Magnetic Nanoparticles ease Removal of ‘microcontaminants’ from Wastewater


efficientremMany wastewater treatment plants do not completely remove chemical substances from wastewater. Credit: Symbol image: Shutterstock

Microcontaminants place a considerable burden on our water courses, but removing them from wastewater requires considerable technical resources. Now, ETH researchers have developed an approach that allows the efficient removal of these problematic substances.

In our , we all use a multitude of chemical substances, including cosmetics, medications, contraceptive pills, plant fertilisers and detergents—all of which help to make our lives easier. However, the use of such products has an adverse effect on the environment, because many of them cannot be fully removed from wastewater at today’s treatment plants. As , they ultimately end up in the environment, where they place a burden on fauna and flora in our water courses.

As part of a revision of the Waters Protection Act, parliament therefore decided in 2014 to fit an additional purification stage to selected water treatment plants by 2040 with a view to removing microcontaminants. Although the funding for this has in principle been secured, the project presents a challenge for plant operators because it is only possible to remove the critical substances using complex procedures, which are typically based on ozone, activated carbon or light.

Nanoparticles aid degradation

Now, researchers at ETH Zurich’s Institute of Robotics and Intelligent Systems have developed an elegant approach that could allow these substances to be removed more easily. Using multiferroic , they have succeeded in inducing the decomposition of chemical residues in contaminated water. Here, the nanoparticles are not directly involved in the chemical reaction but rather act as a catalyst, speeding up the conversion of the substances into harmless compounds.

“Nanoparticles such as these are already used as a catalyst in  in numerous areas of industry,” explains Salvador Pané, who has played a key role in advancing this research in his capacity as Senior Scientist. “Now, we’ve managed to show that they can also be useful for wastewater purification.”

Efficient removal of problem substances
Based on the example of various organic pigments, such as those used in the textile industry, the researchers are able to demonstrate the effectiveness of their approach. Picture left before treatment, right after treatment. Credit: ETH Zurich / Fajer Mushtaq

An 80 percent reduction

For their experiments, the researchers used aqueous solutions containing trace quantities of five common medications. The experiments confirmed that the nanoparticles can reduce the concentration of these substances in water by at least 80 percent. Fajer Mushtaq, a doctoral student in the group, underlines the importance of these results: “These  also included two compounds that can’t be removed using the conventional ozone-based method.”

“Remarkably, we’re able to precisely tune the catalytic output of the nanoparticles using magnetic fields,” explains Xiangzhong Chen, a postdoc who also participated in the project. The particles have a cobalt ferrite core surrounded by a bismuth ferrite shell. If an external alternating magnetic field is applied, some regions of the particle surface adopt positive electric charges, while others become negatively charged. These charges lead to the formation of reactive oxygen species in water, which break down the organic pollutants into harmless compounds. The magnetic nanoparticles can then be easily removed from water using , says Chen.

Positive responses from industry

The researchers believe that the new approach is a promising one, citing its easier technical implementation than that of ozone-based , for example. “The wastewater industry is very interested in our findings,” says Pané.

However, it will be some time before the method can be applied in practice, as it has been investigated only in the laboratory so far. At any rate, Mushtaq says that approval has already been given for a BRIDGE project jointly funded by the Swiss National Science Foundation and Innosuisse with a view to support the method’s transfer into practical applications. In addition, plans are already in place to establish a spin-off company, in which the researchers intend to develop their idea to market maturity.


Explore further

Chemists suggest a new method to synthesise titanium nanoparticles for water purification


More information: Fajer Mushtaq et al. Magnetoelectrically Driven Catalytic Degradation of Organics, Advanced Materials (2019). DOI: 10.1002/adma.201901378

Journal information: Advanced Materials
Provided by ETH Zurich
Advertisements

Using Nanotechnology to Clean Water: A Conversation with Pedro Alvarez of Rice University (NEWT – Nano Enabled Water Treatment)


silver-nano-p-clean-drinking-water-india (1)

In this special anniversary episode of Stories from the NNI, Dr. Lisa Friedersdorf, Director of NNCO, talks to Prof. Pedro Alvarez, of Rice University. Pedro and Lisa discuss the role nanotechnology plays in water security, exciting research results and applications, and his thoughts on the NNI.

 

 

Graphene-Week78Banner1400x400

Read More: How Can Graphene Be Used in Desalination?

Novel Nanosheet allows for efficient ‘Molecular Sieving’ – Zeolite Membranes have enormous potential in Energy and Chemical industries


Zeolites have played an important role in the chemical industry in past decades. These microporous, aluminosilicate materials are well-known catalysts and adsorbents for catalytic reforming and separation of petrochemicals. More recently, zeolites have also been used to remove radioactive cesium from seawater following the Fukushima Daiichi nuclear disaster. Now, recent work from the University of Cincinnati, has opened even more doors for the material by tweaking its geometry and surface chemistry.

Zishu Cao and her colleagues fabricated membranes by tiling with 6-nanometre-thick zeolite flat sheets, they synthesized by a modified hydrothermal crystallization procedure. The resultant membrane was much thinner than a conventional zeolite membrane, with a thickness of less than 500 nanometres versus a traditional membrane’s thickness of several micrometres.

Tiling enhancements

Cao’s adviser, Junhang Dong of the Department of Chemical and Environmental Engineering, says Cao’s two-dimensional zeolite sheets overcome the major transport issues the conventional thicker zeolite membranes typically experience when they are several microns thick.

Fukushima 1 Infographic jpg

“The potential for zeolite membranes in the energy and chemical industries is enormous,” says Dong, “but the practical realization of their use is hindered by two serious issues caused by intercrystalline spaces in the films and their randomly oriented polycrystalline structure.”

These intercrystalline spaces, or gaps between the randomly oriented crystals that comprise the films, undermine the separation selectivity by causing nonselective permeation of molecules and ions. In addition, the random orientation of the crystals in the films results in longer and un-preferred diffusion paths making the membrane permeation inefficient.

The two-dimensional, zeolite nanosheet tiled membranes synthesized by Cao, however, provide an oriented straight channel structure that provides both reduced intercrystalline spaces and shortened diffusion lengths for enhanced selectivity and membrane flux.

“Imagine you are using blocks to waterproof a roof. Now we are using tiles or shingles to construct the roof,” says Dong.

READ MORE

Biomimetic coagulant makes water safe to drink

Petrochemical inspiration

Their readily scalable membrane fabrication by zeolite nanosheet lamination was inspired by recent work from the University of Minnesota, where researchers synthesized organophilic pure-silica zeolite nanosheets suitable for petrochemical separations. In Cao’s work, they incorporated aluminium ions into the silica-based zeolite framework to make the surface ionic and strongly hydrophilic – both favorable properties for water and ion separations. To the group’s knowledge, the ionic zeolite nanosheet laminated membrane is the first of its kind.

In their recently published paper, Cao displayed its potential for water desalination. The group chose to study this application because of its relevance to a wide range of needs in treating high salinity wastewaters, from industrial activities such as oil and gas drilling and power plant desulphurization and cooling. They reported high water flux with high salt rejection rates for brines containing up to 24% dissolved sodium chloride by weight.

The group says many routes are possible – desalination was just an example of the membrane’s capabilities. From here, they are exploring high-performance battery ion separators, catalysts, adsorbents, and thin-film sensors.

More details can be found in Science Advances.

Hairy nano-cellulose provides green anti-scaling solution – More applications including drug delivery, antimicrobial agents, and fluorescent dyes for medical imaging – McGill University


hairynanotecCredit: McGill University

A new type of cellulose nanoparticle, invented by McGill University researchers, is at the heart of a more effective and less environmentally damaging solution to one of the biggest challenges facing water-based industries: preventing the buildup of scale.

Formed by the accumulation of sparingly soluble minerals, scale can seriously impair the operation of just about any equipment that conducts or stores water – from household appliances to industrial installations. Most of the anti-scaling agents currently in use are high in phosphorus derivatives, environmental pollutants that can have catastrophic consequences for aquatic ecosystems.

In a series of papers published in the Royal Society of Chemistry’s Materials Horizons and the American Chemical Society’s Applied Materials & Interfaces, a team of McGill chemists and chemical engineers describe how they have developed a phosphorus-free anti-scaling solution based on a nanotechnology breakthrough with an unusual name: hairy nanocellulose.

An unlikely candidate

Lead author Amir Sheikhi, now a postdoctoral fellow in the Department of Bioengineering at the University of California, Los Angeles, says despite its green credentials  was not an obvious place to look for a way to fight scale.

“Cellulose is the most abundant biopolymer in the world. It’s renewable and biodegradable. But it’s probably one of the least attractive options for an anti-scaling agent because it’s neutral, it has no charged functional groups,” he says.

While working as a postdoctoral fellow with McGill chemistry professor Ashok Kakkar, Sheikhi developed a number of macromolecular antiscalants that were more effective than products widely used in industry – but all of his discoveries were phosphonate-based. His desire to push his research further and find a phosphorus-free alternative led him to take a closer look at cellulose.

“Nanoengineered hairy cellulose turned out to work even better than the phosphonated molecules,” he says.

The breakthrough came when the research team succeeded in nanoengineering negatively charged carboxyl groups onto cellulose nanoparticles. The result was a particle that was no longer neutral, but instead carried charged functional groups capable of controlling the tendency of positively charged calcium ions to form scale.

Hirsute wonder particle a chance discovery

Previous attempts to functionalize cellulose in this way focused on two earlier forms of nanoparticle – cellulose nanofibrils and . But these efforts produced only a minimal amount of useful product. The difference this time was that the McGill team worked with hairy nanocellulose – a new nanoparticle first discovered in the laboratory of McGill chemistry professor Theo van de Ven.

Van de Ven, who also participated in the anti-scaling research, recalls the moment in 2011 when Han Yang, then a doctoral student in his lab, stumbled upon the new form of nanocellulose.

“He came into my office with a test tube that looked like it had water in it and he said, ‘Sir! My suspension has disappeared!'” van de Ven says with a grin.

“He had a white suspension of kraft fibres and it had turned transparent. When something is transparent, you know immediately it has either dissolved or turned nano. We performed a number of characterizations and we realized he had made a new form of nanocellulose.”

Extreme versatility

The secret to making hairy nanocellulose lies in cutting cellulose nanofibrils – which are made up of an alternating series of crystalline and amorphous regions – at precise locations to produce nanoparticles with amorphous regions sprouting from either end like so many unruly strands of hair.

“By breaking the nanofibrils up the way we do, you get all these cellulose chains sticking out which are accessible to chemicals,” van de Ven explains. “That’s why our nanocellulose can be functionalized to a far greater extent than other kinds.”

Given the chemical versatility of hairy nanocellulose, the research team sees strong potential for applications beyond anti-scaling, including drug delivery, antimicrobial agents, and fluorescent dyes for medical imaging.

“We can link just about any molecule you can think of to hairy ,” van de Ven says.

 Explore further: Ready-to-use recipe for turning plant waste into gasoline

More information: Amir Sheikhi et al. Overcoming Interfacial Scaling Using Engineered Nanocelluloses: A QCM-D Study, ACS Applied Materials & Interfaces (2018). DOI: 10.1021/acsami.8b07435

Amir Sheikhi et al. Nanoengineering colloidal and polymeric celluloses for threshold scale inhibition: towards universal biomass-based crystal modification, Materials Horizons (2018). DOI: 10.1039/C7MH00823F

 

Win-Win Collaborations – Derisking Advanced Technology Commercialization: YouTube Video from David Lazovsky, Founder of Intermolecular


Intermolecular Header_Main_R

David Lazovsky, Founder of Intermolecular, addresses the audience of the Advanced Materials Commercialization Summit 2017, speaking on Win-Win Collaborations: De-risking Advanced Technology Commercialization. Read More About Intermolecular

” … We sought to establish collaborative development programs with the Companies that were the end Producers.” – David Lazovsky, Founder of Intermolecular

 

GNT US Tenka Energy“In the end you cannot “commercialize” technology (only) … you can only commercialize a Product  (technology+application) that can be produced and scaled economically into the Marketplace. You must find a way to build a bridge to span the gap between ‘Discovery, Proof of Concept, Prototype and Scaling to Funding (Finance), Market Integration and Acceptance.”

– Bruce W. Hoy, CEO of Genesis Nanotechnology, Inc.

Australian scientists develop nanotechnology to purify water


Scientists in Australia have developed a ground-breaking new way to strip impurities from waste water, with the research set to have massive applications for a number of industries.

Scientists in Australia have developed a ground-breaking new way to strip impurities from waste water, with the research set to have massive applications for a number of industries.

By using a new type of crystalline alloy, researchers at Edith Cowan University (ECU) are able to extract the contaminants and pollutants that often end up in water during industrial processing.

“Mining and textile production produces huge amounts of waste water that is contaminated with heavy metals and dyes,” lead researcher Associate Professor Laichang Zhang from ECU’s School of Engineering technology said in a statement on Friday.

Although it is already possible to treat waste water with iron powder, according to Zhang, the cost is very high.

“Firstly, using iron powder leaves you with a large amount of iron sludge that must be stored and secondly it is expensive to produce and can only be used once,” he explained.

We can produce enough crystalline alloy to treat one tonne of waste water for just 15 Australian Dollars (10.8 US dollars), additionally, we can reuse the crystalline alloy up to five times while still maintaining its effectiveness.” Based on his previous work with “metal glass,” Zhang updated the nanotechnology to make it more effective.

“Whereas metallic glasses have a disordered atomic structure, the crystalline alloy we have developed has a more ordered atomic structure,” he said.

“We produced the crystalline alloy by heating metallic glass in a specific way.””This modifies the structure, allowing the electrons in the crystalline alloy to move more freely, thereby improving its ability to bind with dye molecules or heavy metals leaving behind usable water.”Zhang said he will continue to expand his research with industry partners to further improve the technology.

Rice University engineers develop system to remove contaminants from water


Rice0806_SULFATE-3-WEB-2hajrg6_800x533

Engineer Qilin Li at Rice University’s lab is building a treatment system that can be tuned to selectively pull toxins from wastewater from factories, sewage systems and oil and gas wells, as well as drinking water. The researchers said their technology will cut costs and save energy compared to conventional systems.

“Traditional methods to remove everything, such as reverse osmosis, are expensive and energy intensive,” said Li, the lead scientist and co-author of a study about the new technology in the American Chemical Society journal Environmental Science & Technology. “If we figure out a way to just fish out these minor components, we can save a lot of energy.”

The heart of Rice’s system is a set of novel composite electrodes that enable capacitive deionization. The charged, porous electrodes selectively pull target ions from fluids passing through the maze-like system. When the pores get filled with toxins, the electrodes can be cleaned, restored to their original capacity and reused.

“This is part of a broad scope of research to figure out ways to selectively remove ionic contaminants,” said Li, a professor of civil and environmental engineering and of materials science and nanoengineering. “There are a lot of ions in water. Not everything is toxic. For example, sodium chloride (salt) is perfectly benign. We don’t have to remove it unless the concentration gets too high.”

In tests, an engineered coating of resin, polymer and activated carbon removed and trapped harmful sulfate ions, and other coatings can be used in the same platform to target other contaminants. Illustration by Kuichang Zuo

The proof-of-principal system developed by Li’s team removed sulfate ions. The system’s electrodes were coated with activated carbon, which was in turn coated by a thin film of tiny resin particles held together by quaternized polyvinyl alcohol. When sulfate-contaminated water flowed through a channel between the charged electrodes, sulfate ions were attracted by the electrodes, passed through the resin coating and stuck to the carbon. Tests in the Rice lab showed the positively charged coating on the cathode preferentially captured sulfate ions over salt at a ratio of more than 20 to 1. The electrodes retained their properties over 50 cycles. “But in fact, in the lab, we’ve run the system for several hundred cycles and I don’t see any breaking or peeling of the material,” said Kuichang Zuo, lead author of the paper and a postdoctoral researcher in Li’s lab. “It’s very robust.”

In Rice’s new water-treatment platform, electrode coatings can be swapped out to allow the device to selectively remove a range of contaminants from wastewater, drinking water and industrial fluids. Illustration by Kuichang Zuo

“The true merit of this work is not that we were able to selectively remove sulfate, because there are many other contaminants that are perhaps more important,” she said. “The merit is that we developed a technology platform that we can use to target other contaminants as well by varying the composition of the electrode coating.”

The research was supported by the Rice-based National Science Foundation-backed Center for Nanotechnology-Enabled Water Treatment, the Welch Foundation and the Shanghai Municipal International Cooperation Foundation.

Nidec Motor Corp. appoints CEO

Nidec Motor Corporation (NMC) named Henk van Duijnhoven as its CEO and global business leader of ACIM (Appliances, Commercial and Industrial Motors). Van Duijnhoven was most recently a partner and managing director of The Boston Consulting Group where he was responsible for business turnaround, mergers and acquisitions, and strategy planning for clients in the industrial and medtech markets. He holds a Bachelor of Science degree from the College of Automotive Engineering and a Master of Business Administration from the Massachusetts Institute of Technology.

Woodard & Curran names new business unit leader

Woodard & Curran named Peter Nangeroni as its new industrial and commercial strategic business unit leader. He brings experience managing large, multidisciplinary projects for industrial clients with emphasis on generating positive environmental outcomes, return on investment and improved risk management. He has been with Woodard & Curran for 13 years in various roles, most recently as director of technical practices. He takes over for the long-time leader of the business unit, Mike Curato, who is retiring after 11 years in the role and 20 with the firm.

Nangeroni is a Professional Engineer with a degree in civil engineering from Tufts University and more than 35 years of experience working with clients on engineering and construction management projects. In his new role, he will oversee staffing, business development and project execution at a strategic level for the industrial and commercial strategic business unit, which focuses on water treatment, manufacturing and process utilities for clients in a wide range of industrial sectors.

NEWT – Mat baits, hooks and destroys pollutants in water: Rice University


Specks of titanium dioxide adhere to polyvinyl fibers in a mat developed at the Rice University-led NEWT Center to capture and destroy pollutants from wastewater or drinking water. After the mat attracts and binds pollutants, the titanium dioxide photocatalyst releases reactive oxygen species that destroy them. Credit: Rice University/NEWT

A polymer mat developed at Rice University has the ability to fish biologically harmful contaminants from water through a strategy known as “bait, hook and destroy.”

Tests with wastewater showed the mat can efficiently remove targeted pollutants, in this case a pair of biologically harmful endocrine disruptors, using a fraction of the energy required by other technology. The technique can also be used to treat drinking water.

The mat was developed by scientists with the Rice-led Nanotechnology-Enabled Water Treatment (NEWT) Center. The research is available online in the American Chemical Society journal Environmental Science and Technology.

The mat depends on the ability of a common material, titanium dioxide, to capture pollutants and, upon exposure to light, degrade them through oxidation into harmless byproducts.

Titanium dioxide is already used in some wastewater treatment systems. It is usually turned into a slurry, combined with wastewater and exposed to ultraviolet light to destroy contaminants. The slurry must then be filtered from the water.

The NEWT mat simplifies the process. The mat is made of spun polyvinyl fibers. The researchers made it highly porous by adding small plastic beads that were later dissolved with chemicals. The pores offer plenty of surface area for titanium oxide particles to inhabit and await their prey.

The mat’s hydrophobic (water-avoiding) fibers naturally attract hydrophobic contaminants like the endocrine disruptors used in the tests. Once bound to the mat, exposure to light activates the photocatalytic titanium dioxide, which produces reactive oxygen species (ROS) that destroy the contaminants.

Established by the National Science Foundation in 2015, NEWT is a national research center that aims to develop compact, mobile, off-grid water-treatment systems that can provide clean water to millions of people who lack it and make U.S. energy production more sustainable and cost-effective.

NEWT researchers said their mat can be cleaned and reused, scaled to any size, and its chemistry can be tuned for various pollutants.

“Current photocatalytic treatment suffers from two limitations,” said Rice environmental engineer and NEWT Center Director Pedro Alvarez. “One is inefficiency because the oxidants produced are scavenged by things that are much more abundant than the target pollutant, so they don’t destroy the pollutant.

The Rice University-led NEWT Center created a nanoparticle-infused polymer mat that both attracts and destroys pollutants in wastewater or drinking water. A mat, top left, is immersed in water with methylene blue as a contaminant. The contaminant is then absorbed at top right by the mat and, in the bottom images, destroyed by exposure to light. The mat is then ready for reuse. Credit: Rice University/NEWT

“Second, it costs a lot of money to retain and separate slurry photocatalysts and prevent them from leaking into the treated water,” he said. “In some cases, the energy cost of filtering that slurry is more than what’s needed to power the UV lights.

“We solved both limitations by immobilizing the catalyst to make it very easy to reuse and retain,” Alvarez said. “We don’t allow it to leach out of the mat and impact the water.”

Alvarez said the porous polymer mat plays an important role because it attracts the target pollutants. “That’s the bait and hook,” he said. “Then the photocatalyst destroys the pollutant by producing hydroxyl radicals.”

“The nanoscale pores are introduced by dissolving a sacrificial polymer on the electrospun fibers,” lead author and former Rice postdoctoral researcher Chang-Gu Lee said. “The pores enhance the contaminants’ access to titanium dioxide.”

The experiments showed dramatic energy reduction compared to wastewater treatment using slurry.

“Not only do we destroy the pollutants faster, but we also significantly decrease our electrical energy per order of reaction,” Alvarez said. “This is a measure of how much energy you need to remove one order of magnitude of the pollutant, how many kilowatt hours you need to remove 90 percent or 99 percent or 99.9 percent.

“We show that for the slurry, as you move from treating distilled water to wastewater treatment plant effluent, the amount of energy required increases 11-fold. But when you do this with our immobilized bait-and-hook photocatalyst, the comparable increase is only two-fold. It’s a significant savings.”

The mat also would allow treatment plants to perform pollutant removal and destruction in two discrete steps, which isn’t possible with the slurry, Alvarez said. “It can be desirable to do that if the water is murky and light penetration is a challenge. You can fish out the contaminants adsorbed by the mat and transfer it to another reactor with clearer water. There, you can destroy the pollutants, clean out the mat and then return it so it can fish for more.”

Tuning the mat would involve changing its hydrophobic or hydrophilic properties to match target pollutants. “That way you could treat more water with a smaller reactor that is more selective, and therefore miniaturize these reactors and reduce their carbon footprints,” he said. “It’s an opportunity not only to reduce energy requirements, but also space requirements for photocatalytic water treatment.”

Alvarez said collaboration by NEWT’s research partners helped the project come together in a matter of months. “NEWT allowed us to do something that separately would have been very difficult to accomplish in this short amount of time,” he said.

“I think the mat will significantly enhance the menu from which we select solutions to our water purification challenges,” Alvarez said.

More information: Chang-Gu Lee et al, Porous electrospun fibers embedding TiO2 for adsorption and photocatalytic degradation of water pollutants, Environmental Science & Technology (2018). DOI: 10.1021/acs.est.7b06508

Provided by Rice University

Explore further:Researchers turn plastic pollution into cleaners

Designing a Graphene Filter to make Seawater Drinkable and … Cheaper


Seawater drinking water imagesAs drinking water grows scarce, desalination might be one way to bridge the gap.

 

A new study released earlier this week in the journal Nature Nanotechnology may be a major step towards making desalinated water—water in which salt is removed to make it safe for drinking—a viable option for more of the world. Researchers from the University of Manchester modified graphene oxide membranes, a type of selectively permeable membrane that allows some molecules to pass while keeping others behind, to let water through while trapping salt ions. It’s essentially a molecular sieve.

Finding new sources of fresh water is important, because roughly 20 percent of the world’s population—1.2 billion people—lack access to clean drinking water, according to the United Nations. It’s a number that’s expected to grow as populations increase and existing water supplies dwindle, in part due to climate change. This reality has led some to suggest that the world’s next “gold rush” will be for water. Others have a less sanguine approach, worrying that the wars of the future will be fought over water. And this concern is not without merit: the war currently raging in Yemen is linked, at least in part, to water conflicts. All the Water we have Energy-recovery-desalination-1

 

But while fresh water is scarce (a scant three percent of the world’s water is fresh) water itself is not. The Earth is more than 70 percent water, but 97 percent is undrinkable because it’s either salt or brackish (a mix of salt and fresh water). The occasional gulp of seawater while swimming aside, drinking saltwater is dangerous for humans—it leads to dehydration and eventually death. Hence the famous lined from the Rhyme of the Ancient Mariner: “water, water everywhere, nor any drop to drink.”

Desalination could be a solution. After all, the technique is already employed in parts of the Middle East and the Cayman Islands. However, the two techniques currently employed—multi-stage flash distillation, which flash heats a portion of the water into steam through a series of heat exchanges, and reverse osmosis, which uses a high-pressure pump to push sea water through reverse osmosis membranes to remove ions and particles from drinking water—have several key drawbacks.

“Current desalination methods are energy intensive and produce adverse environmental impact,” wrote Ram Devanathan a researcher at the Energy and Environment Directorate at Pacific Northwest National Laboratory, in an op-ed that accompanied the study. “Furthermore, energy production consumes large quantities of water and creates wastewater that needs to be treated with further energy input.”

Graphene oxide membranes show promise as a relatively inexpensive alternative, because they can be cheaply produced in a lab—and though water easily passes through them, salts do not. However, when immersed in water on a large-scale, graphene oxide membranes tend to quickly swell. Once swollen, the membranes not only allow water to pass through, but also sodium and magnesium ions, i.e. salt, defeating the purpose of the filtration.

Study author Rahul Nair and his colleagues discovered that by placing walls made of epoxy resin on either side of the graphene oxide, they could stop the expansion. And by restricting the membranes with resin, they were able to fine tune their capillary size to prevent any errant salts from hitching a ride on water molecules.

The next step will be testing it on an industrial scale to see if the method holds up. If it works, many people might just be drinking (a glass of water) to it.

Update: Australia’s CSIRO – Tiny (graphene) membrane key to safe drinking water for billions of people around the World


Sydney-harbour

Sydney’s iconic harbour has played a starring role in the development of new CSIRO technology that could save lives around the world.

Using their own specially designed form of graphene, ‘Graphair’, CSIRO scientists have supercharged water purification, making it simpler, more effective and quicker.

The new filtering technique is so effective, water samples from Sydney Harbour were safe to drink after passing through the filter.

The breakthrough research was published today in Nature Communications.

“Almost a third of the world’s population, some 2.1 billion people, don’t have clean and safe drinking water,” the paper’s lead author, CSIRO scientist Dr Dong Han Seo said. CSIRO Membrane download

“As a result, millions — mostly children — die from diseases associated with inadequate water supply, sanitation and hygiene every year.

“In Graphair we’ve found a perfect filter for water purification. It can replace the complex, time consuming and multi-stage processes currently needed with a single step.”

While graphene is the world’s strongest material and can be just a single carbon atom thin, it is usually water repellent.

Using their Graphair process, CSIRO researchers were able to create a film with microscopic nano-channels that let water pass through, but stop pollutants.

As an added advantage Graphair is simpler, cheaper, faster and more environmentally friendly than graphene to make.

It consists of renewable soybean oil, more commonly found in vegetable oil.

Looking for a challenge, Dr Seo and his colleagues took water samples from Sydney Harbour and ran it through a commercially available water filter, coated with Graphair.

Researchers from QUT, the University of Sydney, UTS, and Victoria University then tested and analysed its water purification qualities.

The breakthrough potentially solves one of the great problems with current water filtering methods: fouling.

Over time chemical and oil based pollutants coat and impede water filters, meaning contaminants have to be removed before filtering can begin. Tests showed Graphair continued to work even when coated with pollutants.

Without Graphair, the membrane’s filtration rate halved in 72 hours.

When the Graphair was added, the membrane filtered even more contaminants (99 per cent removal) faster.

“This technology can create clean drinking water, regardless of how dirty it is, in a single step,” Dr Seo said.

“All that’s needed is heat, our graphene, a membrane filter and a small water pump. We’re hoping to commence field trials in a developing world community next year.”

CSIRO image-20160204-3020-1rpo9r8CSIRO is looking for industry partners to scale up the technology so it can be used to filter a home or even town’s water supply.

It’s also investigating other applications such as the treatment of seawater and industrial effluents.

 

Story Source:

Materials provided by CSIRO AustraliaNote: Content may be edited for style and length.


Journal Reference:

  1. Dong Han Seo, Shafique Pineda, Yun Chul Woo, Ming Xie, Adrian T. Murdock, Elisa Y. M. Ang, Yalong Jiao, Myoung Jun Park, Sung Il Lim, Malcolm Lawn, Fabricio Frizera Borghi, Zhao Jun Han, Stephen Gray, Graeme Millar, Aijun Du, Ho Kyong Shon, Teng Yong Ng, Kostya Ostrikov. Anti-fouling graphene-based membranes for effective water desalinationNature Communications, 2018; 9 (1) DOI: 10.1038/s41467-018-02871-3