EPPL Creates a low-cost system for splitting carbon dioxide – Turning Renewable Energy into Fuel


Ball-and-stick model of carbon dioxide. Credit: Wikipedia

Using Earth-abundant materials, EPFL scientists have built the first low-cost system for splitting CO2 into CO, a reaction necessary for turning renewable energy into fuel.
The future of clean energy depends on our ability to efficiently store energy from renewable sources and use it later. 


A popular way to do this is to electrolyze carbon dioxide to carbon monoxide, which is then mixed with hydrogen to produce liquid hydrocarbons like gasoline or kerosene that can be used as fuel. 

However, we currently lack efficient and Earth-abundant catalysts for the initial splitting of CO2 into CO and oxygen, which makes the move into renewable energy expensive and prohibitive. 

EPFL scientists have now developed an Earth-abundant catalyst based on copper-oxide nanowires modified with tin oxide. 
The system can split CO2 with an efficiency of 13.4%. 
The work is published in Nature Energy, and can help worldwide efforts to synthetically produce carbon-based fuels from CO2 and water.

The research was carried out by the lab of Michael Grätzel at EPFL. Grätzel is known worldwide for the invention of the first ever dye-sensitized solar cells (or “Grätzel cells”). 

The catalyst, developed by PhD student Marcel Schreier and postdoc Jingshan Luo, is made by depositing an atomic layer of tin oxide on copper oxide nanowires

By using such Earth-abundant materials, the design keeps the cost of the catalyst low while significantly increasing the yield of CO, as opposed to the other products that are generated from CO2 electrocatalysis.
The catalyst was integrated into a CO2 electrolysis system and linked to a triple-junction solar cell (GaInP/GaInAs/Ge) to make a CO2 electrolyzer. 

The system uses the catalyst as a bifunctional electrode that both reduces CO2 into CO and produces oxygen through what is known as the “oxygen evolution” reaction. The two products are separated with a bipolar membrane.

Using solar energy, the system was able to selectively convert CO2 to CO with an efficiency of 13.4%, and do so with a Faradaic efficiency up to 90%—this describes how efficiently electrical charge is transferred in a electrocatalysis system like the one developed here. “The work sets a new benchmark for solar-driven CO2 reduction,” says Luo.

“This is the first time that such a bi-functional and low-cost catalyst is demonstrated,” adds Schreier. “Very few catalysts—except expensive ones, like gold and silver—can selectively transform CO2 to CO in water, which is crucial for industrial applications.”

 
More information: Marcel Schreier, Florent Héroguel, Ludmilla Steier, Shahzada Ahmad, Jeremy S. Luterbacher, Matthew T. Mayer, Jingshan Luo, Michael Grätzel. Solar conversion of CO2 to CO using Earth-abundant electrocatalysts prepared by atomic layer modification of CuO. Nature Energy 2, 17087 (05 June 2017). nature.com/articles/doi:10.1038/nenergy.2017.87
Provided by: Ecole Polytechnique Federale de Lausanne

U of Minnesota: Discovery of new transparent thin film material – Less Costly than Indium – Could lead to smaller, faster, more powerful electronics, improve solar cells


U of Minn ThinFilm Solar 5-discoveryofnA team of researchers, led by the University of Minnesota, have discovered a new nano-scale thin film material with the highest-ever conductivity in its class.  Credit: University of Minnesota

A team of researchers, led by the University of Minnesota, have discovered a new nano-scale thin film material with the highest-ever conductivity in its class. The new material could lead to smaller, faster, and more powerful electronics, as well as more efficient solar cells.

The discovery is being published today in Nature Communications, an open access journal that publishes high-quality research from all areas of the natural sciences.

Researchers say that what makes this new material so unique is that it has a high conductivity, which helps electronics conduct more electricity and become more powerful. But the material also has a wide bandgap, which means light can easily pass through the material making it optically transparent. In most cases, materials with wide bandgap, usually have either low conductivity or poor transparency.

“The high conductivity and wide bandgap make this an ideal material for making optically transparent conducting films which could be used in a wide variety of electronic devices, including , electronic displays, touchscreens and even in which light needs to pass through the device,” said Bharat Jalan, a University of Minnesota chemical engineering and materials science professor and the lead researcher on the study.

Currently, most of the in our electronics use a chemical element called indium. The price of indium has gone up tremendously in the past few years significantly adding to the cost of current display technology. As a result, there has been tremendous effort to find alternative materials that work as well, or even better, than indium-based transparent conductors.

In this study, researchers found a solution. They developed a new transparent conducting thin film using a novel synthesis method, in which they grew a BaSnO3 thin film (a combination of barium, tin and oxygen, called barium stannate), but replaced elemental tin source with a chemical precursor of tin. The chemical precursor of tin has unique, radical properties that enhanced the chemical reactivity and greatly improved the metal oxide formation process. Both barium and tin are significantly cheaper than indium and are abundantly available.

“We were quite surprised at how well this unconventional approach worked the very first time we used the tin chemical precursor,” said University of Minnesota engineering and materials science graduate student Abhinav Prakash, the first author of the paper. “It was a big risk, but it was quite a big breakthrough for us.”

Jalan and Prakash said this new process allowed them to create this material with unprecedented control over thickness, composition, and defect concentration and that this process should be highly suitable for a number of other material systems where the element is hard to oxidize. The new process is also reproducible and scalable.

They further added that it was the structurally superior quality with improved defect concentration that allowed them to discover high conductivity in the material. They said the next step is to continue to reduce the defects at the atomic scale.

“Even though this material has the highest within the same class, there is much room for improvement in addition, to the outstanding potential for discovering new physics if we decrease the defects. That’s our next goal,” Jalan said.

Explore further: See-through circuitry: New and cheap alternative for transparent electronics

More information: Abhinav Prakash et al, Wide bandgap BaSnO3 films with room temperature conductivity exceeding 104 S cm−1, Nature Communications (2017). DOI: 10.1038/ncomms15167

 

Los Alamos National Laboratory Studies Perovskites for Efficient Optoelectronics: Video


Los Alamos III 13785853973_eee18af4fc_b

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are gaining an extra degree of freedom in designing and fabricating efficient optoelectronic devices based on 2D layered hybrid perovskites. Industrial applications could include low cost solar cells, LEDs, laser diodes, detectors, and other nano-optoelectronic devices.

Los Alamos Lab lanl-logo-footerThe 2D, near-single-crystalline “Ruddlesden-Popper” thin films have an out-of-plane orientation so that uninhibited charge transport occurs through the perovskite layers in planar devices. The new research finds the existence of “layer-edge-states” at the edges of the perovskite layers which are key to both high efficiency of solar cells (greater than 12 percent) and high fluorescence efficiency (a few tens of percent) for LEDs. The spontaneous conversion of excitons (bound electron-hole pairs) to free carriers via these layer-edge states appears to be the key to the improvement of the photovoltaic and light-emitting thin film layered materials.

Watch the Video

See the news release here:
http://www.lanl.gov/discover/news-rel…

And the research paper in Science:
http://science.sciencemag.org/content…

What is up with the U.S. ‘Solar Industry’? Is There and Impending US Solar Energy Crash?


Solar Crash I solar-and-wind-energy

After nice stretch of sunny weather, the last few months have clouded over for big solar. Declining prices for photovoltaic cells are hurting panel manufacturers and stressing solar installation businesses.

This situation was in sharp relief this week in Tesla’s (TSLA Tesla Motors Inc TSLA 307.19 -0.38%) earnings, as its solar installation business, SolarCity, disclosed a big slowdown in builds. SolarCity commands 41 percent of the residential solar installation market, according to GTM. In its latest earnings, the firm revealed that it had installed 150 MW of panels in the first quarter, down nearly 39 percent y/y.

“Rather than prioritizing the growth of MW of solar deployed at any cost, we are selectively deploying projects that have higher margin and generate cash up front. Consequently, solar energy generation deployments in Q1 2017 declined year-over-year, but had better financial results,” said the earnings release.

The Curious Logic of the Solar Market

Industry body Solar Energy Industries Association (SEIA) reports that installations for the past year actually went up. In 2016, the U.S. saw 14.8GW solar capacity installed with a new installation taking place every 84 seconds.

There are companies that are doing well. First Solar (FSLR First Solar In FSLR 35.15 +1.77%) just reported strong earnings while Vivint Solar (VSLR Vivint Solar Inc VSLR 3.00+1.70%) announced is expansion into Rhode Island and is expected to announce financial results next week. However, the list of struggling companies in the sector is longer.

SunPower Corp. (SPWR) reported its sixth consecutive quarter of losses and laid off 25 percent of its workforce. Verengo Solar filed for bankruptcy last year, while Sungevity and Suninva did the same earlier this year.

But if solar energy is seeing such high demand, why are the companies feeling the heat?

The Price Is Not Right

The cost of the production and installation of solar panels has dropped dramatically and that is driving demand. According to SEIA, the cost to install solar capacity dropped 29 percent in the final quarter of 2016, compared to the same period last year. Over the past 10 years, installation costs have come down by nearly 60 percent.

There is more than one reason for price suppression in the solar industry.

“Driving the cost reductions were lower module and inverter prices, increased competition, lower installer and developer overheads, improved labor productivity, and optimized system configurations,” a National Renewable Energy Laboratory report states.

At home, the government tried to promote solar energy to consumers by making it affordable. One such initiative was the Solar Investment Tax Credit for residential and business solar installations, adopted in 2006 and extended in 2015.

In the international arena, U.S. solar companies blame declining panel prices on foreign imports, especially from countries like China, Mexico and Canada. Suniva recently implored President Trump for protectionist policies for the sector.

However, as the big ones struggled, someone made hay as the sun shone. According to GTM research’s U.S. Residential Solar Update 2017, many of the larger firms struggled to do well while smaller, local companies thrived.

More Insights: Investopedia http://www.investopedia.com/news/solar-industry-slowdown-catches-solarcity/#ixzz4gWsv7IYa

Improving Perovskites to Surpass Silicon Solar Cell Performance: Answers from ANSER


Perovskites Water id46564The perovskite device is made of different layers, each of which has a specific function. Together, the titanium dioxide and PC61BM layers protect the perovskite from heat and water. (Image: Rebecca Palmer, ANSER EFRC)

 

Harvesting sunlight and using it to power our homes and devices is a reality today. Generally, most commercial solar cells are made of silicon. However, as highlighted previously, a type of material called perovskite halides are a potential competitor of silicon. Unfortunately, most perovskite halides are sensitive to moisture and high temperatures such that exposure to either will quickly degrade these materials — rendering them useless. Researchers at the Argonne-Northwestern Solar Energy Research Center (ANSER) have developed a way to protect perovskites from water and stabilize them against heat. By carefully growing an ultrathin layer of metal oxide on a carbon coating, the researchers made a perovskite device that worked even after dousing the device with a stream of water (Nano Letters, “Liquid Water- and Heat-Resistant Hybrid Perovskite Photovoltaics via an Inverted ALD Oxide Electron Extraction Layer Design”).

Solar cells are made up of layers, each with a specific duty. The perovskite layer absorbs sunlight, which can excite an electron. The electron could go right back to where it started, unless it can be extracted out of the absorbing layer quickly. For this device, the researchers placed a layer of PC61BM, a carbon-based material, on top of the perovskite, which has two roles. First, PC61BM is good at extracting electrons once they are excited by sunlight. Second, the PC61BM layer protects the perovskite from water vapor, which is one of the reactants used for forming the final protective coating — titanium dioxide.
The titanium dioxide layer was grown using atomic layer deposition (ALD), a method that deposits alternating layers of titanium and oxygen atoms. The researchers demonstrated that depositing the titanium dioxide by ALD creates a barrier with no pinholes, effectively blocking moisture from entering the film. Only about 20 nanometers of titanium dioxide on the PC61BM were needed to protect the perovskite. This layer is around 1,000 times thinner than the thickness of a human hair.
On top of the titanium dioxide, aluminum electrodes were deposited and protected by a thin layer of gold. On the opposite side of the perovskite, the team placed a nickel oxide layer that is good at extracting the positively charged holes left by the electrons. Glass, coated with a conductive film, is used as a support that allows light to pass through and a circuit to be formed.
The device held up to pure water and a temperature of 100 °C (around 200 °F) thanks to the titanium dioxide layer. In Soo Kim, a postdoctoral fellow and lead researcher, explained that he was excited about this result. “The key challenge to commercialization of any halide perovskite-based devices is the environmental stability.”
Many people have been studying perovskite halides, but the stability under real-world environmental situations has been largely overlooked. Kim’s work is one of the first examples of protecting perovskite from liquid water with an ultrathin metal oxide layer. Alex Martinson, who directed the work, said, “It is surprising when something simple works so well.”
Martinson explained that perovskite solar cells have a lot of promise because they have the potential to be cheaper than the current commercial devices, such as silicon. The silicon manufacturing process is energy intensive, and silicon materials are required to be highly pure. In contrast, there are many pathways to make perovskites, and the performance of perovskite devices are less sensitive to impurities. Scientists at ANSER are excited to continue to explore what perovskites can do. Enabling these devices to withstand water and heat is a big step towards being able to buy a perovskite device at a local hardware store.
Source: By Rebecca Palmer, Energy Frontier Research Centers

Read more: Teaching perovskites to swim

NREL & Colorado School of Mines Researchers Capture Excess Photon Energy to Produce Solar Fuels



Photo shows a lead sulfide quantum dot solar cell. A lead sulfide quantum dot solar cell developed by researchers at NREL. Photo by Dennis Schroeder.




Scientists at the U.S. Department of Energy’s National Renewable Energy Laboratory (NREL) have developed a proof-of-principle photoelectrochemical cell capable of capturing excess photon energy normally lost to generating heat.


Using quantum dots (QD) and a process called Multiple Exciton Generation (MEG), the NREL researchers
were able to push the peak external quantum efficiency for hydrogen generation to 114 percent.


The advancement could significantly boost the production of hydrogen from sunlight by using the cell to split water at a higher efficiency and lower cost than current photoelectrochemical approaches.

Details of the research are outlined in the Nature Energy paper Multiple exciton generation for photoelectrochemical hydrogen evolution reactions with quantum yields exceeding 100%, co-authored by Matthew Beard, Yong Yan, Ryan Crisp, Jing Gu, Boris Chernomordik, Gregory Pach, Ashley Marshall, and John Turner.

All are from NREL; Crisp also is affiliated with the Colorado School of Mines, and Pach and Marshall are affiliated with the University of Colorado, Boulder.




Beard and other NREL scientists in 2011 published a paper in Science that showed for the first time how MEG allowed a solar cell to exceed 100 percent quantum efficiency by producing more electrons in the electrical current than the amount of photons entering the solar cell.




“The major difference here is that we captured that MEG enhancement in a chemical bond rather than just in the electrical current,” Beard said.

“We demonstrated that the same process that produces extra current in a solar cell can also be applied to produce extra chemical reactions or stored energy in chemical bonds.”

The maximum theoretical efficiency of a solar cell is limited by how much photon energy can be converted into usable electrical energy, with photon energy in excess of the semiconductor absorption bandedge lost to heat.

The MEG process takes advantages of the additional photon energy to generate more electrons and thus additional chemical or electrical potential, rather than generating heat. QDs, which are spherical semiconductor nanocrystals (2-10 nm in diameter), enhance the MEG process.




In current report, the multiple electrons, or charge carriers, that are generated through the MEG process within the QDs are captured and stored within the chemical bonds of a H2 molecule.

NREL researchers devised a cell based upon a lead sulfide (PbS) QD photoanode. The photoanode involves a layer of PbS quantum dots deposited on top of a titanium dioxide/fluorine-doped tin oxide dielectric stack.

The chemical reaction driven by the extra electrons demonstrated a new direction in exploring high-efficiency approaches for solar fuels.

Funds for the research came from the Department of Energy’s Office of Science.

NREL is the U.S. Department of Energy’s primary national laboratory for renewable energy and energy efficiency research and development. NREL is operated for the Energy Department by The Alliance for Sustainable Energy, LLC.

Making Solar Cells Obsolete with GIT’s Optical ‘Rectenna’ Technology ~ 40% to 90% Conversion Effciency: YouTube Video


Optical Rectenna download

Georgia Tech Professor of Mechanical Engineering, Dr. Bara Cola, shares how his childhood dreams of playing professional football turned into an exciting research career and important nanoengineering innovations. Dr. Cola’s breakthrough optical rectenna technology can be viewed here https://smartech.gatech.edu/handle/18….”

Watch the YouTube Video:

 

e9cf3-nanorectannaA new kind of nanoscale rectenna (half antenna and half rectifier) can convert solar and infrared into electricity, plus be tuned to nearly any other frequency as a detector.

Right now efficiency is only one percent, but professor Baratunde Cola and colleagues at the Georgia Institute of Technology (Georgia Tech, Atlanta) convincingly argue that they can achieve 40 percent broad spectrum efficiency (double that of silicon and more even than multi-junction gallium arsenide) at a one-tenth of the cost of conventional solar cells (and with an upper limit of 90 percent efficiency for single wavelength conversion).

It is well suited for mass production, according to Cola. It works by growing fields of carbon nanotubes vertically, the length of which roughly matches the wavelength of the energy source (one micron for solar), capping the carbon nanotubes with an insulating dielectric (aluminum oxide on the tethered end of the nanotube bundles), then growing a low-work function metal (calcium/aluminum) on the dielectric and voila–a rectenna with a two electron-volt potential that collects sunlight and converts it to direct current (DC).

“Our process uses three simple steps: grow a large array of nanotube bundles vertically; coat one end with dielectric; then deposit another layer of metal,” Cola told EE Times. “In effect we are using one end of the nanotube as a part of a super-fast metal-insulator-metal tunnel diode, making mass production potentially very inexpensive up to 10-times cheaper than crystalline silicon cells.”

Read the full Article Here: Solar Cells Will be Made Obsolete by 3D rectennas aiming at 40-to-90% efficiency

 

Replacing Silicon in Solar Cells with Hybrid perovskite material could double efficiency



A new material has been shown to have the capability to double the efficiency of solar cells by researchers at Purdue University and the National Renewable Energy Laboratory.

Hybrid perovskite

The material, called a hybrid perovskite, has an inorganic crystal “cage” which contains an organic molecule, methyl-ammonium. (Image: Libai Huang)

Conventional solar cells are at most one-third efficient, a limit known to scientists as the Shockley-Queisser Limit. The new material, a crystalline structure that contains both inorganic materials (iodine and lead) and an organic material (methyl-ammonium), boosts the efficiency so that it can carry two-thirds of the energy from light without losing as much energy to heat.

In less technical terms, this material could double the amount of electricity produced without a significant cost increase.

Enough solar energy reaches the earth to supply all of the planet’s energy needs multiple times over, but capturing that energy has been difficult – as of 2013, only about 1 percent of the world’s grid electricity was produced from solar panels.
Libai Huang, assistant professor of chemistry at Purdue, says the new material, called a hybrid perovskites, would create solar cells thinner than conventional silicon solar cells, and is also flexible, cheap and easy to make.

“My graduate students learn how to make it in a few days,” she says.

The breakthrough is published this week in the journal Science (“Long-range hot-carrier transport in hybrid perovskites visualized by ultrafast microscopy”).

The most common solar cells use silicon as a semiconductor, which can transmit only one-third of the energy because of the band gap, which is the amount of energy needed to boost an electron from a bound state to a conducting state, in which the electrons are able to move, creating electricity.

How electrons move in hybrid perovskite


Scientists at Purdue University and the National Renewable Energy Laboratory have discovered how electrons move in a new crystalline material and this discovery could lead to doubling the efficiency of solar cells. Ultrafast microscope images, such as these, show that the electrons in material is able to move over 200 nanometers with minimal energy loss to heat. (Image: Libai Huang) (click on image to enlarge)

Incoming photons can have more energy than the band gap, and for a very short time – so short it’s difficult to imagine – the electrons exist with extra energy. These electrons are called “hot carriers,” and in silicon they exist for only one picosecond (which is 10-12 seconds) and only travel a maximum distance of 10 nanometers. At this point the hot carrier electrons give up their energy as heat. This is one of the main reasons for the inefficiency of solar cells.

Huang and her colleagues have developed a new technique that can track the range of the motion and the speed of the hot carriers by using fast lasers and microscopes.

“The distance hot carriers need to migrate is at least the thickness of a solar cell, or about 200 nanometers, which this new perovskite material can achieve,” Huang says. “Also these carriers can live for about 100 picoseconds, two orders of magnitude longer than silicon.”

Kai Zhu, senior scientist at the National Renewable Energy Laboratory in Golden, Colorado, and one of the journal paper’s co-authors, says that these are critical factors for creating a commercial hot-carrier solar cell.

“This study demonstrated that hot carriers in a standard polycrystalline perovskite thin film can travel for a distance that is similar to or longer than the film thickness required to build an efficient perovskite solar cell,” he says. “This indicates that the potential for developing hot carrier perovskite solar cell is good.”

However, before a commercial product is developed, researchers are trying to use the same techniques developed at Purdue by replacing lead in the material with other, less toxic, metals.

“The next step is to find or develop suitable contact materials or structures with proper energy levels to extract these hot carriers to generate power in the external circuit,” Zhu says. “This may not be easy.”

Source: Purdue University 

Third-Generation Solar Cells using Metalorganic Perovskites Challenges silicon based Solar Cells


nanotubefilmAn illustration of a perovskite solar cell. Credit: Photo by Aalto University / University of Uppsala / EPFL

Five years ago, the world started to talk about third-generation solar cells that challenged the traditional silicon cells with a cheaper and simpler manufacturing process that used less energy.

Methylammonium lead iodide is a metal-organic material in the perovskite crystal structure that captures light efficiently and conducts electricity well—both important qualities in . However, the lifetime of solar cells made of metalorganic perovskites has proven to be very short compared to cells made of .

Now researchers from Aalto University, Uppsala University and École polytechnique fédérale de Lausanne (EPFL) in Switzerland have managed to improve the long term stability of solar cells made of perovskite using “random network” nanotube films developed under the leadership of Professor Esko Kauppinen at Aalto University. Random network nanotube films are films composed of single-walled carbon nanotubes that in an electron microscope image look like spaghetti on a plate.

‘In a traditional perovskite solar cell, the hole conductor layer consists of organic material and, on top of it, a thin layer of gold that easily starts to disintegrate and diffuse through the whole solar cell structure. We replaced the gold and also part of the organic material with films made of carbon nanotubes and achieved good cell stability in 60 degrees and full one sun illumination conditions‘, explains Kerttu Aitola, who defended her doctoral dissertation at Aalto University and now works as a researcher at Uppsala University

In the study, thick black films with conductivity as high as possible were used in the back contact of the solar cell where light does not need to get through. According to Aitola, nanotube films can also be made transparent and thin, which would make it possible to use them as the front contact of the cell, in other words as the contact that lets light through.

‘The solar cells were prepared in Uppsala and the long-term stability measurement was carried out at EPFL. The leader of the solar cell group at EPFL is Professor Michael Grätzel, who was awarded the Millennium Prize 2010 for dye-sensitised solar cells, on which the are also partly based on’, says Aitola.

Nanotube film may resolve longevity problem of challenger solar cells
Cross-section of the solar cell in an electron microscope image. The fluff seen in the front of the image is composed of bundles of nanotubes that have become half-loose when the samples have been prepared for imaging. Credit: Photo by Aalto University / University of Uppsala / EPFL

 

The lifetime of solar cells made of silicon is 20-30 years and their industrial production is very efficient. Still, alternatives are needed as reducing the silicon dioxide in sand to silicon consumes a huge amount of energy. It is estimated that a needs two or three years to produce the energy that was used to manufacture it, whereas a perovskite solar cell would only need two or three months to do it.

‘In addition, the silicon used in solar cells must be extremely pure’, says Aitola.

‘Perovskite solar cell is also interesting because its efficiency, in other words how efficiently it converts sunlight energy into electrical energy, has very quickly reached the level of silicon solar cells. That is why so much research is conducted on perovskite solar cells globally.’

The alternative solar cells are even more interesting because of their various application areas. Flexible solar cells have until now been manufactured on conductive plastic. Compared with the conductive layer of plastic, the flexibility of nanotube films is superior and the raw materials are cheaper. Thanks to their flexibility, solar cells could be produced using the roll-to-roll processing method known from the paper industry.

‘Light and would be easy to integrate in buildings and you could also hang them in windows by yourself’, says Aitola.

Explore further: New way to make low-cost solar cell technology

More information: Kerttu Aitola et al, High Temperature-Stable Perovskite Solar Cell Based on Low-Cost Carbon Nanotube Hole Contact, Advanced Materials (2017). DOI: 10.1002/adma.201606398

Stanford and Oxford scientists report New Perovskite low cost solar cell design could outperform existing commercial technologies: Video


stanford-oxfoed-perovskite_news-960x640Researchers have created a new type of solar cell that replaces silicon with a crystal called perovskite. This design converts sunlight to electricity at efficiencies similar to current technology but at much lower cost.

A new design for solar cells that uses inexpensive, commonly available materials could rival and even outperform conventional cells made of silicon.

Stanford and Oxford have created novel solar cells from crystalline perovskite that could outperform existing silicon cells on the market today. This design converts sunlight to electricity at efficiencies of 20 percent, similar to current technology but at much lower cost.

 

Writing in the Oct. 21 edition of Science, researchers from Stanford and Oxford describe using tin and other abundant elements to create novel forms of perovskite – a photovoltaic crystalline material that’s thinner, more flexible and easier to manufacture than silicon crystals.

Video: Stanford and Oxford scientists have created novel solar cells from crystalline perovskite that could rival and even outperform existing silicon cells on the market today. The new design converts sunlight to electricity at efficiencies of 20 percent, similar to current technology but at much lower cost.

In the video, Professor Michael McGehee and postdoctoral scholar Tomas Leijtens of Stanford describe the discovery, which could lead to thin-film solar cells with a record-setting 30% efficiency.

“Perovskite semiconductors have shown great promise for making high-efficiency solar cells at low cost,” said study co-author Michael McGehee, a professor of materials science and engineering at Stanford. “We have designed a robust, all-perovskite device that converts sunlight into electricity with an efficiency of 20.3 percent, a rate comparable to silicon solar cells on the market today.”

The new device consists of two perovskite solar cells stacked in tandem. Each cell is printed on glass, but the same technology could be used to print the cells on plastic, McGehee added.

“The all-perovskite tandem cells we have demonstrated clearly outline a roadmap for thin-film solar cells to deliver over 30 percent efficiency,” said co-author Henry Snaith, a professor of physics at Oxford. “This is just the beginning.”

Tandem technology

Previous studies showed that adding a layer of perovskite can improve the efficiency of silicon solar cells. But a tandem device consisting of two all-perovskite cells would be cheaper and less energy-intensive to build, the authors said.

Stanford post-doctoral scholar Tomas Leijtens and Professor Mike McGehee examine perovskite tandem solar cells.

Stanford post-doctoral scholar Tomas Leijtens and Professor Mike McGehee examine perovskite tandem solar cells. (Image credit: L.A. Cicero)

“A silicon solar panel begins by converting silica rock into silicon crystals through a process that involves temperatures above 3,000 degrees Fahrenheit (1,600 degrees Celsius),” said co-lead author Tomas Leijtens, a postdoctoral scholar at Stanford. “Perovskite cells can be processed in a laboratory from common materials like lead, tin and bromine, then printed on glass at room temperature.”

But building an all-perovskite tandem device has been a difficult challenge. The main problem is creating stable perovskite materials capable of capturing enough energy from the sun to produce a decent voltage.

A typical perovskite cell harvests photons from the visible part of the solar spectrum. Higher-energy photons can cause electrons in the perovskite crystal to jump across an “energy gap” and create an electric current.

A solar cell with a small energy gap can absorb most photons but produces a very low voltage. A cell with a larger energy gap generates a higher voltage, but lower-energy photons pass right through it.

An efficient tandem device would consist of two ideally matched cells, said co-lead author Giles Eperon, an Oxford postdoctoral scholar currently at the University of Washington.

“The cell with the larger energy gap would absorb higher-energy photons and generate an additional voltage,” Eperon said. “The cell with the smaller energy gap can harvest photons that aren’t collected by the first cell and still produce a voltage.”

Cross-section of new tandem solar cell

Cross-section of a new tandem solar cell designed by Stanford and Oxford scientists. The brown upper layer of perovskite captures low-energy lightwaves, and the red perovskite layer captures high-energy waves. (Image credit: Scanning electron microscopy image by Rebecca Belisle and Giles Eperon)

The smaller gap has proven to be the bigger challenge for scientists. Working together, Eperon and Leijtens used a unique combination of tin, lead, cesium, iodine and organic materials to create an efficient cell with a small energy gap.

“We developed a novel perovskite that absorbs lower-energy infrared light and delivers a 14.8 percent conversion efficiency,” Eperon said. “We then combined it with a perovskite cell composed of similar materials but with a larger energy gap.”

The result: A tandem device consisting of two perovskite cells with a combined efficiency of 20.3 percent.

“There are thousands of possible compounds for perovskites,” Leijtens added, “but this one works very well, quite a bit better than anything before it.”

Seeking stability

One concern with perovskites is stability. Rooftop solar panels made of silicon typically last 25 years or more. But some perovskites degrade quickly when exposed to moisture or light. In previous experiments, perovskites made with tin were found to be particularly unstable.

To assess stability, the research team subjected both experimental cells to temperatures of 212 degrees Fahrenheit (100 degrees Celsius) for four days.

“Crucially, we found that our cells exhibit excellent thermal and atmospheric stability, unprecedented for tin-based perovskites,” the authors wrote.

“The efficiency of our tandem device is already far in excess of the best tandem solar cells made with other low-cost semiconductors, such as organic small molecules and microcrystalline silicon,” McGehee said. “Those who see the potential realize that these results are amazing.”

The next step is to optimize the composition of the materials to absorb more light and generate an even higher current, Snaith said.

“The versatility of perovskites, the low cost of materials and manufacturing, now coupled with the potential to achieve very high efficiencies, will be transformative to the photovoltaic industry once manufacturability and acceptable stability are also proven,” he said.

Co-author Stacey Bent, a professor of chemical engineering at Stanford, provided key insights on tandem-fabrication techniques. Other Stanford coauthors are Kevin Bush, Rohit Prasanna, Richard May, Axel Palmstrom, Daniel J. Slotcavage and Rebecca Belisle. Oxford co-authors are Thomas Green, Jacob Tse-Wei Wang, David McMeekin, George Volonakis, Rebecca Milot, Jay Patel, Elizabeth S. Parrott, Rebecca Sutton, Laura Herz, Michael Johnston and Henry Snaith. Other co-authors are Bert Conings, Aslihan Babayigit and Hans-Gerd Boyen of Hasselt University in Belgium, and Wen Ma and Farhad Moghadam of SunPreme Inc.

Funding was provided by the Graphene Flagship, The Leverhulme Trust, U.K. Engineering and Physical Sciences Research Council, European Union Seventh Framework Programme, Horizon 2020, U.S. Office of Naval Research and the Global Climate and Energy Project at Stanford.