbon nanotubes vertically, the length of which roughly matches the wavelength of the energy source (one micron for solar), capping the carbon nanotubes with an insulating dielectric (aluminum oxide on the tethered end of the nanotube bundles), then growing a low-work function metal (calcium/aluminum) on the dielectric and voila–a rectenna with a two electron-volt potential that collects sunlight and converts it to direct current (DC).

“Our process uses three simple steps: grow a large array of nanotube bundles vertically; coat one end with dielectric; then deposit another layer of metal,” Cola told EE Times. “In effect we are using one end of the nanotube as a part of a super-fast metal-insulator-metal tunnel diode, making mass production potentially very inexpensive up to 10-times cheaper than crystalline silicon cells.”

Read the full Article Here: Solar Cells Will be Made Obsolete by 3D rectennas aiming at 40-to-90% efficiency


Replacing Silicon in Solar Cells with Hybrid perovskite material could double efficiency

A new material has been shown to have the capability to double the efficiency of solar cells by researchers at Purdue University and the National Renewable Energy Laboratory.

Hybrid perovskite

The material, called a hybrid perovskite, has an inorganic crystal “cage” which contains an organic molecule, methyl-ammonium. (Image: Libai Huang)

Conventional solar cells are at most one-third efficient, a limit known to scientists as the Shockley-Queisser Limit. The new material, a crystalline structure that contains both inorganic materials (iodine and lead) and an organic material (methyl-ammonium), boosts the efficiency so that it can carry two-thirds of the energy from light without losing as much energy to heat.

In less technical terms, this material could double the amount of electricity produced without a significant cost increase.

Enough solar energy reaches the earth to supply all of the planet’s energy needs multiple times over, but capturing that energy has been difficult – as of 2013, only about 1 percent of the world’s grid electricity was produced from solar panels.
Libai Huang, assistant professor of chemistry at Purdue, says the new material, called a hybrid perovskites, would create solar cells thinner than conventional silicon solar cells, and is also flexible, cheap and easy to make.

“My graduate students learn how to make it in a few days,” she says.

The breakthrough is published this week in the journal Science (“Long-range hot-carrier transport in hybrid perovskites visualized by ultrafast microscopy”).

The most common solar cells use silicon as a semiconductor, which can transmit only one-third of the energy because of the band gap, which is the amount of energy needed to boost an electron from a bound state to a conducting state, in which the electrons are able to move, creating electricity.

How electrons move in hybrid perovskite

Scientists at Purdue University and the National Renewable Energy Laboratory have discovered how electrons move in a new crystalline material and this discovery could lead to doubling the efficiency of solar cells. Ultrafast microscope images, such as these, show that the electrons in material is able to move over 200 nanometers with minimal energy loss to heat. (Image: Libai Huang) (click on image to enlarge)

Incoming photons can have more energy than the band gap, and for a very short time – so short it’s difficult to imagine – the electrons exist with extra energy. These electrons are called “hot carriers,” and in silicon they exist for only one picosecond (which is 10-12 seconds) and only travel a maximum distance of 10 nanometers. At this point the hot carrier electrons give up their energy as heat. This is one of the main reasons for the inefficiency of solar cells.

Huang and her colleagues have developed a new technique that can track the range of the motion and the speed of the hot carriers by using fast lasers and microscopes.

“The distance hot carriers need to migrate is at least the thickness of a solar cell, or about 200 nanometers, which this new perovskite material can achieve,” Huang says. “Also these carriers can live for about 100 picoseconds, two orders of magnitude longer than silicon.”

Kai Zhu, senior scientist at the National Renewable Energy Laboratory in Golden, Colorado, and one of the journal paper’s co-authors, says that these are critical factors for creating a commercial hot-carrier solar cell.

“This study demonstrated that hot carriers in a standard polycrystalline perovskite thin film can travel for a distance that is similar to or longer than the film thickness required to build an efficient perovskite solar cell,” he says. “This indicates that the potential for developing hot carrier perovskite solar cell is good.”

However, before a commercial product is developed, researchers are trying to use the same techniques developed at Purdue by replacing lead in the material with other, less toxic, metals.

“The next step is to find or develop suitable contact materials or structures with proper energy levels to extract these hot carriers to generate power in the external circuit,” Zhu says. “This may not be easy.”

Source: Purdue University 

ONE (1) Solar Power Plant in the Chilean desert (775,000 panels) = Energy for 1 (ONE) MILLION People ~ Video

World Future Energy large_ThCDvzfTqZJX8Ck7wK5fPkvkp_33ZO7OXoBxpOrqP1UThe way energy is produced, distributed and consumed around the world is undergoing fundamental change of almost unprecedented proportions. This is commonly referred to as the “energy transition”. (watch the video)



The Global Energy Architecture Performance Index 2017 (EAPI), tackles elements of this transition in its fifth annual edition, as do the global Regulatory Indicators for Sustainable Energy (RISE) released by the World Bank a month earlier. Of specific interest to this essay are the underlying issues of governance and regulation and their relationship to progress towards sustainable and secure energy systems. In UN development terms, this focus helps us consider the links between Sustainable Development Goal (SDG) 7, which addresses energy, and SDG 16, which is about peace and justice.

Read More: The way the world produces and consumes energy is changing. How can we meet the needs of the future?

World Future Energy large_ThCDvzfTqZJX8Ck7wK5fPkvkp_33ZO7OXoBxpOrqP1U


The Economic Case for Wind and Solar Energy in Africa ~ The Need to Triple Energy Output by 2030

Ngong Hills Wind Farm in Nairobi, Kenya, sited close to where there is significant demand for electricity (Nairobi) and near existing infrastructure, is a good example of multiple land uses for recreation (a popular hiking area for locals), energy generation, and livestock grazing. (Credit: Grace Wu/Berkeley Lab)

To meet skyrocketing demand for electricity, African countries may have to triple their energy output by 2030.

While hydropower and fossil fuel power plants are favored approaches in some quarters, a new assessment by the Department of Energy’s Lawrence Berkeley National Laboratory (Berkeley Lab) has found that wind and solar can be economically and environmentally competitive options and can contribute significantly to the rising demand.
“Wind and solar have historically been dismissed as too expensive and temporally variable, but one of our key findings is that there are plentiful wind and solar resources in Africa that are both low-impact and cost-effective,” said Ranjit Deshmukh, one of the lead researchers of the study.

“Another important finding is that with strategic siting of the renewable energy resource and with more energy trade and grid interconnections between countries, the total system cost can be lower than it would be if countries were to develop their resource in isolation without strategic siting.”

The research appeared online this week in the journal Proceedings of the National Academy of Sciences (PNAS) in an article titled, “Strategic siting and regional grid interconnections key to low-carbon futures in African countries.” The lead authors are Deshmukh and Grace C. Wu, both Berkeley Lab researchers in the Energy Technologies Area.

Much of the initial research was funded by the International Renewable Energy Agency (IRENA), which is based in Abu Dhabi. Individual fellowships from the National Science Foundation and the Link Foundation to Wu and Deshmukh supported the expanded analysis on wind siting.

“As a region, Africa is in an unparalleled energy crisis rife with electricity deficiency, lack of access, and high costs,” said Wu. “How African countries and the international community tackle this crisis in the coming decades will have large social, environmental, and climate implications.”

The location and potential of wind, solar photovoltaics, and concentrating solar power, in terawatt-hours, in southern and eastern Africa. (Credit: Berkeley Lab)

One-of-a-kind open-source planning framework and tool
The Berkeley Lab study is the first of its kind for Africa, using multiple criteria-such as quality of the resource, distance from transmission lines and roads, co-location potential, availability of water resources, potential human impact, and many other factors-to characterize wind and solar resources.

Looking at the Southern African Power Pool (SAPP) and the Eastern Africa Power Pool (EAPP), which together include 21 countries accounting for half the continent’s population, it found that many countries have wind and solar potential several times greater than their expected demand in 2030.


Berkeley Lab scientists Ranjit Deshmukh and Grace Wu at Ngong Hills Wind Farm (Courtesy Grace Wu)

The tool they used to make these evaluations, the Multicriteria Analysis for Planning Renewable Energy (MapRE, at was developed at Berkeley Lab in collaboration with IRENA and is open-source and publicly available to researchers and policymakers.
“Usually project developers will just choose the site with the least levelized cost and best wind speeds, but in reality those aren’t the best sites,” Deshmukh said. “Often times you want development closer to transmission infrastructure or to cities so you don’t have to assume the risk involved in developing transmission infrastructure over long distances, let alone transmitting electricity across those distances. It’s difficult to quantify those costs. Our tool enables stakeholders to bring all these criteria into their decision-making and helps them prioritize areas for development and preplanning of transmission.”

Siting and grid interconnections are key

Not only did the researchers find plentiful wind and solar resources in Africa, another key finding was that system costs and impacts could be lower with robust energy trade and grid connections between countries. And if wind farms are strategically sited so as to manage peak demand, costs can be lower still.
“System costs can be further reduced if wind farms are sited where the timing of wind generation matches electricity demand rather than in areas that maximize wind energy production,” Wu said. “These cost savings are due to avoided natural gas, hydro, or coal generation capacity.”
For example, the researchers found that in a high-wind scenario in the Southern Africa Power Pool, strategic siting and grid interconnections would reduce the need for conventional generation capacity by 9.5 percent, resulting in cost savings of 6 to 20 percent, depending on the technology that was avoided.
“Together, international energy trade and strategic siting can enable African countries to pursue ‘no-regrets’ wind and solar that can compete with conventional generation technologies like coal and hydropower,” Wu said. “No-regrets options are low-cost, low-impact, and low-risk.”


A visit to a wind farm in Ethiopia organized by IRENA includes stakeholders from Egypt, Sudan, Ethiopia, Tanzania, Uganda, and Kenya from academia, ministries of energy, utilities, and regulatory bodies. (Credit: Tijana Radojicic/IRENA)


“Together, international energy trade and strategic siting can enable African countries to pursue ‘no-regrets’ wind and solar that can compete with conventional generation technologies like coal and hydropower,” Wu said. “No-regrets options are low-cost, low-impact, and low-risk.”

In addition to Africa, the researchers have uploaded data for India and plan to add more countries, most likely in Asia. And they have held five workshops in Africa for regulators, academics, utilities, and energy officials to share the approach and findings. “They’ve been super enthusiastic,” Deshmukh said. “We’re seeing impacts on the ground.”With Berkeley Lab’s MapRE tool, policymakers will be able to do a preliminary evaluation of various sites on their own without having to rely on developers for technical information. “This information brings policymakers level with project developers,” Deskhmukh said. “It reduces costs for everybody and allows for a much more sustainable planning paradigm.”

The amount of wind and solar currently deployed in Africa is tiny, he said. But with global prices having declined dramatically in the last decade or so, renewable energy has become a competitive alternative. And while hydropower is a significant and familiar resource in Africa, climbing costs and persistent droughts are making it less attractive.

“Just based purely on economics today wind and solar are attractive,” Deshmukh said. “It makes economic sense. Through planning around multiple stakeholder criteria and prioritizing wind and solar projects for regional energy trade, policymakers and financiers can increase their cost-competitiveness.”

Other co-authors of the study were Amol Phadke of Berkeley Lab, Jessica Reilly-Moman, Daniel Kammen, and Duncan Callaway of UC Berkeley, Tijana Radojicic of IRENA, and Kudakwashe Ndhlukula of the Southern Africa Development Community Centre for Renewable Energy and Energy Efficiency.

Deshmukh is an ITRI-Rosenfeld postdoctoral fellow at Berkeley Lab. Wu is also a PhD candidate in the Energy and Resources Group at UC Berkeley.

# # #

Lawrence Berkeley National Laboratory addresses the world’s most urgent scientific challenges by advancing sustainable energy, protecting human health, creating new materials, and revealing the origin and fate of the universe. Founded in 1931, Berkeley Lab’s scientific expertise has been recognized with 13 Nobel Prizes. The University of California manages Berkeley Lab for the U.S. Department of Energy’s Office of Science. For more, visit

DOE’s Office of Science is the single largest supporter of basic research in the physical sciences in the United States, and is working to address some of the most pressing challenges of our time. For more information, please visit





Los Alamos National Laboratory Studies Perovskites for NextGen HE Solar Cells & LED’s: Video

March 9, 2017

Perovskite edges can be tuned for optoelectronic performance
Scientists are creating innovative 2D layered hybrid perovskites that allow greater freedom in designing and fabricating efficient optoelectronic devices.

Scientists at Los Alamos National Laboratory and their research partners are creating innovative 2D layered hybrid perovskites that allow greater freedom in designing and fabricating efficient optoelectronic devices.

Watch the Video