UC Riverside: Squeezing every drop (almost 100%) of fresh water from waste brine (salt solutions)

squeezingeveHot brines used in traditional membrane distillation systems are highly corrosive, making the heat exchangers and other system elements expensive, and limiting water recovery (a). To improve this, UCR researchers developed a self-heating …more

Engineers at the University of California, Riverside have developed a new way to recover almost 100 percent of the water from highly concentrated salt solutions. The system will alleviate water shortages in arid regions and reduce concerns surrounding high salinity brine disposal, such as hydraulic fracturing waste.

The research, which involves the development of a carbon nanotube-based heating element that will vastly improve the recovery of fresh during membrane distillation processes, was published today in the journal Nature Nanotechnology. David Jassby, an assistant professor of chemical and environmental engineering in UCR’s Bourns College of Engineering, led the project.

While reverse osmosis is the most common method of removing salt from seawater, wastewater, and brackish water, it is not capable of treating highly concentrated salt solutions. Such solutions, called brines, are generated in massive amounts during reverse osmosis (as waste products) and hydraulic fracturing (as produced water), and must be disposed of properly to avoid environmental damage. In the case of , produced water is often disposed of underground in injection wells, but some studies suggest this practice may result in an increase in local earthquakes.

One way to treat brine is membrane distillation, a thermal desalination technology in which heat drives water vapor across a membrane, allowing further water recovery while the salt stays behind. However, hot brines are highly corrosive, making the heat exchangers and other system elements expensive in traditional membrane distillation systems. Furthermore, because the process relies on the heat capacity of water, single pass recoveries are quite low (less than 10 percent), leading to complicated heat management requirements.

“In an ideal scenario, thermal desalination would allow the recovery of all the water from brine, leaving behind a tiny amount of a solid, crystalline salt that could be used or disposed of,” Jassby said. “Unfortunately, current processes rely on a constant feed of hot brine over the membrane, which limits water recovery across the membrane to about 6 percent.”

To improve on this, the researchers developed a self-heating carbon nanotube-based membrane that only heats the brine at the membrane surface. The new system reduced the heat needed in the process and increased the yield of recovered water to close to 100 percent.

In addition to the significantly improved desalination performance, the team also investigated how the application of alternating currents to the heating element could prevent degradation of the carbon nanotubes in the saline environment. Specifically, a threshold frequency was identified where electrochemical oxidation of the nanotubes was prevented, allowing the nanotube films to be operated for significant lengths of time with no reduction in performance. The insights provided by this work will allow carbon nanotube-based heating elements to be used in other applications where electrochemical stability of the nanotubes is a concern.

Explore further: Researchers develop hybrid nuclear desalination technique with improved efficiency

More information: Frequency-dependent stability of CNT Joule heaters in ionizable media and desalination processes, Nature Nanotechnology, nature.com/articles/doi:10.1038/nnano.2017.102


Making Solar Cells Obsolete with GIT’s Optical ‘Rectenna’ Technology ~ 40% to 90% Conversion Effciency: YouTube Video

Optical Rectenna download

Georgia Tech Professor of Mechanical Engineering, Dr. Bara Cola, shares how his childhood dreams of playing professional football turned into an exciting research career and important nanoengineering innovations. Dr. Cola’s breakthrough optical rectenna technology can be viewed here https://smartech.gatech.edu/handle/18….”

Watch the YouTube Video:


e9cf3-nanorectannaA new kind of nanoscale rectenna (half antenna and half rectifier) can convert solar and infrared into electricity, plus be tuned to nearly any other frequency as a detector.

Right now efficiency is only one percent, but professor Baratunde Cola and colleagues at the Georgia Institute of Technology (Georgia Tech, Atlanta) convincingly argue that they can achieve 40 percent broad spectrum efficiency (double that of silicon and more even than multi-junction gallium arsenide) at a one-tenth of the cost of conventional solar cells (and with an upper limit of 90 percent efficiency for single wavelength conversion).

It is well suited for mass production, according to Cola. It works by growing fields of carbon nanotubes vertically, the length of which roughly matches the wavelength of the energy source (one micron for solar), capping the carbon nanotubes with an insulating dielectric (aluminum oxide on the tethered end of the nanotube bundles), then growing a low-work function metal (calcium/aluminum) on the dielectric and voila–a rectenna with a two electron-volt potential that collects sunlight and converts it to direct current (DC).

“Our process uses three simple steps: grow a large array of nanotube bundles vertically; coat one end with dielectric; then deposit another layer of metal,” Cola told EE Times. “In effect we are using one end of the nanotube as a part of a super-fast metal-insulator-metal tunnel diode, making mass production potentially very inexpensive up to 10-times cheaper than crystalline silicon cells.”

Read the full Article Here: Solar Cells Will be Made Obsolete by 3D rectennas aiming at 40-to-90% efficiency


NASA and Rice U Collaborate on’Fuzzy Fibers’ (carbide nanotubes) that can take the Heat from NextGen Rockets

Space X Rocket 31E1F88F00000578-3477542-image-a-8_1457192298353Researchers create tough material for next generation of powerful engines

To stand up to the heat and pressure of next-generation rocket engines, the composite fibers used to make them should be fuzzy.

The Rice University laboratory of materials scientist Pulickel Ajayan, in collaboration with NASA, has developed “fuzzy fibers” of silicon carbide that act like Velcro and stand up to the punishment that materials experience in aerospace applications.

Fuzzy Fibers Rice NASA 170330153941_1_540x360Silicon carbide nanotubes attached to separate silicon carbide fibers, used by NASA, entangle each other in this electron microscope image. The material created at Rice University is intended for a ceramic composite that would make rocket engines stronger, lighter and better able to withstand extreme heat.
Credit: Ajayan Research Group/Rice University



The fibers strengthen composites used in advanced rocket engines that have to withstand temperatures up to 1,600 degrees Celsius (2,912 degrees Fahrenheit). Ceramic composites in rockets now being developed use silicon carbide fibers to strengthen the material, but they can crack or become brittle when exposed to oxygen.

The Rice lab embedded silicon carbide nanotubes and nanowires into the surface of NASA’s fibers. The exposed parts of the fibers are curly and act like the hooks and loops that make Velcro so valuable — but on the nanoscale.

The result, according to lead researchers Amelia Hart, a Rice graduate student, and Chandra Sekhar Tiwary, a Rice postdoctoral associate, creates very strong interlocking connections where the fibers tangle; this not only makes the composite less prone to cracking but also seals it to prevent oxygen from changing the fiber’s chemical composition.

The work is detailed in the American Chemical Society journal Applied Materials and Interfaces.

The work began when Hart, who had been studying the growth of carbon nanotubes on ceramic wool, met Michael Meador, then a scientist at NASA’s Glenn Research Center, Cleveland, at the kickoff reception for Rice’s Materials Science and NanoEngineering Department. (Meador is now nanotechnology project manager at NASA’s Game Changing Technologies program.)

That led to a fellowship in Cleveland and the chance to combine her ideas with those of NASA research engineer and paper co-author Janet Hurst. “She was partially converting silicon carbide from carbon nanotubes,” Hart said. “We used her formulation and my ability to grow nanotubes and figured out how to make the new composite.”

Back at Rice, Hart and her colleagues grew their hooks and loops by first bathing silicon carbide fiber in an iron catalyst and then using water-assisted chemical vapor deposition, a process developed in part at Rice, to embed a carpet of carbon nanotubes directly into the surface. These become the template for the final product. The fibers were then heated in silicon nanopowder at high temperature, which converts the carbon nanotubes to silicon carbide “fuzz.”

The researchers hope their fuzzy fibers will upgrade the strong, light and heat-resistant silicon carbide fibers that, when put in ceramic composites, are being tested for robust nozzles and other parts in rocket engines. “The silicon carbide fiber they already use is stable to 1,600 C,” Tiwary said. “So we’re confident that attaching silicon carbide nanotubes and wires to add strength will make it even more cutting-edge.”

The new materials should also make entire turbo engines significantly lighter, Hart said. “Before they used silicon carbide composites, many engine parts were made of nickel superalloys that had to incorporate a cooling system, which added weight to the whole thing,” she said. “By switching to ceramic matrix composites, they could take out the cooling system and go to higher temperatures. Our material will allow the creation of larger, longer-lasting turbo jet engines that go to higher temperatures than ever before.”

Friction and compression testing showed the lateral force needed to move silicon carbide nanotubes and wires over each other was much greater than that needed to slide past either plain nanotubes or unenhanced fibers, the researchers reported. They were also able to easily bounce back from high compression applied with a nano-indenter, which showed their ability to resist breaking down for longer amounts of time.

Tests to see how well the fibers handled heat showed plain carbon nanotubes burning away from the fibers, but the silicon carbide nanotubes easily resisted temperatures of up to 1,000 C.

Hart said the next step will be to apply her conversion techniques to other carbon nanomaterials to create unique three-dimensional materials for additional applications.

Story Source:

Materials provided by Rice University. Note: Content may be edited for style and length.

Journal Reference:

  1. Amelia H.C. Hart, Ryota Koizumi, John T Hamel, Peter Samora Owuor, Yusuke Ito, Sehmus Ozden, Sanjit Bhowmick, Syed Asif Syed Amanulla, Thierry Tsafack, Kunttal Keyshar, Rahul Mital, Janet Hurst, Robert Vajtai, Chandra Sekhar Tiwary, Pulickel M Ajayan. Velcro®-Inspired SiC Fuzzy Fibers for Aerospace Applications. ACS Applied Materials & Interfaces, 2017; DOI: 10.1021/acsami.7b01378


Nanotube-based Li-ion Batteries Can Charge to Near Maximum in Two Minutes but …

CNT Battery MjU2NDIyMQ

Nanotube-based Li-ion Batteries Can Charge to Near Maximum in Two Minutes … but could our current grid system handle an ‘en masse’ switch to EV’s?

The prospects for ubiquitous all-electric vehicles (EVs) powered by lithium-ion (Li-ion) batteries took a bit of a hit back in 2010, when then U.S. Secretary of Energy Steven Chu addressed the United Nations Climate Change Conference in Cancun and suggested that, for battery powered cars to replace those powered by fossil fuels, some pretty significant improvements would need to be made to current technology.

Chu said at the time: “It will take a battery, first that can last for 15 years of deep discharges. You need about five as a minimum, but really six- or seven-times higher storage capacity and you need to bring the price down by about a factor of three.” Chu suggested it might take another five years before such a battery would be developed, and he was almost exactly right in his prediction.

Researchers at the Nanyang Technology University (NTU) in Singapore have achieved at least some of those criteria by developing a Li-ion battery capable of 20 years of deep discharges, more than 10 times that of existing Li-ion batteries.

In addition to longer battery life, the new battery design can be charged up quickly so that it can reach 70 percent of its maximum charge in just two minutes.

These features tick at least two of the metrics that Chu and others have indicated are key to making all-EVs compete with those running on fossil fuels. This would mean that EV owners would not have to spend roughly $5000 every two years for a completely new set of batteries. It could also allow for a quick stop of just a couple of minutes to significantly increase the driving range of the vehicle.

The key to the new Li-ion battery is the replacement of graphite at the anode with nanotubes synthesized from titanium dioxide. This is a departure from a lot of recent work toward improved anodes; other research teams have been using nanostructured silicon in place of graphite.

“With our nanotechnology, electric cars would be able to increase their range dramatically with just five minutes of charging, which is on par with the time needed to pump petrol for current cars,” said Chen Xiaodong, an associate professor at NTU Singapore, in a press release.

The new nanotube material, which is described in the journal Advanced Materials, is produced relatively easily, according to the researchers, by taking titanium dioxide nanoparticles and mixing them with sodium hydroxide. The real key to getting the long titanium dioxide nanotubes the nanoparticles yield is conducting the stirring process at the right temperature.

The technology has been patented and has been licensed by a company that says it could get a new generation of fast-charging batteries to market in two years.

While battery life and recharging have been significantly improved with the new battery design, it’s not clear that new batteries have a longer charge life, or what is known as gravimetric energy density (the amount of energy stored per unit mass). Instead, they have improved Li-ion’s relatively weak gravimetric power density (the maximum amount of power that can be supplied per unit mass) by eliminating the additives that are used to bind the electrodes to the anode. This allows the battery to transfer electrons and ions in and out of the battery more quickly. This translates into batteries that will last about the same amount of time on a charge as today’s current batteries, but can be charged up to near maximum very quickly.

NTU professor Rachid Yazami, who was the co-inventor of the lithium-graphite anode 34 years ago but not involved in this most recent research, has noted the significant improvement to Li-ion batteries this work represents.

Yazami said: “There is still room for improvement and one such key area is the power density—how much power can be stored in a certain amount of space—which directly relates to the fast charge ability. Ideally, the charge time for batteries in electric vehicles should be less than 15 minutes, which Prof Chen’s nanostructured anode has proven to do.”

Reusable carbon nanotubes could be the water filter of the future, says RIT study

Carbon NT Water Filter 136842_web


A new class of carbon nanotubes could be the next-generation clean-up crew for toxic sludge and contaminated water, say researchers at Rochester Institute of Technology.

Enhanced single-walled carbon nanotubes offer a more effective and sustainable approach to water treatment and remediation than the standard industry materials–silicon gels and activated carbon–according to a paper published in the March issue of Environmental Science Water: Research and Technology.

RIT researchers John-David Rocha and Reginald Rogers, authors of the study, demonstrate the potential of this emerging technology to clean polluted water. Their work applies carbon nanotubes to environmental problems in a specific new way that builds on a nearly two decades of nanomaterial research. Nanotubes are more commonly associated with fuel-cell research.




“This aspect is new–taking knowledge of carbon nanotubes and their properties and realizing, with new processing and characterization techniques, the advantages nanotubes can provide for removing contaminants for water,” said Rocha, assistant professor in the School of Chemistry and Materials Science in RIT’s College of Science.

Rocha and Rogers are advancing nanotube technology for environmental remediation and water filtration for home use.

“We have shown that we can regenerate these materials,” said Rogers, assistant professor of chemical engineering in RIT’s Kate Gleason College of Engineering. “In the future, when your water filter finally gets saturated, put it in the microwave for about five minutes and the impurities will get evaporated off.”

Carbon nanotubes are storage units measuring about 50,000 times smaller than the width of a human hair. Carbon reduced to the nanoscale defies the rules of physics and operates in a world of quantum mechanics in which small materials become mighty.

“We know carbon as graphite for our pencils, as diamonds, as soot,” Rocha said. “We can transform that soot or graphite into a nanometer-type material known as graphene.”

A single-walled carbon nanotube is created when a sheet of graphene is rolled up. The physical change alters the material’s chemical structure and determines how it behaves. The result is “one of the most heat conductive and electrically conductive materials in the world,” Rocha said. “These are properties that only come into play because they are at the nanometer scale.”

The RIT researchers created new techniques for manipulating the tiny materials. Rocha developed a method for isolating high-quality, single-walled carbon nanotubes and for sorting them according to their semiconductive or metallic properties. Rogers redistributed the pure carbon nanotubes into thin papers akin to carbon-copy paper.

“Once the papers are formed, now we have the adsorbent–what we use to pull the contaminants out of water,” Rogers said.

The filtration process works because “carbon nanotubes dislike water,” he added. Only the organic contaminants in the water stick to the nanotube, not the water molecules.

“This type of application has not been done before,” Rogers said. “Nanotubes used in this respect is new.”


Co-authors on the paper are Ryan Capasse, RIT chemistry alumnus, and Anthony Dichiara, a former RIT post-doctoral researcher in chemical engineering now at the University of Washington.

Third-Generation Solar Cells using Metalorganic Perovskites Challenges silicon based Solar Cells

nanotubefilmAn illustration of a perovskite solar cell. Credit: Photo by Aalto University / University of Uppsala / EPFL

Five years ago, the world started to talk about third-generation solar cells that challenged the traditional silicon cells with a cheaper and simpler manufacturing process that used less energy.

Methylammonium lead iodide is a metal-organic material in the perovskite crystal structure that captures light efficiently and conducts electricity well—both important qualities in . However, the lifetime of solar cells made of metalorganic perovskites has proven to be very short compared to cells made of .

Now researchers from Aalto University, Uppsala University and École polytechnique fédérale de Lausanne (EPFL) in Switzerland have managed to improve the long term stability of solar cells made of perovskite using “random network” nanotube films developed under the leadership of Professor Esko Kauppinen at Aalto University. Random network nanotube films are films composed of single-walled carbon nanotubes that in an electron microscope image look like spaghetti on a plate.

‘In a traditional perovskite solar cell, the hole conductor layer consists of organic material and, on top of it, a thin layer of gold that easily starts to disintegrate and diffuse through the whole solar cell structure. We replaced the gold and also part of the organic material with films made of carbon nanotubes and achieved good cell stability in 60 degrees and full one sun illumination conditions‘, explains Kerttu Aitola, who defended her doctoral dissertation at Aalto University and now works as a researcher at Uppsala University

In the study, thick black films with conductivity as high as possible were used in the back contact of the solar cell where light does not need to get through. According to Aitola, nanotube films can also be made transparent and thin, which would make it possible to use them as the front contact of the cell, in other words as the contact that lets light through.

‘The solar cells were prepared in Uppsala and the long-term stability measurement was carried out at EPFL. The leader of the solar cell group at EPFL is Professor Michael Grätzel, who was awarded the Millennium Prize 2010 for dye-sensitised solar cells, on which the are also partly based on’, says Aitola.

Nanotube film may resolve longevity problem of challenger solar cells
Cross-section of the solar cell in an electron microscope image. The fluff seen in the front of the image is composed of bundles of nanotubes that have become half-loose when the samples have been prepared for imaging. Credit: Photo by Aalto University / University of Uppsala / EPFL


The lifetime of solar cells made of silicon is 20-30 years and their industrial production is very efficient. Still, alternatives are needed as reducing the silicon dioxide in sand to silicon consumes a huge amount of energy. It is estimated that a needs two or three years to produce the energy that was used to manufacture it, whereas a perovskite solar cell would only need two or three months to do it.

‘In addition, the silicon used in solar cells must be extremely pure’, says Aitola.

‘Perovskite solar cell is also interesting because its efficiency, in other words how efficiently it converts sunlight energy into electrical energy, has very quickly reached the level of silicon solar cells. That is why so much research is conducted on perovskite solar cells globally.’

The alternative solar cells are even more interesting because of their various application areas. Flexible solar cells have until now been manufactured on conductive plastic. Compared with the conductive layer of plastic, the flexibility of nanotube films is superior and the raw materials are cheaper. Thanks to their flexibility, solar cells could be produced using the roll-to-roll processing method known from the paper industry.

‘Light and would be easy to integrate in buildings and you could also hang them in windows by yourself’, says Aitola.

Explore further: New way to make low-cost solar cell technology

More information: Kerttu Aitola et al, High Temperature-Stable Perovskite Solar Cell Based on Low-Cost Carbon Nanotube Hole Contact, Advanced Materials (2017). DOI: 10.1002/adma.201606398

McMaster University: Researchers resolve problem holding back a Technology Revolution – Smaller, Nimbler Semiconductors that are expected to Replace Silicon – Carbon Nanotubes


mcmasterrese carbon nanotubes 081916Artistic rendition of a metallic carbon nanotube being pulled into solution, in analogy to the work described by the Adronov group. Credit: Alex Adronov, McMaster University

Imagine an electronic newspaper that you could roll up and spill your coffee on, even as it updated itself before your eyes.

It’s an example of the that has been waiting to happen, except for one major problem that, until now, scientists have not been able to resolve.

Researchers at McMaster University have cleared that obstacle by developing a new way to purify nanotubes – the smaller, nimbler semiconductors that are expected to replace silicon within computer chips and a wide array of electronics.

“Once we have a reliable source of pure nanotubes that are not very expensive, a lot can happen very quickly,” says Alex Adronov, a professor of Chemistry at McMaster whose research team has developed a new and potentially cost-efficient way to purify carbon nanotubes.

Carbon nanotubes – hair-like structures that are one billionth of a metre in diameter but thousands of times longer – are tiny, flexible conductive nano-scale materials, expected to revolutionize computers and electronics by replacing much larger silicon-based chips.

A major problem standing in the way of the new technology, however, has been untangling metallic and semiconducting carbon nanotubes, since both are created simultaneously in the process of producing the microscopic structures, which typically involves heating carbon-based gases to a point where mixed clusters of nanotubes form spontaneously as black soot.

Only pure semiconducting or metallic carbon nanotubes are effective in device applications, but efficiently isolating them has proven to be a challenging problem to overcome. Even when the nanotube soot is ground down, semiconducting and metallic nanotubes are knotted together within each grain of powder. Both components are valuable, but only when separated.

Researchers around the world have spent years trying to find effective and efficient ways to isolate carbon nanotubes and unleash their value.

While previous researchers had created polymers that could allow semiconducting carbon nanotubes to be dissolved and washed away, leaving metallic nanotubes behind, there was no such process for doing the opposite: dispersing the metallic nanotubes and leaving behind the semiconducting structures.Nanotubes images

Now, Adronov’s research group has managed to reverse the electronic characteristics of a polymer known to disperse semiconducting nanotubes – while leaving the rest of the polymer’s structure intact. By so doing, they have reversed the process, leaving the nanotubes behind while making it possible to disperse the metallic nanotubes.

The researchers worked closely with experts and equipment from McMaster’s Faculty of Engineering and the Canada Centre for Electron Microscopy, located on the university’s campus.

“There aren’t many places in the world where you can to this type of interdisciplinary work,” Adronov says.

The next step, he explains, is for his team or other researchers to exploit the discovery by finding a way to develop even more efficient polymers and scale up the process for commercial production.

The research is described in the cover story of Chemistry – A European Journal.

Explore further: Carbon nanotube ‘ink’ may lead to thinner, lighter transistors and solar cells


GNT Thumbnail Alt 3 2015-page-001

Genesis Nanotechnology, Inc.

Facebook 042616.jpgFollow and ‘Like’ Us on Facebook: https://www.facebook.com/GenesisNanoTech/

Twitter Icon 042616.jpgFollow Us On Twitter: https://twitter.com/GenesisNanoTech

LinkedIn IconA 042316.jpg“Join the Conversation” on Our LinkedIn ‘Nano Network’ Group: https://www.linkedin.com/groups/3935461

Website Icon 042616Connect To Our Website: http://genesisnanotech.com/

YouTube small 050516Watch Our YouTube Video: https://youtu.be/Y1618kgUSXI

Blog Pic cropped-microbots-water


Follow Our ‘Top Ten’ Blog: “Great Things from Small Things”: https://genesisnanotech.wordpress.com/


Berkeley Lab Researchers: 5 Nanoscience Research Projects That Could Deliver Big Results

south-africa-ii-nanotechnology-india-brazil_261.jpgFrom energy efficiency to carbon capture, Berkeley Lab scientists are on it.

Berkeley Lab researchers are using the science of the very small to help solve big challenges. That’s because, at the nanoscale—the scale of molecules and proteins—new and exciting properties emerge that can possibly be put to use.

Here are five projects, now underway and recently highlighted in the News Center, which promise big results from the smallest of building blocks:

1. A DIY paint-on coating for energy efficient windows

This “cool” DIY retrofit tech could improve the energy efficiency of windows and save money. Researchers are developing a polymer-based heat-reflective coating that makes use of the unusual molecular architecture of a polymer.

It has the potential to be painted on windows at one-tenth the cost of current retrofit approaches. Window films on the market today reflect infrared solar energy back to the sky while allowing visible light to pass through, but a professional contractor is needed to install them. A low-cost option could significantly expand adoption and result in potential annual energy savings equivalent to taking 5 million cars off the road.


2. Nanowires that move data at light speed

Researchers have found a new way to produce nanoscale wires that can serve as tiny, tunable lasers. The excellent performance of these tiny lasers is promising for the field of optoelectronics, which is focused on combining electronics and light to transmit data, among other applications. Miniaturizing lasers to the nanoscale could further revolutionize computing, bringing light-speed data transmission to desktop, and ultimately, handheld computing devices.


3. Nano sponges that fight climate change


Scientists are developing nano sponges that could capture carbon from power plants before it enters the atmosphere. Initial tests show the hybrid membrane, composed of nano-sized cages (called metal-organic frameworks) and a polymer, is eight times more carbon dioxide permeable than membranes composed only of the polymer.

Boosting carbon dioxide permeability is a big goal in efforts to develop carbon capture materials that are energy efficient and cost competitive. Watch this video for more on this technology.



4. Custom-made chemical factories


Scientists have recently reengineered a building block of a nanocompartment that occurs naturally in bacteria, greatly expanding the potential of nanocompartments to serve as custom-made chemical factories. Researchers hope to tailor this new use to produce high-value chemical products, such as medicines, on demand.

The sturdy nanocompartments are formed by hundreds of copies of just three different types of proteins. Their natural counterparts, known as bacterial microcompartments, encase a wide variety of enzymes that carry out highly specialized chemistry in bacteria.


5. Nanotubes that assemble themselves


Researchers have discovered a family of nature-inspired polymers that, when placed in water, spontaneously assemble into hollow crystalline nanotubes. What’s more, the nanotubes can be tuned to all have the same diameter of between five and ten nanometers. Controlling the diameter of nanotubes, and the chemical groups exposed in their interior, enables scientists to control what goes through. Nanotubes have the potential to be incredibly useful, from delivering cancer-fighting drugs inside cells to desalinating seawater.


The Science of Small Revealed Using a Penny

Just how small can nanoscience get? Here’s a great example using an American penny from the Molecular Foundry.

In this video, the letters that spell Molecular Foundry were written with a beam of electrons fired at the surface. The smallest feature is 20 nanometers, or roughly 100 atoms. As the video zooms out, you lose sight of Molecular Foundry and see the Berkeley Lab logo, which was written with a beam of charged gallium atoms. As you continue to zoom out, you see an 18 hour timelapse of Abraham Lincoln’s face, again written with gallium atoms. Finally, all of this is done within the Lincoln Memorial side of the penny as it is removed from the focused ion beam.

Photolithography, which literally means writing with light, is the foundation for most top-down fabrication of things like microprocessors. However, because of something called the diffraction limit, photolithography is limited to devices that have features no smaller than the wavelength of the light used, often in the 100s of nanometers. As a result, things smaller than light like atoms and electrons must be used.



Nanotechnology and the ‘Fourth Industrial Revolution’: Solving Our Biggest Challenges with the Smallest of Things

Fourth IR 051416 AAEAAQAAAAAAAATfAAAAJGEzY2E0NWViLWU4OGItNDZkZi1hYmZiLTA1YTY1NzczNGQzNAThe Fourth Industrial Revolution: The 7 Technologies Changing Our world: When Will the Future “Arrive”?

From intelligent robots and self-driving cars to gene editing and 3D printing, dramatic technological change is happening at lightning speed all around us.

The Fourth Industrial Revolution is being driven by a staggering range of new technologies that are blurring the boundaries between people, the internet and the physical world. It’s a convergence of the digital, physical and biological spheres.

It’s a transformation in the way we live, work and relate to one another in the coming years, affecting entire industries and economies, and even challenging our notion of what it means to be human.

So what exactly are these technologies, and what do they mean for us?

Read the Full Article Here: The Fourth Industrial Revolution: The 7 Technologies Changing Our world: When Will the Future “Arrive”?

Four Ways 051416 AAEAAQAAAAAAAAS7AAAAJDgyY2FlNGQ1LWUzY2EtNDQzNS04ODkwLTRmM2MxNWI4YmI1MAFour Ways Innovation Will Drive Change and Business – “The Fourth Industrial Revolution”

Innovation. In today’s business environment, there’s no word more powerful and all-encompassing. Finance, education, healthcare, retail and transportation: No sector is immune. Every day, new companies are introducing technologies that have the potential to reshape entire industries and how people conduct their day-to-day transactions.

All you need to do is look at the success of companies like Uber to realize the scale and scope of the transformation enveloping our world.

The World Economic Forum calls this era of innovation the Fourth Industrial Revolution. In January government and business leaders met in Davos, Switzerland to discuss how to navigate these unprecedented changes. It is a monumental discussion, because the reality is that these regular and system-wide innovations will continue to crack the foundations of traditional industries for years to come. Businesses need to recognize this and make sure that they will be nimble enough to succeed wherever change takes them.

Read the Full Article Here: Four Ways Innovation Will Drive Change and Business – “The Fourth Industrial Revolution”

Fourth Why All 051416 AAEAAQAAAAAAAAg8AAAAJDZiYTBjM2JlLTBlZGMtNDdmYy1hNjdkLTk0NzUyZDFjMGM0MgWhy Everyone Must Get Ready For The 4th Industrial Revolution

First came steam and water power; then electricity and assembly lines; then computerization… So what comes next?

Some call it the fourth industrial revolution, or industry 4.0, but whatever you call it, it represents the combination of cyber-physical systems, the Internet of Things, and the Internet of Systems.

In short, it is the idea of smart factories in which machines are augmented with web connectivity and connected to a system that can visualize the entire production chain and make decisions on its own.

And it’s well on its way and will change most of our jobs.

Professor Klaus Schwab, Founder and Executive Chairman of the World Economic Forum, has published a book entitled The Fourth Industrial Revolution in which he describes how this fourth revolution is fundamentally different from the previous three, which were characterized mainly by advances in technology.

In this fourth revolution, we are facing a range of new technologies that combine the physical, digital and biological worlds. These new technologies will impact all disciplines, economies and industries, and even challenge our ideas about what it means to be human.

These technologies have great potential to continue to connect billions more people to the web, drastically improve the efficiency of businessand organizations and help regenerate the natural environment through ….

Read the Full Article Here: Why Everyone Must Get Ready For The 4th Industrial Revolution


Nanoparticle 2 051316 coated-nanoparticlePreparing For and Embracing the Future

At Genesis Nanotechnology, Inc. it’s been a busy few years! But really … we have only ‘scratched the surface’ of the tidal wave of discoveries being made everyday at leading Nano-Universities around the World! And as exciting as the new technologies and discoveries are … as anyone who has been working in “Nano” recognizes and acknowledges, new Financing Structures, Synergistic Collaborations, Private Industry and Government Partnerships have had to be created to “bring the promise of the new technologies” into our everyday world. And that … that is why we at GNT™ are so excited about our relationships with our Partners, our Technologies and our Approach to sustaining developing “game changing” technologies to Commercial Viability. 

Genesis Nanotechnology shares the vision of those who believe that “nanotechnology” will change the way we innovate everything!

Dr. Richard Smalley, (Nobel Laureate, Smalley Institute – Rice University) asserted over 30 years ago, quote:

“… Most of the BIG problems we now face and will face in the future [Energy, Water, Food Supply and Health] will be solved by the application of “nanotechnology … Expecting Big Things from Small Things.”

We (GNT) also believe, as Dr. Smalley did and as Geoffrey Moore asserted in his book “Crossing the Chasm”

“… that we are now 30+ years into a developing technology (maturation) representing a paradigm shift in technology.” The “Innovators” and the “Early Adopters” are already in the marketplace, engaging new technologies into existing market sectors and industries.”

Fourth Industrial 041516 GWvqS6TuZDSUwlO6uZ8RUNjHjFxtgz0o3MSaRlhp5_oWe believe we are now transitioning from the cycle of The Early Adopters to the cycle of the Early Majority. We believe the explosion of technological capabilities represents an enormous “once in a lifetime” opportunity to be part of the fundamental and revolutionary changes that will redefine and reshape the physical and financial world we live in. Truly then …. “A Fourth Industrial Revolution”.



cropped-9-disruptive-technologies.jpgHow We Do What We Do

Genesis Nanotechnology actively seeks and evaluates emerging nanotechnology opportunities for Joint Venture Partners and Strategic Alliances that will create ‘enterprise value’ by identifying, developing, integrating and commercializing, nanotechnologies that demonstrate significant new disruptive capabilities, enhance new or existing product performance and/or beneficially impact input cost reductions and efficiency and therefore will achieve a sustainable and competitive advantage in their chosen market sector.

Market and Industry Applications Much like the changes plastics and polymers brought to our world, (making things stronger, cheaper, better) applied Nanomaterials are being integrated into existing markets and are also facilitating emerging products and technologies that are being developed by a very deep field of mature and financially capable companies: Examples: Sony, Sharp, Samsung, Tokyo Electron, IKEA, Merck, GlaxoSmithKline. Literally Nanomaterials will change the way we innovate everything. They will touch almost every aspect in our everyday lives from Nano-Medicine and Consumer Electronics to Energy Solutions and Advanced Fabrics.

GNT Thumbnail Alt 3 2015-page-001

Genesis Nanotechnology, Inc. ~ “Great Things from Small Things”

Facebook 042616.jpg Follow Us on Facebook

Twitter Icon 042616.jpg Up to the Minute Nanotech News on Our Twitter Feed

LinkedIn IconA 042316.jpg ‘Link-Up” with Us on LinkedIn

 Website Icon 042616 Connect with Our Website

YouTube small 050516 Watch Our YouTube Video 






How nanoparticles flow through the environment

Nanoparticel 1 051316 nanoparticles.jpg

Carbon nanotubes remain attached to materials for years while titanium dioxide and nanozinc are rapidly washed out of cosmetics and accumulate in the ground. Researchers from the National Research Programme “Opportunities and Risks of Nanomaterials” (NRP 64) have developed a new model to track the flow of the most important nanomaterials in the environment.

How many human-made nanoparticles make their way into the air, earth or water? In order to assess these amounts, a group of researchers led by Bernd Nowack from Empa in St. Gallen has developed a computer model as part of the National Research Programme “Opportunities and Risks of Nanomaterials” (NRP 64). “Our estimates offer the best available data at present about the environmental accumulation of nanosilver, nanozinc, nano-tinanium dioxide and carbon nanotubes,” says Nowack.

Cosmetics and tennis racquets

In contrast to the static calculations hitherto in use, their new, dynamic model does not just take into account the significant growth in the production and use of nanomaterials, but also makes provision for the fact that different nanomaterials are used in different applications. For example, nanozinc and nano-titanium dioxide are found primarily in cosmetics. Roughly half of these nanoparticles find their way into our waste water within the space of a year, and from there they enter into sewage sludge. Carbon nanotubes, however, are integrated into composite materials and are bound in products such as which are immobilized and are thus found for example in tennis racquets and bicycle frames. It can take over ten years before they are released, when these products end up in waste incineration or are recycled.

Nanoparticle 2 051316 coated-nanoparticle39,000 metric tons of nanoparticles

The researchers involved in this study come from Empa, ETH and the University of Zurich. They use an estimated annual production of nano-titanium dioxide across Europe of 39,000 metric tons — considerably more than the total for all other nanomaterials. Their model calculates how much of this enters the atmosphere, surface waters, sediments and Earth, and accumulates there. In the EU, the use of sewage sludge as fertiliser (a practice forbidden in Switzerland) means that nano-titanium dioxide today reaches an average concentration of 61 micrograms per kilo in the affected ground.

Knowing the degree of accumulation in the environment is only the first step in the risk assessment of nanomaterials, however. Now this data has to be compared with ecotoxicological test results and the statutory thresholds, says Nowack. A risk assessment has not been carried out with his new model until now. Earlier work with data from a static model showed, however, that the concentrations determined for all four nanomaterials investigated is not expected to have any impact on the environment.

But in the case of nanozinc at least, its concentration in the environment is approaching the critical level. This is why this particular nanomaterial has to be given priority in future ecotoxicological studies — even though nanozinc is produced in smaller quantities than nano-titanium dioxide. Furthermore, ecotoxicological tests have until now been carried out primarily with freshwater organisms. The researchers conclude that complementary investigations using soil-dwelling organisms is a priority.

Story Source:

The above post is reprinted from materials provided by Swiss National Science Foundation (SNSF). Note: Materials may be edited for content and length.