Chemists Gain Edge in “Next-Gen Energy: Discover Dual-Purpose Film for Energy Storage & Hydrogen Catalysis


1- Rice ES ricechemistsRice University scientists who want to gain an edge in energy production and storage report they have found it in molybdenum disulfide.

The Rice lab of chemist James Tour has turned disulfide’s two-dimensional form into a nanoporous film that can catalyze the production of hydrogen or be used for energy storage.

The versatile chemical compound classified as a dichalcogenide is inert along its flat sides, but previous studies determined the material’s edges are highly efficient catalysts for hydrogen evolution reaction (HER), a process used in fuel cells to pull hydrogen from water.

Tour and his colleagues have found a cost-effective way to create flexible films of the material that maximize the amount of exposed edge and have potential for a variety of energy-oriented applications.

The Rice research appears in the journal Advanced Materials.

1- Rice ES ricechemists

A new material developed at Rice University based on molybdenum disulfide exposes as much of the edge as possible, making it efficient as both a catalyst for hydrogen production and for energy storage. Credit: Tour Group/Rice University 

Molybdenum disulfide isn’t quite as flat as graphene, the atom-thick form of pure carbon, because it contains both molybdenum and sulfur atoms. When viewed from above, it looks like graphene, with rows of ordered hexagons. But seen from the side, three distinct layers are revealed, with in their own planes above and below the molybdenum.

This crystal structure creates a more robust edge, and the more edge, the better for catalytic reactions or storage, Tour said.

“So much of chemistry occurs at the edges of materials,” he said. “A two-dimensional material is like a sheet of paper: a large plain with very little edge. But our material is highly porous. What we see in the images are short, 5- to 6-nanometer planes and a lot of edge, as though the material had bore holes drilled all the way through.”

A thin, flexible film developed at Rice University shows excellent potential as a hydrogen catalyst or as an energy storage device. The two-dimensional film could be a cost-effective component in such applications as fuel cells. Credit: Tour Group/Rice University

The new film was created by Tour and lead authors Yang Yang, a postdoctoral researcher; Huilong Fei, a graduate student; and their colleagues. It catalyzes the separation of hydrogen from water when exposed to a current. “Its performance as a HER generator is as good as any molybdenum disulfide structure that has ever been seen, and it’s really easy to make,” Tour said.

While other researchers have proposed arrays of molybdenum disulfide sheets standing on edge, the Rice group took a different approach. First, they grew a porous molybdenum oxide film onto a molybdenum substrate through room-temperature anodization, an electrochemical process with many uses but traditionally employed to thicken natural oxide layers on metals.

The film was then exposed to sulfur vapor at 300 degrees Celsius (572 degrees Fahrenheit) for one hour. This converted the material to without damage to its nano-porous sponge-like structure, they reported.

The films can also serve as supercapacitors, which store energy quickly as static charge and release it in a burst. Though they don’t store as much energy as an electrochemical battery, they have long lifespans and are in wide use because they can deliver far more power than a battery. The Rice lab built supercapacitors with the films; in tests, they retained 90 percent of their capacity after 10,000 charge-discharge cycles and 83 percent after 20,000 cycles.

“We see anodization as a route to materials for multiple platforms in the next generation of alternative energy devices,” Tour said. “These could be fuel cells, supercapacitors and batteries. And we’ve demonstrated two of those three are possible with this new material.”

Explore further: Harnessing an unusual ‘valley’ quantum property of electrons

Advertisements

Genesis Nanotech ‘News and Updates’ – September 9, 2014


Nano Sensor for Cancer 50006

Genesis Nanotech ‘News and Updates’ – September 9, 2014

Follow This Link: https://paper.li/GenesisNanoTech/1354215819#

Or by Individual Articles:

Transfer Printing Methods for Flexible Thin Film Solar Cells: Basic Concepts and Working Principles – ACS Nano (ACS Publications)

Nanotechnology to slash NOx and “cancerous” emissions

Tumor-Homing, Size-Tunable Clustered Nanoparticles for Anticancer Therapeutics – ACS Nano (ACS Publications)

New Detector Capable of Capturing Terahertz Waves at Room Temperature

Quotable Coach: Plug In And Participate – The Multiplier Mindset: Insights & Tips for Entrepreneurs

Genesis Nanotechnology – “Great Things from Small Things!”

The World Of Tomorrow: Nanotechnology: Interview with PhD and Attorney D.M. Vernon


Bricks and Mortar chemistsdemoThe Editor interviews Deborah M. VernonPhD, Partner in McCarter & English, LLP’s Boston office.

 

 

 

Why It Matters –

” … I would say the two most interesting areas in the last year or two have been in 3-D printing and nanotechnology. 3-D printing is an additive technology in which one is able to make a three-dimensional product, such as a screw, by adding material rather than using a traditional reduction process, like a CNC (milling) process or a grinding-away process.

The other interesting area has been nanotechnology. Nanotechnology is the science of materials and structures that have a dimension in the nanometer range (1-1,000 nm) – that is, on the atomic or molecular scale. A fascinating aspect of nanomaterials is that they can have vastly different material properties (e.g., chemical, electrical, mechanical properties) than their larger-scale counterparts. As a result, these materials can be used in applications where their larger-scale counterparts have traditionally not been utilized.”

nanotech

Editor: Deborah, please tell us about the specific practice areas of intellectual property in which you participate.

 

 

Vernon: My practice has been directed to helping clients assess, build, maintain and enforce their intellectual property, especially in the technology areas of material science, analytical chemistry and mechanical engineering. Prior to entering the practice of law, I studied mechanical engineering as an undergraduate and I obtained a PhD in material science engineering, where I focused on creating composite materials with improved mechanical properties.

Editor: Please describe some of the new areas of biological and chemical research into which your practice takes you, such as nanotechnology, three-dimensional printing technology, and other areas.

Vernon: I would say the two most interesting areas in the last year or two have been in 3-D printing and nanotechnology. 3-D printing is an additive technology in which one is able to make a three-dimensional product, such as a screw, by adding material rather than using a traditional reduction process, like a CNC (milling) process or a grinding-away process. The other interesting area has been nanotechnology. Nanotechnology is the science of materials and structures that have a dimension in the nanometer range (1-1,000 nm) – that is, on the atomic or molecular scale.

A fascinating aspect of nanomaterials is that they can have vastly different material properties (e.g., chemical, electrical, mechanical properties) than their larger-scale counterparts. As a result, these materials can be used in applications where their larger-scale counterparts have traditionally not been utilized.

Organ on a chip organx250

I was fortunate to work in the nanotech field in graduate school. During this time, I investigated and developed methods for forming ceramic composites, which maintain a nanoscale grain size even after sintering. Sintering is the process used to form fully dense ceramic materials. The problem with sintering is that it adds energy to a system, resulting in grain growth of the ceramic materials. In order to maintain the advantageous properties of the nanosized grains, I worked on methods that pinned the ceramic grain boundaries to reduce growth during sintering.

The methods I developed not only involved handling of nanosized ceramic particles, but also the deposition of nanofilms into a porous ceramic material to create nanocomposites. I have been able to apply this experience in my IP practice to assist clients in obtaining and assessing IP in the areas of nanolaminates and coatings, nanosized particles and nanostructures, such as carbon nanotubes, nano fluidic devices, which are very small devices which transport fluids, and 3D structures formed from nanomaterials, such as woven nanofibers.

Editor: I understand that some of the components of the new Boeing 787 are examples of nanotechnology.

Vernon: The design objective behind the 787 is that lighter, better-performing materials will reduce the weight of the aircraft, resulting in longer possible flight times and decreased operating costs. Boeing reports that approximately 50 percent of the materials in the 787 are composite materials, and that nanotechnology will play an important role in achieving and exceeding the design objective. (See, http://www.nasc.com/nanometa/Plenary%20Talk%20Chong.pdf).

While it is believed that nanocomposite materials are used in the fuselage of the 787, Boeing is investigating applying nanotechnology to reduce costs and increase performance not only in fuselage and aircraft structures, but also within energy, sensor and system controls of the aircraft.

Editor: What products have incorporated nanotechnology? What products are anticipated to incorporate its processes in the future?

Vernon: The products that people are the most familiar with are cosmetic products, such as hair products for thinning hair that deliver nutrients deep into the scalp, and sunscreen, which includes nanosized titanium dioxide and zinc oxide to eliminate the white, pasty look of sunscreens. Sports products, such as fishing rods and tennis rackets, have incorporated a composite of carbon fiber and silica nanoparticles to add strength. Nano products are used in paints and coatings to prevent algae and corrosion on the hulls of boats and to help reduce mold and kill bacteria. We’re seeing nanotechnology used in filters to separate chemicals and in water filtration.

The textile industry has also started to use nano coatings to repel water and make fabrics flame resistant. The medical imaging industry is starting to use nanoparticles to tag certain areas of the body, allowing for enhanced MRI imaging. Developing areas include drug delivery, disease detection and therapeutics for oncology. Obviously, those are definitely in the future, but it is the direction of scientific thinking.

Editor: What liabilities can product manufacturers incur who are incorporating nanotechnology into their products? What kinds of health and safety risks are incurred in their manufacture or consumption?Nano Body II 43a262816377a448922f9811e069be13

Vernon: There are three different areas that we should think about: the manufacturing process, consumer use and environmental issues. In manufacturing there are potential safety issues with respect to the incorporation or delivery of nanomaterials. For example, inhalation of nanoparticles can cause serious respiratory issues, and contact of some nanoparticles with the skin or eyes may result in irritation. In terms of consumer use, nanomaterials may have different material properties from their larger counterparts.

As a result, we are not quite sure how these materials will affect the human body insofar as they might have a higher toxicity level than in their larger counterparts. With respect to an environmental impact, waste or recycled products may lead to the release of nanoparticles into bodies of water or impact wildlife. The National Institute for Occupational Safety and Health has established the Nanotechnology Research Center to develop a strategic direction with respect to occupational safety and nanotechnology. Guidance and publications can be found at http://www.cdc.gov/niosh/topics/nanotech.

Editor: The European Union requires the labeling of foods containing nanomaterials. What has been the position of the Food & Drug Administration and the EPA in the United States about food labeling?

Vernon: So far the FDA has taken the position that just because nanomaterials are smaller, they are not materially different from their larger counterparts, and therefore there have been no labeling requirements on food products. The FDA believes that their current standards for safety assessment are robust and flexible enough to handle a variety of different materials. That being said, the FDA has issued some guidelines for the food and cosmetic industries, but there has not been any requirement for food labeling as of now. The EPA has a nanotechnology division, which is also studying nanomaterials and their impact, but I haven’t seen anything that specifically requires a special registration process for nanomaterials.

Editor: What new regulations regarding nanotech products are expected? Should governmental regulations be adopted to prevent nanoparticles in foods and cosmetics from causing toxicity?

Vernon: The FDA has not telegraphed that any new regulations will be put into place. The agency is currently in the data collection stage to make sure that these materials are being safely delivered to people using current FDA standards – that materials are safe for human consumption or contact with humans. We won’t really understand whether or not regulations will be coming into place until we see data coming out that indicates that there are issues that are directly associated with nanomaterials. Rather than expecting regulations, I would suggest that we examine the data regarding nano products to optimize safe handling and use procedures.

Editor: Have there ever been any cases involving toxicity resulting from nano products?

Vernon: There are current investigations about the toxicity of carbon nano tubes, but the research is in its infancy. There is no evidence to show any potential harm from this technology. Unlike asbestos or silica exposure, the science is not there yet to demonstrate any toxicity link. The general understanding is that it may take decades for any potential harm to manifest. I believe my colleague, Patrick J. Comerford, head of McCarter’s product liability team in Boston, summarizes the situation well by noting that “if any supportable science was available, plaintiff’s bar would have already made this a high-profile target.”

Editor: While some biotech cases have failed the test of patentability before the courts, such as the case of Mayo v. Prometheus, what standard has been set forth for a biotech process to pass the test for patentability?

Vernon: There is no specified bright-line test for determining if a biotech process is patentable. But what the U.S. Patent and Trademark Office has done is to issue some new examination guidelines with respect to the Mayo decision that help examiners figure out whether a biotech process is patent eligible. Specifically, the guidelines look to see if the biotech process (i.e., a process incorporating a law of nature) also includes at least one additional element or step. That additional element needs to be significant and not just a mental or correlation step. If a biotech process patent claim includes this significant additional step, there still needs to be a determination if the process is novel and non-obvious over the prior art. So while this might not be a bright-line test to help us figure out whether a biotech process is patentable, it at least gives us some direction about what the examiners are looking for in the patent claims.

Editor: What effect do you think the new America Invents Act will have in encouraging biotech companies to file early in the first stages of product development? Might that not run the risk that the courts could deny patentability as in the Ariad case where functional results of a process were described rather than the specific invention?

Vernon: The AIA goes into effect next month. What companies, especially biotech companies, need to do is file early. Companies need to submit applications supported by their research to include both a written description and enablement of the invention. Companies will need to be more focused on making sure that they are not only inventing in a timely manner but are also involving their patent counsel in planned and well-thought-out experiments to make sure that the supporting information is available in a timely fashion for patenting.

Editor: Have there been any recent cases relating to biotechnology or nanotechnology that our readers should be informed about?

Vernon: The Supreme Court will hear oral arguments in April in the Myriad case. This case involves the BRCA gene, the breast cancer gene – and the issue is whether isolating a portion of a gene is patentable. While I am not a biotechnologist, I think this case will also impact nanotechnology as a whole. Applying for a patent on a portion of a gene is not too far distant from applying for a patent on a nanoparticle of a material that already exists but which has different properties from the original, larger-counterpart material. Would this nanosize material be patentable? This will be an important case to see what guidance the Supreme Court delivers this coming term.

Editor: Is there anything else you’d like to add?

Vernon: I think the next couple of years for nanotech will be very interesting. As I mentioned, I did my PhD thesis in the nanotechnology area a few years ago. My studies, like those of many other students, were funded in part with government grants. There is a great deal of government money being poured into nanotechnology. In the next ten years we will start seeing more and more of this research being commercialized and adopted into our lives. To keep current of developments, readers can visit www.nano.gov.

The Metropolitan Corporate Counsel
The Leading Resource For Corporate Counsel

As a leading publication in the corporate counsel community, MCC offers unique editorial content covering legal, regulatory, legislative and business developments, featuring original articles and interviews from experts at prestigious law firms, bar associations, accounting firms and legal service providers, as well as educators, business executives and high-level state, national and international officials.

 

How Graphene Desalination Could Solve Our Planet’s Water Supply Problems: Video


2-graphenePublished on Jul 2, 2014 The Zero Line with Dr. Kent Moors
How Graphene could Increase Water Supplies for The Poorest Countries

 

More than 780 million people in the world need clean water. The desalination process has been a huge roadblock to solving this global water crisis — until now. Graphene Desalination is going to change the world for good.

Given most of earth is water & just 2.5% of that is fresh, this miracle material could have just unlocked our most abundant water source. That’s right. Up to now, the earths oceans have served very little in terms of drinking water. Now, graphene could make water scarcity a thing of the past. For the poorest countries & the most well-off, graphene could completely change the way we live.

What is Graphene Desalination & How could it Increase Water Supplies?

Graphene Desalination to Increase Water Supplies

Graphene is a single layer of carbon atoms that are bonded in a repeating pattern of hexagons like the image above. Graphene is approximately 1,000,000 times thinner than paper; so thin that it is actually considered two dimensional.

Graphene’s flat honeycomb pattern grants it many unusual characteristics, including the status of strongest material in the world.

Graphene’s mesh is so fine, it can be used to filter out the smallest particles. In this case, graphene would be used as a desalination filter. Because it’s so strong & resiliant tearing, it would serve as the worlds strongest, finest desalination filter with the durability to withstand massive ammounts of water pressure.

See (Video) how a defense company made a major breakthrough in water filtration using the miracle material of grapheme … “Genesis Nanotechnology … Great Things from Small Things!”

Surfer at Peahi Bay on Maui, Hawaii

Graphene Quantum Dots Prove Highly Efficient in Emitting Light


Graphene QD KAIST-emissive-graphene-quantum-dots-img_assist-400x257

Quantum Dots

Paving Way for Paper-thin Displays

 

Researchers from the Korean’s KAIST institute developed a new process to produce graphene quantum dots that are equal in size and highly efficient in emitting light. Quantum Dots potentially can be used to develop emissive flexible displays (similar to OLED displays), and this development may enable those displays to be graphene-based.

The process involves mixing salt, water and graphite and then synthesizing a chemical compound between layers of graphite. All the resulting quantum dots were 5 nanometer in diameter, and these QDs do not contain and heavy metals (like current commercial quantum dots). The process is reportedly easy to scale and should not be expensive.

A Korean research team has successfully developed high-quality graphene quantum dots that are equal in size and highly efficient in emitting light. This technology is expected to be used in developing paper-thin displays or displaying information in flexible materials.

The Korea Advanced Institute of Science and Technology (KAIST) announced on August 28 that a research team led by Jun Suk-woo, professor of the department of materials science and engineering at KAIST, has succeeded in making graphene quantum dots by mixing water and salt into graphite and then synthesizing a chemical compound between layers of graphite, in collaboration with professors Jo Young-hoon and Ryu Seung-hyup. Quantum dots are nanometer-sized round semiconductor nanoparticles that are very efficient at emitting photons very quickly.

 

They are receiving a lot of attention as a possible next-gen technology in quantum information and communications because of these properties. The diameter of the equally-sized graphene quantum dots was 5 nanometers. Unlike existing quantum dots, new ones are eco-friendly, since they do not require toxic materials like lead and cadmium. Moreover, it is possible to mass-produce newly-developed quantum dots at little cost, because they are made of easily-obtainable materials such as graphite, water, and salt.

In the past, it was difficult to commercialize graphene quantum dots, in that it was not easy to synthesize a large number of equal size. Another factor was low efficiency from the way the particles were put together. The team developed and confirmed the possibility of the commercialization of graphene quantum dot LEDs with more than 1000cd/m2 brightness using graphene quantum dots, which are brighter than displays for cell phones.

Professor Jun remarked, “The new quantum dots are not as efficient as existing LEDs in emitting lights. However, the characteristics of emitting lights can be improved further.” He added, “I hope that it will be possible to make paper-thin displays and exhibit information in soft materials like curtains using this method.” The research findings were first published online on August 20 by Advanced Optical Materials, a scientific journal published by Wiley-VCH.

– See more at: http://www.businesskorea.co.kr/article/6151/quantum-dots-paving-way-paper-thin-displays#sthash.fksItjw8.dpuf

 

The researchers say that those gQDs could be used to develop LEDs that have a brightness of over 1000cd/m2. This is less efficient than current LEDs, but the researchers hope this technology can be further improved.

Source: Business Korea

 

 

 

Graphene May be KEY to Leap in Supercapacitor Performance


graphene_cover_orange_highresAbstract: By Dr Peter Harrop, Chairman, IDTechEx

Graphene electrodes are one of the best prospects for enabling supercapacitors and superbatteries to take up to half of the lithium-ion battery market in 15 years – amounting to tens of billions of dollars yearly.

They may also be key to supercapacitors taking much of the multibillion dollar aluminium electrolytic capacitor business. That would make supercapacitors and supercabatteries (notably in the form of lithium-ion capacitors) one of the largest applications for graphene.

Cambridge, UK | Posted on August 20th, 2014

Heirarchical to exohedral?

Today’s supercapacitor electrodes usually have hierarchical electrode structures with large pores progressing to small pores letting appropriate electrolyte ions into monolithic masses of carbon. In research, this is often giving way to better results from exohedral structures – where the large functional area is created by allotropes of carbon often only one atom thick. Examples are graphene, carbon nanotubes and nano-onions (spheres within spheres). Add to that the newer aerogels with uniform particles a few nanometers across.

It is not simply an area game. The exohedral structure must also be optimally matched to the electrolyte, then the pair assessed not just for specific capacitance (capacitance density) but voltage increase, because that also increases the commercially-important energy density when competing with batteries.

Nothing guaranteed

It is not a done deal. Graphene is expensive when good purity and structural integrity are required. Exohedral structures like graphene, with the greatest theoretical area, tend to improve gravimetric but not volumetric energy density. Poor volumetric energy density will cut off many applications unless structural supercapacitors prove feasible. Here the supercapacitor would replace dumb structures like car bodies, taking effectively no volume, regardless of measured volumetric energy density. Some of these formulations increase the already superb power density but that is not very exciting commercially.

piezoelectric-graphene

Other parameters matter

Of course cost, stability, temperature performance and many other parameters must also be appropriate in all potential applications of graphene in supercapacitors and supercabatteries. Indeed for replacing electrolytic capacitors, working at 120Hz is key. In other applications, increased power density may be valuable when combined with other improvements. Nevertheless, energy density improvement is the big one for sharply increasing the addressable market – probably around 2025 or later.

Highest energy density by leveraging new generation electrolytes

Graphene gives some of the highest energy densities in the laboratory and it is particularly effective in exhibiting high specific capacitance with the new electrolytes. That means aqueous electrolytes with desirably low cost and non-flammability, and ionic electrolytes with desirably simplified manufacturing, high voltage, non-flammability, low toxicity and now exceptional temperature range.

Ionic graphene

With ionic electrolytes, graphene works despite the high viscosity that makes them ineffective in hierarchical electrode structures. On the other hand, graphene does not exhibit good specific capacitance with the old acetonitrile and propylene carbonate organic solvent electrolytes. It is advantageous that there is no solvent or solute with ionic electrolytes, though sometimes they are added to tailor the ionic supercapacitor to obtain certain performance in experiments.

Aqueous graphene

With aqueous electrolytes, graphene’s accessible area is large and this offsets the low voltage to give good energy density in some experiments. Curved graphene is often used. Under a microscope it looks like crushed paper so further optimisation is possible. In the laboratory, the energy density of lead-acid and nickel cadmium batteries and even lithium-ion batteries has been achieved with various formulations involving graphene so it is likely that one of them will prove commercial in due course.

Supercabattery graphene

Recent developments by industrial companies demonstrate that graphene lithium-ion capacitor supercabattery systems can operate up to 3.7 V. They have a very good cycle life and excellent power performance.

AC graphene supercapacitors

Potentially, inverters in electric vehicles can be made smaller, lighter and have lower installed cost thanks to planned graphene supercapacitors replacing their large aluminium electrolytic capacitors. So far, it is only with vertically stacked graphene that the necessary time constant of 200 microseconds has been demonstrated suitable for such 120Hz filtering.

For more see the brand new IDTechEx report Functional Materials for Supercapacitors / Ultracapacitors / EDLC 2015-2025 and also Graphene Markets, Technologies and Opportunities 2014-2024. In addition, attend IDTechEx’s events Supercapacitors LIVE! USA 2014 and Graphene & 2D Materials LIVE! USA 2014 taking place in November.

New $AUD30 M Research Facility at RMIT University in Melbourne


A new $AUD30 million research facility at RMIT University in Melbourne, Australia, will drive cutting-edge advances in micro- and nano-technologies.

RMIT University’s $AUD30 million MicroNano Research Facility.

The MicroNano Research Facility (MNRF) will bring to Australia the world’s first rapid 3D nanoscale printer and will support projects that span across the traditional disciplines of physics, chemistry, engineering, biology and medicine.

The City campus facility will be launched by Vice-Chancellor and President, Professor Margaret Gardner AO, on Wednesday, 27 August.

Professor Gardner said the opening of the state-of-the-art laboratories and clean rooms was the start of an exciting new chapter in cross-disciplinary nano research.

Aus micro nano zqnydqgs2c8m1

“At the heart of the MicroNano Research Facility’s mission is bringing together disparate disciplines to enable internationally-leading research activity,” she said.

“RMIT has long been a pioneer in this field, opening Australia’s first academic clean rooms at the Microelectronics and Materials Technology Centre in 1983.

“Over three decades later, this investment in the world-class MNRF will enable RMIT’s leading researchers to continue to break new ground and transform the future.”

Among the equipment available to researchers in the 1200 square metre facility will be the world’s first rapid 3D nanoscale printer, capable of producing thousands of structures – each a fraction of the width of a human hair – in seconds.

Designed by architects SKM Jacobs, the MNRF also offers researchers access to more than 50 cutting-edge tools, including focused ion beam lithography with helium, neon, and gallium ion beams to enable imaging and machining objects to 0.5 nm resolution – about 5 to 10 atoms.

Director of the MNRF, Professor James Friend, said 10 research teams would work at the new facility on a broad range of projects, including:

  • building miniaturised motors – or microactuators – to retrieve blood clots from deep within the brain, enabling minimally invasive neurological intervention in people affected by strokes or aneurysms;
  • improving drug delivery via the lungs through new techniques that can atomise large biomolecules – including drugs, DNA, antibodies and even cells – into tiny droplets to avoid the damage of conventional nebulisation;
  • developing innovative energy harvesting techniques that change the way batteries are recharged, using novel materials that can draw on the energy generated simply by people walking around; and,
  • inventing ways to use water to remove toxins from fabric dyes, with new nanotechnologies that can facilitate the breaking down of those dyes with nanostructured catalysts.

“This facility is all about ensuring researchers have the freedom to imagine and safely realise the impossible at tiny scales and beyond,” Professor Friend said.

“Having access to purpose-designed laboratories and leading-edge equipment opens tremendous opportunities for RMIT and for those we collaborate with, enabling us to advance the development of truly smart technology solutions to some of our most complex problems.”

Laboratories in the MNRF will include:

  • Gas sensors laboratory
  • Metrology laboratory
  • Novel Fabrication laboratory
  • PC2 mammalian cell laboratory
  • Photolithography laboratory
  • Physical vapour deposition laboratory
  • Polydimethylsiloxane (PDMS) and nanoparticle laboratory
  • Wet etch laboratory
  • Support laboratory

The MNRF will be a key enabler of RMIT’s flagship Health Innovations Research Institute and Platform Technologies Research Institute.

A unique teaching facility will also be affiliated with the MNRF.

The Micro Nano Teaching Facility (MNTF) is the first of its kind in Australia, enabling undergraduate and postgraduate engineering student trainees to study clean room operations and micro-fabrication

Nanotechnology In Agriculture


 

Agri Nano id1360Nanotechnology applications are currently being researched, tested and in some cases already applied across the entire spectrum of food technology, from agriculture to food processing, packaging and food supplements. In our special Food Nanotechnology section we have prepared an overview of this area.

 

Specifically in agriculture, technical innovation is of importance with regard to addressing global challenges such as population growth, climate change and the limited availability of important plant nutrients such as phosphorus and potassium.

Agri Nano id1360

Nanotechnology applied to agricultural production could play a fundamental role for this purpose and research on agricultural applications is ongoing for largely a decade by now.

A recent “Workshop on Nanotechnology for the agricultural sector: from research to the field”, held on November 21-22 2013, reviewed the state-of-the-art of R&D of nanotechnology for the agricultural sector and analyzed possible markets and commercial pipeline of products. The proceedings from this workshop are now available for download (pdf).

Agri Nano 2 id37064

Here is a summary of the five major sections of this workshop:

Overview of nanotechnology research activities in the agricultural sector

The application of nanomaterials in agriculture aims in particular to reduce applications of plant protection products, minimize nutrient losses in fertilization, and increase yields through optimized nutrient management.
Despite these potential advantages, the agricultural sector is still comparably marginal and has not yet made it to the market to any larger extent in comparison with other sectors of nanotechnology application.
Nanotechnology devices and tools, like nanocapsules, nanoparticles and even viral capsids, are examples of uses for the detection and treatment of diseases, the enhancement of nutrients absorption by plants, the delivery of active ingredients to specific sites and water treatment processes.

The use of target-specific nanoparticles can reduce the damage to non-target plant tissues and the amount of chemicals released into the environment. Nanotechnology derived devices are also explored in the field of plant breeding and genetic transformation.

The potential of nanotechnology in agriculture is large, but a few issues are still to be addressed, such as increasing the scale of production processes and lowering costs, as well as risk assessment issues. In this respect, particularly attractive are nanoparticles derived from biopolymers such as proteins and carbohydrates with low impact on human health and the environment.

For instance, the potential of starch-based nanoparticles as nontoxic and sustainable delivery systems for agrochemicals and biostimulants is being extensively investigated.
Nanomaterials and nanostructures with unique chemical, physical, and mechanical properties – e.g. electrochemically active carbon nanotubes, nanofibers and fullerenes – have been recently developed and applied for highly sensitive bio-chemical sensors.

These nanosensors have also relevant implications for application in agriculture, in particular for soil analysis, easy bio-chemical sensing and control, water management and delivery, pesticide and nutrient delivery.
In recent years, agricultural waste products have attracted attention as source of renewable raw materials to be processed in substitution of fossil resources for several different applications as well as a raw material for nanomaterial production (see for instance: “New synthesis method for graphene using agricultural waste”).

Nanocomposites based on biomaterials have beneficial properties compared to traditional micro and macro composite materials and, additionally, their production is more sustainable. Many production processes are being developed nowadays to obtain useful nanocomposites from traditionally harvested materials.

Commercial applications of nanotechnology in the agricultural sector.

From a commercial perspective, existing agro-chemical companies are investigating the potential of nanotechnologies and, in particular, whether intentionally manufactured nano-size active ingredients can give increased efficacy or greater penetration of useful components in plants.

However, the nano-size so far did not demonstrate to hold key improvements in products characteristics, especially considering the interest of large scale production and the costs involved in it.

Some specific nano-products for the agricultural sector have been put on the market by technology-oriented smaller companies, like soil-enhancer products that promote even water distribution, storage and consequently water saving.

However, the commercial market application of these products is so far only achieved at small scale, due to the high costs involved in their development. These costs are normally compensated by higher returns in the medical or pharmaceutical sectors, but so far there are no such returns in the agricultural sector. Research continues in the commercial agro-chemical sector to evaluate potential future advantages.

Companies are also facing challenges derived from the definition of nanomaterials that is adopted by the EU. One crucial point related to the EU definition is the possibility that non-active substances already used for many decades in commercial products formulations will fall within the scope of the nano definition, although not intentionally developed as nanoparticles or having specific nano-scale properties.

Nanoscale formulants (e.g. clay, silica, polymers, pigments, macromolecules) have been used for many decades and are also ubiquitous in many daily household products.

The concern is that the need for labelling of products that are already on the market since decades results in a scenario, in which the technology is stigmatized, preventing further and innovative applications of nanotechnology in agriculture.
Nanotechnology risk assessment and regulation in the EU and worldwide

Due to the variety of applications of nanotechnology, different pieces of legislation are concerned in the EU, including both horizontal legislation and product-specific legislation. The most comprehensive horizontal piece of legislation relevant to nanomaterials is the EU Regulation on Registration, Evaluation, Authorisation and Restriction of Chemicals (REACH), which addresses chemical substances, in whatever size, shape or physical state.

Substances at the nanoscale are therefore covered by REACH and its provisions apply. Some researchers, however, argue that REACH needs to be revised in three major areas (read more: “Does the EU’s chemical regulation sufficiently address nanotechnology risks?”.

Among product-specific legislation, some already explicitly address nanomaterials (cosmetics, food additives, provision of food information to consumers, and biocides) while others do not (toys, electrical equipment and waste & environmental legislation).

At international level, there are several activities in place on risk analysis of nanomaterials in the food and agriculture sectors, in particular by the governments of Australia/New Zealand, Canada, China, the EU, Japan, Switzerland and the US.

Overall, definitions of nanomaterials developed in different countries result in different risk management measures. So far, apart from the EU, no country has set a regulatory framework for the mandatory labelling of nanomaterials in food and current regulations do not cover all areas (see for instance: “Gaps in U.S. nanotechnology regulatory oversight”).

Socio-economic issues of agricultural nanotechnology.

The emergence of nanotechnology applications in consumer products has also raised a number of ethical and societal concerns in some countries, starting from health and environmental safety, to consumer perception and intellectual property rights.

From different studies about consumer acceptance of nanotechnology products, it appears that the public opinion is generally not negative. The public seems to be unconcerned about many applications of nanotechnology with the exception of areas where societal concern already exists such as pesticides.

As for many emerging technologies, intellectual property in nanotechnology, and in particular freedom to operate, constitute relevant issues for the development of new products.

The number of patent applications in nanotechnology has increased more than tenfold during the last 20 years, demonstrating a great potential for commercial applications.

Patenting on nanotechnology in general presents some important concerns (read more: “Legal implications of the nanotechnology patent land rush”).

Nanotechnology is pervasive in different fields of applications and nano-based inventions could infringe existing granted patents in those fields. This risk of overlapping patents can also have consequences for the agri-food sector. Moreover, patent holders could lock-up huge areas of technology.

There are indeed already over 3,000 patents worldwide for potential agrochemical usage of nanotechnology but they are most likely patents with broad claims, filed with the scope of guarantee freedom to operate in the field in case of future commercial developments.

In developing countries nanotechnologies can have important applications in several agri-food areas, such as food security, input delivery, rice production systems, agri-biotechnology, healthcare of animals, precision farming, food industry and water use (read more: “Small is beautiful? Nanotechnology solutions for development problems”).

However, the main factors limiting the development of these applications are low investments in manpower training and in research infrastructure.

Michael Berger. Copyright ©

Graphene Oxide can turn into liquid crystal droplets, may lead to drug delivery systems and bio-sensors


graphene-oxide-turning-into-liquid-crystal-dropletsA chance discovery about the ‘wonder material’ graphene – already exciting scientists because of its potential uses in electronics, energy storage and energy generation – takes it a step closer to being used in medicine and human health.

Researchers from Monash University have discovered that graphene oxide sheets can change structure to become liquid crystal droplets spontaneously and without any specialist equipment.

With graphene droplets now easy to produce, researchers say this opens up possibilities for its use in and disease detection.

The findings, published in the journal ChemComm, build on existing knowledge about graphene. One of the thinnest and strongest materials known to man, graphene is a 2D sheet of carbon just one atom thick. With a ‘honeycomb’ structure the ‘wonder material’ is 100 times stronger than steel, highly conductive and flexible.

 

graphene-oxide-turning-into-liquid-crystal-droplets

 

 

Dr Mainak Majumder from the Faculty of Engineering said because graphene droplets change their structure in response to the presence of an external magnetic field, it could be used for controlled drug release applications.

“Drug delivery systems tend to use magnetic particles which are very effective but they can’t always be used because these particles can be toxic in certain physiological conditions,” Dr Majumder said.

“In contrast, graphene doesn’t contain any magnetic properties. This combined with the fact that we have proved it can be changed into liquid crystal simply and cheaply, strengthens the prospect that it may one day be used for a new kind of drug delivery system.”

Usually atomisers and mechanical equipment are needed to change graphene into a spherical form. In this case all the team did was to put the graphene sheets in a solution to process it for industrial use. Under certain PH conditions they found that graphene behaves like a polymer – changing shape by itself.

First author of the paper, Ms Rachel Tkacz from the Faculty of Engineering, said the surprise discovery happened during routine tests.

“To be able to spontaneously change the structure of graphene from single sheets to a spherical assembly is hugely significant. No one thought that was possible. We’ve proved it is,” Ms Tkacz said.

“Now we know that graphene-based assemblies can spontaneously change shape under certain conditions, we can apply this knowledge to see if it changes when exposed to toxins, potentially paving the way for new methods of disease detection as well.”

Commonly used by jewelers, the team used an advanced version of a polarised light microscope based at the Marine Biological Laboratory, USA, to detect minute changes to grapheme.

Dr Majumder said collaborating with researchers internationally and accessing some of the most sophisticated equipment in the world, was instrumental to the breakthrough discovery.

“We used microscopes similar to the ones jewelers use to see the clarity of precious gems. The only difference is the ones we used are much more precise due to a sophisticated system of hardware and software. This provides us with crucial information about the organisation of graphene sheets, enabling us to recognise these unique structures,” Dr Majumder said.

Dr Majumder and his team are working with graphite industry partner, Strategic Energy Resources Ltd and an expert in polarized light imaging, Dr. Rudolf Oldenbourg from the Marine Biological Laboratory, USA, to explore how this work can be translated and commercialised.

Mr Mark Muzzin, CEO of Strategic Energy Resources Ltd said the collaboration with Monash was progressing well.

“We are so pleased to be associated with Dr Majumder’s team at Monash University. The progress they have made with our joint project has been astonishing,” he said.

The research was made possible by an ARC Linkage grant awarded to Strategic Energy Resources Ltd and Monash University and was the first linkage grant for research in Australia.

Explore further: Making graphene in your kitchen

Read more at: http://phys.org/news/2014-08-discovery-graphene-health.html#jCp

 

 

 

Genesis Nanotech Headlines Are Out!


 

 CNT multiprv1_jpg71ec6d8c-a1e2-4de6-acb6-f1f1b0a66d46Larger

  • New Wonder-Material Perovskite makes LED’s Cheaper & Easier to Manufactuer
  • U of Michigan Researchers Develop Graphene-Based Wearable Vapor Sensors
  • Supercomputer Speed from a Tiny “Chip” that Mimics the Human Brain

Read All About It Here:  

https://paper.li/GenesisNanoTech/1354215819#!headlines

 

Follow Us on Facebook & Twitter!

Our Blog: “Great Things from Small Things” https://genesisnanotech.wordpress.com

 

 Our Website: http://www.genesisnanotech.com