Graphene-wrapped nanocrystals may open door toward next-gen fuel cells

Ultra-Thin  oxide layer (oxygen atoms shown in red) coating graphene-wrapped magnesium nanoparticles (orange) still allows in hydrogen atoms (blue) for hydrogen storage applications

Researchers at the Department of Energy’s Lawrence Berkeley National Laboratory have developed a mix of metal nanocrystals wrapped in graphene that may open the door to the creation of a new type of fuel cell by enabling enhanced hydrogen storage properties.

Graphene-Wrapped Nanocrystals Make Inroads Toward Next-Gen Fuel Cells

Ultra-thin oxide layer (oxygen atoms shown in red) coating graphene-wrapped magnesium nanoparticles (orange) still allows in hydrogen atoms (blue) for hydrogen storage applications

The team studied how graphene can be used as both selective shielding, as well as a performance increasing factor in terms of hydrogen storage. 

The study drew upon a range of Lab expertise and capabilities to synthesize and coat the magnesium crystals, which measure only 3-4 nanometers (billionths of a meter) across; study their nanoscale chemical composition with X-rays; and develop computer simulations and supporting theories to better understand how the crystals and their carbon coating function together.

Reduced graphene oxide (or rGO) has nanoscale holes that permit hydrogen to pass through while keeping larger molecules away. This carbon wrapping was intended to prevent the magnesium – which is used as a hydrogen storage material – from reacting with its environment, including oxygen, water vapor and carbon dioxide. 

Such exposures could produce a thick coating of oxidation that would prevent the incoming hydrogen from accessing the magnesium surfaces. 

The study, however, suggests that an atomically thin layer of oxidation did form on the crystals during their preparation. Surprisingly, this oxide layer doesn’t seem to degrade the material’s performance.

The study’s lead author stated “Most people would suspect that the oxide layer is bad news for hydrogen storage, which it turns out may not be true in this case. Without this oxide layer, the reduced graphene oxide would have a fairly weak interaction with the magnesium, but with the oxide layer the carbon-magnesium binding seems to be stronger. 

That’s a benefit that ultimately enhances the protection provided by the carbon coating. There doesn’t seem to be any downside”.

The researchers noted that the current generation of hydrogen-fueled vehicles power their fuel cell engines using compressed hydrogen gas. “This requires bulky, heavy cylindrical tanks that limit the driving efficiency of such cars”, and the nanocrystals offer one possibility for eliminating these bulky tanks by storing hydrogen within other materials.


More Durable – Less Expensive Fuel Cells Speeds the Commercialization of FC Vehicles – U. of Delaware

vehicles-cars-hydrogen-fuel-cellResearchers have developed a new technology that could speed up the commercialization of fuel cell vehicles

Summary: A new technology has been created that could make fuel cells cheaper and more durable. Hydrogen-powered fuel cells are a green alternative to internal combustion engines because they produce power through electro-chemical reactions, leaving no pollution behind. Platinum is the most common catalyst in the type of fuel cells used in vehicles, but it’s expensive. The UD team used a novel method to come up with a less expensive catalyst.

A team of engineers at the University of Delaware has developed a technology that could make fuel cells cheaper and more durable, a breakthrough that could speed up the commercialization of fuel cell vehicles.

They describe their results in a paper published in Nature Communications.

Hydrogen-powered fuel cells are a green alternative to internal combustion engines because they produce power through electrochemical reactions, leaving no pollution behind.

Materials called catalysts spur these electro-chemical reactions. Platinum is the most common catalyst in the type of fuel cells used in vehicles.F Cell Car images

However, platinum is expensive — as anyone who’s shopped for jewelry knows. The metal costs around $30,000 per kilogram.

Instead, the UD team made a catalyst of tungsten carbide, which goes for around $150 per kilogram. They produced tungsten carbide nanoparticles in a novel way, much smaller and more scalable than previous methods.

“The material is typically made at very high temperatures, about 1,500 Celsius, and at these temperatures, it grows big and has little surface area for chemistry to take place on,” said Dionisios Vlachos, director of UD’s Catalysis Center for Energy Innovation.. “Our approach is one of the first to make nanoscale material of high surface area that can be commercially relevant for catalysis.”

The researchers made tungsten carbide nanoparticles using a series of steps including hydrothermal treatment, separation, reduction, carburization and more.

“We can isolate the individual tungsten carbide nanoparticles during the process and make a very uniform distribution of particle size,” said Weiqing Zheng, a research associate at the Catalysis Center for Energy Innovation.

Next, the researchers incorporated the tungsten carbide nanoparticles into the membrane of a fuel cell. Automotive fuel cells, known as proton exchange membrane fuel cells (PEMFCs), contain a polymeric membrane. This membrane separates the cathode from the anode, which splits hydrogen (H2) into ions (protons) and delivers them to the cathode, which puts out current.

The plastic-like membrane wears down over time, especially if it undergoes too many wet/dry cycles, which can happen easily as water and heat are produced during the electrochemical reactions in fuel cells.

When tungsten carbide is incorporated into the fuel cell membrane, it humidifies the membrane at a level that optimizes performance.

“The tungsten carbide catalyst improves the water management of fuel cells and reduces the burden of the humidification system,” said Liang Wang, an associate scientist in the Department of Mechanical Engineering.

The team also found that tungsten carbide captures damaging free radicals before they can degrade the fuel cell membrane. As a result, membranes with tungsten carbide nanoparticles last longer than traditional ones.

“The low-cost catalyst we have developed can be incorporated within the membrane to improve performance and power density,” said . “As a result, the physical size of the fuel cell stack can be reduced for the same power, making it lighter and cheaper. Furthermore, our catalyst is able to deliver higher performance without sacrificing durability, which is a big improvement over similar efforts by other groups.”

The UD research team used innovative methods to test the durability of a fuel cell made with tungsten carbide. They used a scanning electron microscope and focused ion beam to obtain thin-slice images of the membrane, which they analyzed with software, rebuilding the three-dimensional structure of the membranes to determine fuel cell longevity.

The group has applied for a patent and hopes to commercialize their technology.

“This is a very good example of how different groups across departments can collaborate,” Zheng said.

Story Source:


provided by University of DelawareNote: Content may be edited for style and length.

Journal Reference:

  1. Weiqing Zheng, Liang Wang, Fei Deng, Stephen A. Giles, Ajay K. Prasad, Suresh G. Advani, Yushan Yan, Dionisios G. Vlachos. Durable and self-hydrating tungsten carbide-based composite polymer electrolyte membrane fuel cellsNature Communications, 2017; 8 (1) DOI: 10.1038/s41467-017-00507-6

Making Hydrogen Production Cheaper using New Ultra-Thin nano-material for splitting water

newultrathinThis is a water drop falling into water. Credit: Sarp Saydam/UNSW

UNSW Sydney chemists have invented a new, cheap catalyst for splitting water with an electrical current to efficiently produce clean hydrogen fuel.

The technology is based on the creation of ultrathin slices of porous metal-organic complex coated onto a foam electrode, which the researchers have unexpectedly shown is highly conductive of electricity and active for .

“Splitting water usually requires two different catalysts, but our catalyst can drive both of the reactions required to separate water into its two constituents, oxygen and hydrogen,” says study leader Associate Professor Chuan Zhao.

“Our fabrication method is simple and universal, so we can adapt it to produce ultrathin nanosheet arrays of a variety of these materials, called .

“Compared to other water-splitting electro-catalysts reported to date, our is also among the most efficient,” he says.

The UNSW research by Zhao, Dr Sheng Chen and Dr Jingjing Duan is published in the journal Nature Communications.

Hydrogen is a very good carrier for renewable energy because it is abundant, generates zero emissions, and is much easier to store than other energy sources, like solar or wind energy.

But the cost of producing it by using electricity to split water is high, because the most efficient catalysts developed so far are often made with precious metals, like platinum, ruthenium and iridium.

The catalysts developed at UNSW are made of abundant, non-precious metals like nickel, iron and copper. They belong to a family of versatile porous materials called , which have a wide variety of other potential applications.

Until now, metal-organic frameworks were considered poor conductors and not very useful for electrochemical reactions. Conventionally, they are made in the form of bulk powders, with their catalytic sites deeply embedded inside the pores of the material, where it is difficult for the water to reach.

By creating nanometre-thick arrays of metal-organic frameworks, Zhao’s team was able to expose the pores and increase the surface area for electrical contact with the .

“With nanoengineering, we made a unique metal-organic structure that solves the big problems of conductivity, and access to active sites,” says Zhao.

“It is ground-breaking. We were able to demonstrate that metal-organic frameworks can be highly conductive, challenging the common concept of these materials as inert electro-catalysts.”

Metal-organic frameworks have potential for a large range of applications, including fuel storage, drug delivery, and carbon capture. The UNSW team’s demonstration that they can also be highly conductive introduces a host of new applications for this class of material beyond electro-catalysis.

Explore further: Researchers report new, more efficient catalyst for water splitting

More information: Jingjing Duan et al, Ultrathin metal-organic framework array for efficient electrocatalytic water splitting, Nature Communications (2017). DOI: 10.1038/ncomms15341



Splitting Water ~ Using a novel non-precious metal catalyst ~ For Low Cost Hydrogen Cell

water-splitting-id45120A new research, affiliated with Ulsan National Institute of Science and Technology (UNIST) has presented a novel strategy for non-precious metal catalyst that can replace rare and expensive platinum(Pt)-based catalyst, currently used in hydrogen fuel cell.
In their study, published in the November issue of the Journal of the American Chemical Society (“A General Approach to Preferential Formation of Active Fe–Nx Sites in Fe–N/C Electrocatalysts for Efficient Oxygen Reduction Reaction”), Professor Sang Hoon Joo of Energy and Chemical Engineering and his team have devised a new synthetic strategy to boost the activity of iron- and nitrogen-doped carbon (Fe-N/C) catalyst that can realize low-cost hydrogen fuel cell.


Synthetic scheme for the preparation of CNT/PC catalysts
Synthetic scheme for the preparation of CNT/PC catalysts. (Image: UNIST) (click on image to enlarge)

Hydrogen fuel cell generates electricity with hydrogen and oxygen, producing water as a byproduct. Precious platinum(Pt) has been used in commercialized fuel cell. However, the high cost of Pt (>40$ per g) hampers widespread application of the fuel cell.


The research team has attempted to develop high-performance non-precious metal catalyst which can substitute for state-of-the-art Pt-based catalysts. In this research, they focused on carbon-based catalyst with iron and nitrogen due to low cost and high activity (Fe-N/C catalyst). During the preparation of the Fe-N/C catalysts, high-temperature heat-treatment at over 700°C is commonly required to endow high catalystic activity, but unfortunately this treatment also diminishes the number of active site. The active site refers to the place where rate-determining catalytic reaction occurs.
To solve the problem, they have introduced ‘silica-protective-layer’ approach. The silica layer effectively preserved the active site at high-temperature, preventing the destruction of the active site.
The novel Fe-N/C catalyst prepared by ‘silica-protective-layer’ approach showed very high oxygen reduction reaction (ORR) activity which is comparable to Pt catalyst. ORR is an electrochemical reaction at the cathode of hydrogen fuel cell. Due to 1-million-times slower reaction kinetics of ORR at the cathode compared with hydrogen oxidation reaction at the anode, ORR is a major factor for a large drop of the efficiency of fuel cell. Up to date, expensive Pt has been used primarily as an efficient ORR catalyst.
The research team realized a record high activity by employing their catalyst as the cathode catalyst of alkaline membrane fuel cell (one type of hydrogen fuel cell). The team also demonstrated very high performance in proton exchange membrane fuel cell (PEMFC), in which the developed catalyst showed the activity of 320 A cm-3, exceeding 2020 US Department of Energy (DOE) activity target for non-precious metal catalyst (300 A cm-3).
“Our novel strategy for high-performance catalyst is expected to hasten the commercialization of hydrogen fuel cell, and the catalyst design can be also applied to other energy storage and conversion devices.” says Prof. Joo.
Source: Ulsan National Institute of Science and Technology


Dotz Nano makes stunning ASX debut: Commercializing Graphene Quantum Dots: Rice U Developed Technology


Perth tech company Dotz Nano has made a stunning ASX debut with its shares reaching more than double their issue price on the company’s first day of trade.

The company, a backdoor listing through the shell of former explorer Northern Iron, focuses on the development, manufacture and commercialisation of Graphene Quantum Dots (GQDs).

The company raised $6 million at 20 cents a share. Its shares hit an intraday high of 49 cents before retracing to close up more than 75 per cent at 36.5 cents.

GQDs are nanoparticles which have applications in LED displays, pigments, dyes and detergents as well as energy, electrical and medical applications.

Non-graphene derived quantum dots are already widely used in products such as high-definition TVs, medical imaging and lighting products. However they have limited applications because of their toxicity and production costs.

Dotz Nano said it had exclusive capabilities to extract GQDs from coal rather than graphite, allowing it to produce inexpensive, non-toxic GQDs at ten times the production yield of conventional GQDs.

qds-from-coal-1006_gqd-2-rn-310x302Quantum Dots from Coal + Graphene Could Dramatically Cut the Cost of Energy from Fuel Cells

The company said its patented technology was developed by Professor James Tour of the William Marsh Rice University in Houston, Texas. It also has a strong partnership with the Ben-Gurion University in Israel.

Watch A Video On Graphene-Quantum Dots

Dotz Nano said it was not aware of any other party commercialising GQDs and that it holds five patents covering all major jurisdictions.

Chief executive Moti Gross said the company had first mover advantage in its field.

“We have had extremely encouraging discussions with potential customers, sub-licensees and distributors, as with the Mainami Group in Japan, and there will be no shortage of activity from our potential deal pipeline,” he said.

“We take the opportunity to welcome our new shareholders on board and we look forward to updating the market as we continue to scale our business.”

The company also announced today a memorandum of understanding to establish a $S 20 million research centre at the Nanyang Technological University in Singapore.

Hydrogen Infrastructure Testing and Research Facility: Mountain Driving Demonstration: 175 Mile Loop + Two 11,000 foot Mountain Passes ~ ‘Colorado Cool!’

Published on Oct 10, 2016

Recently, researchers at the National Renewable Energy Laboratory wanted to know, how well does NREL’s hydrogen infrastructure support fueling multiple fuel cell electric vehicles (FCEVs) for a day trip to the Rocky Mountains?car-fc-3-nrel-download

The answer-great! NREL staff took FCEVs on a trip to demonstrate real-world performance and range in high-altitude conditions. To start the trip, drivers filled three cars at NREL’s hydrogen fueling station. The cars made a 175-mile loop crossing two 11,000+ foot mountain passes on the way. Back at NREL, the cars were filled up with hydrogen in ~5 minutes and ready to go again. Learn more at


Genesis Nanotechnology, Inc. ~ “Great Things from Small Things”

Solar Fuel Cell U of T energy_cycleRead More on Nano Enabled Fuel Cell Technologies for many more Energy Applications: Genesis Nanotechnology Fuel Cell Articles & Videos

Carbon-coated iron catalyst structure could lead to more-active fuel cells

fuel-cells-illinois-160912141951_1_540x360Illinois professor Andrew Gerwith and graduate student Jason Varnell developed a method to isolate active catalyst nanoparticles from a mixture of iron-containing compounds, a finding that could help researchers refine the catalyst to make fuel cells more active.
Credit: Photo by L. Brian Stauffer

Fuel cells have long held promise as power sources, but low efficiency has created obstacles to realizing that promise. Researchers at the University of Illinois and collaborators have identified the active form of an iron-containing catalyst for the trickiest part of the process: reducing oxygen gas, which has two oxygen atoms, so that it can break apart and combine with ionized hydrogen to make water. The finding could help researchers refine better catalysts, making fuel cells a more energy- and cost-efficient option for powering vehicles and other applications.

Led by U. of I. chemistry professor Andrew Gewirth, the researchers published their work in the journal Nature Communications.

Iron-based catalysts for oxygen reduction are an abundant, inexpensive alternative to catalysts containing precious metals, which are expensive and can degrade. However, the process for making iron-containing catalysts yields a mixture of different compounds containing iron, nitrogen and carbon. Since the various compounds are difficult to separate, exactly which form or forms behave as the active catalyst has remained a mystery to researchers. This has made it difficult to refine or improve the catalyst.

“Previously, we didn’t know what these catalysts were made of because they had a lot of different things inside them,” Gewirth said. “Now we’ve narrowed it down to one component. Since we know what it looks like, we can change it and work to make it better.”

The researchers used a chlorine gas treatment to selectively remove from the mixture particles that were not active for oxygen reduction, refining the mixture until one type of particle remained: a carbon-encapsulated iron nanoparticle.

“We were left with only nanoparticles encapsulated within a carbon support, and that allows them to be more stable,” said Jason Varnell, a graduate student and the first author of the paper. “Iron oxidizes and corrodes on its own. You need to have the carbon around it in order to make it stable under fuel cell conditions.”H2 fuelcell 041116

The researchers hope that narrowing down the active form of the catalyst can open new possibilities for making purer forms of the active catalyst, or for tweaking the composition to make it even more active.

“What’s the optimal size? What’s the optimal density? What’s the optimal coating material? These are questions we can now address,” Gewirth said. “We’re trying alternative methods for synthesizing the active catalyst and making multicomponent nanoparticles with certain amounts of different metals. Previously, people would add some metal salt into the tube furnace, like cooking — a little of this, a little of that. But now we know we also need to do things at different temperatures to put other metals in it. It gives us the ability to make it a more active catalyst.”

Ultimately, the researchers hope that improved catalyst function and manufacturability will lead to more-efficient fuel cells, which could make them useful for vehicles or other power-intensive applications.

“Now we understand the reactivity better,” Varnell said. “This could lead to the creation of more viable alternatives to precious metal catalysts.”

Story Source:

The above post is reprinted from materials provided by University of Illinois at Urbana-Champaign. Note: Content may be edited for style and length.

Journal Reference:

  1. Andrew A. Gewirth et al. Identification of carbon-encapsulated iron nanoparticles as active species in non-precious metal oxygen reduction catalysts. Nature Communications, September 2016 DOI:10.1038/ncomms12582

University of Wisconsin: Simulating complex catalysts key to making cheap, powerful fuel cells

Cheap Fuel Cells 081016 id44194Using a unique combination of advanced computational methods, University of Wisconsin-Madison chemical engineers have demystified some of the complex catalytic chemistry in fuel cells — an advance that brings cost-effective fuel cells closer to reality.

“Understanding reaction mechanisms is the first step toward eventually replacing expensive platinum in fuel cells with a cheaper material,” says Manos Mavrikakis, a UW-Madison professor of chemical and biological engineering.
Mavrikakis and colleagues at Osaka University in Japan published details of the advance Monday, Aug. 8, in the journal Proceedings of the National Academy of Sciences (“Ab initio molecular dynamics of solvation effects on reactivity at electrified interfaces”).


Methanol Molecules
Modeling how methanol interacts with platinum catalysts inside fuel cells in realistic environments becomes even more complicated because distances between the atoms can change as molecules dance near the charged surface. (Image: Manos Mavrikakis)

Fuel cells generate electricity by combining electrons and protons — provided by a chemical fuel such as methanol — with oxygen from the air. To make the reaction that generates protons faster, fuel cells typically contain catalysts. With the right catalyst and enough fuel and air, fuel cells could provide power very efficiently.


Someday, fuel cells could make laptop batteries obsolete. Mere tablespoons of methanol could potentially provide up to 20 hours of continuous power. But alternatives to the expensive platinum catalyst in today’s fuel cells haven’t emerged because scientists still don’t fully understand the complicated chemistry required to produce protons and electrons from fuels.


And finding a good catalyst is no trivial task.


“People arrived at using platinum for a catalyst largely by trial and error, without understanding how the reaction takes place,” says Mavrikakis. “Our efforts developed a big picture of how the reaction is happening, and we hope to do the same analysis with other materials to help find a cheaper alternative.”


At first glance, the chemistry sounds straightforward: Methanol molecules awash in a watery milieu settle down on a platinum surface and give up one of their four hydrogen atoms. The movement of those electrons from that hydrogen atom make an electric current.


In reality, the situation is not so simple.


“All of these molecules, the water and the methanol, are actually dancing around the surface of the catalyst and fluctuating continuously,” says Mavrikakis. “Following the dynamics of these fluctuating motions all the time, and in the presence of an externally applied electric potential, is really very complicated.”


The water molecules are not wallflowers, sitting on the sidelines of the methanol molecules reacting with platinum; rather, they occasionally cut in to the chemical dance. And varying voltage on the electrified surface of the platinum catalyst tangles the reaction’s tempo even further.


Previously, chemists only simulated simplified scenarios — fuel cells without any water in the mix, or catalytic surfaces that didn’t crackle with electricity. Unsurprisingly, conclusions based on such oversimplifications failed to fully capture the enormous complexity of real-world reactions.


Mavrikakis and colleagues combined their expertise in two powerful computational techniques to create a more accurate description of a very complex real environment.
They first used density functional theory to solve for quantum mechanical forces and energies between individual atoms, then built a scheme upon those results using molecular dynamics methods to simulate large ensembles of water and methanol molecules interacting among themselves and with the platinum surface.
The detailed simulations revealed that the presence of water in a fuel cell plays a huge role in dictating which hydrogen atom breaks free from methanol first — a result that simpler methods could never have captured. Electric charge also determined the order in which methanol breaks down, surprisingly switching the preferred first step at the positive electrode.


This type of information enables scientists to predict which byproducts might accumulate in a reaction mixture, and select better ingredients for future fuel cells.
“Modeling enables you to come up with an informed materials design,” says Mavrikakis, whose work was supported by the Department of Energy and the National Science Foundation. “We plan to investigate alternative fuels, and a range of promising and cheaper catalytic materials.”


The results represent the culmination of six years of effort across two continents. Jeffrey Herron, the first author on the paper, started developing the methodologies during a summer visit to work under the paper’s second author, Professor Yoshitada Morikawa in the Division of Precision Science & Technology and Applied Physics at Osaka University.
Herron, who completed his doctorate in 2015 and is now a senior engineer for The Dow Chemical Company, further refined these approaches under Mavrikakis’ guidance over several subsequent years in Madison.
“A lot of work over many years went into this paper,” says Mavrikakis. “The world needs fuel cells, but without understanding how the reaction takes place, there is no rational way to improve.”
Source: University of Wisconsin-Madison

Read more: Simulating complex catalysts key to making cheap, powerful fuel cells

Read Genesis Nanotech Online: Latest ‘Nano’-News and Updates: Articles Like …


cropped-microbots-water.jpgGenesis Nanotechnology ~ “Great Things from Small Things”

Read Genesis Nanotech Online (Click Here)

Articles Like …

Nano Antennas 072016 160718161257_1_540x360Rice University: Technology marries light-harvesting nanoantennas to high-reaction-rate catalysts: Could transform some of the world’s most energy-intensive manufacturing processes



auto thin trans 072016 berkeleylabsU.S. Department of Energy’s Lawrence Berkeley National Laboratory: Scientists grow atomically thin transistors and circuits




tHIS TRANSISTORS 072016 578d2684a1c34NC State U: Faster-More Precise Silica coating process for Quantum Dot nanorods: Makes Nano-scale Semi-Conductor materials less likely to degrade – keeps optical properties.





Genesis Nanotechnology, Inc. ~ “Great Things from Small Things”

Facebook 042616.jpgFollow Us on Facebook

Twitter Icon 042616.jpgUp to the Minute Nanotech News on Our Twitter Feed

LinkedIn IconA 042316.jpg‘Link-Up” with Us on LinkedIn


   Website Icon 042616Connect with Our Website

YouTube small 050516Watch Our YouTube Video 

Washington State U: Key improvement for fuel cells: Work improves understanding of process that improves one of the primary failure points

Fuel Cell II o72016 photo_stationary_fuel_cell

Washington State University researchers have determined a key step in improving solid oxide fuel cells (SOFCs), a promising clean energy technology that has struggled to gain wide acceptance in the marketplace.

The researchers determined a way to improve one of the primary failure points for the fuel cell, overcoming key issues that have hindered its acceptance. Their work is featured on the cover of the latest issue of Journal of Physical Chemistry C.

Fuel cells offer a clean and highly efficient way to convert the chemical energy in fuels directly into electrical energy. They are similar to batteries in that they have an anode, cathode and electrolyte and create electricity, but they use fuel to create a continuous flow of electricity.

Fuel cells can be about four times more efficient than a combustion engine because they are based on electrochemical reactions, but researchers continue to struggle with making them cheaply and efficiently enough to compete with traditional power generation sources.

An SOFC is made of solid materials, and the electricity is created by oxygen ions traveling through the fuel cell. Unlike other types of fuel cells, SOFCs don’t require the use of expensive metals, like platinum, and can work with a large variety of fuels, such as gasoline or diesel fuel.

When gasoline is used for fuel, however, a carbon-based material tends to build up in the fuel cell and stop the conversion reaction. Other chemicals, in particular sulfur, can also poison and stop the reactions.

In their study, the WSU researchers improved understanding of the process that stops the reactions. Problems most often occur at a place on the anode’s surface, called the triple-phase boundary, where the anode connects with the electrolyte and fuel.

The researchers determined that the presence of an electric field at this boundary can prevent failures and improve the system’s performance. To properly capture the complexity of this interface, they used the Center for Nanoscale Materials supercomputer at the Argonne National Laboratory to perform computations.

The researchers studied similar issues in solid oxide electrolysis cells (SOECs), which are like fuel cells that run in reverse to convert carbon dioxide and water to transportation fuel precursors.

The work provides guidance that industry can eventually use to reduce material buildup and poisoning and improve performance of SOFCs and SOECs, said Jean-Sabin McEwen, assistant professor in the Gene and Linda Voiland School of Chemical Engineering and Bioengineering, who led the project.

The research is in keeping with WSU’s Grand Challenges, a suite of research initiatives aimed at large societal issues. It is particularly relevant to the challenge of sustainable resources and its theme of energy.

Story Source:

The above post is reprinted from materials provided byWashington State University. Note: Materials may be edited for content and length.

Journal Reference:

  1. Fanglin Che, Su Ha, Jean-Sabin McEwen. Elucidating the Role of the Electric Field at the Ni/YSZ Electrode: A DFT Study. The Journal of Physical Chemistry C, 2016; 120 (27): 14608 DOI: 10.1021/acs.jpcc.6b01292