Atomic-scale capillaries block smallest ions thanks to Graphene – Structures are ideal in Desalination and Filtration Technologies


graphene atomicscalec de sal                                       Credit: University of Manchester

 

** See More About Graphene (YouTube Video) and Desalination at the end of this article **

Researchers at The University of Manchester’s National Graphene Institute in the UK have succeeded in making artificial channels just one atom in size for the first time. The new capillaries, which are very much like natural protein channels such as aquaporins, are small enough to block the flow of smallest ions like Na+ and Cl- but allow water to flow through freely. As well as improving our fundamental understanding of molecular transport at the atomic scale, and especially in biological systems, the structures could be ideal in desalination and filtration technologies.

“Obviously, it is impossible to make capillaries smaller than one atom in size,” explains team leader Sir Andre Geim. “Our feat seemed nigh on impossible, even in hindsight, and it was difficult to imagine such tiny capillaries just a couple of years ago.”

Naturally occurring protein channels, such as aquaporins, allow water to quickly permeate through them but block hydrated ions larger than around 7 A in size thanks to mechanisms like steric (size) exclusion and electrostatic repulsion. Researchers have been trying to make artificial capillaries that work just like their natural counterparts, but despite much progress in creating nanoscale pores and nanotubes, all such structures to date have still been much bigger than biological channels.

Geim and colleagues have now fabricated channels that are around just 3.4 A in height. This is about half the size of the smallest hydrated ions, such as K+ and Cl-, which have a diameter of 6.6 A. These channels behave just like protein channels in that they are small enough to block these ions but are sufficiently big to allow water molecules (with a diameter of around 2.8 A) to freely flow through.

The structures could, importantly, help in the development of cost-effective, high-flux filters for water desalination and related technologies – a holy grail for researchers in the field.

Credit: University of Manchester

Atomic-scale Lego

Publishing their findings in Science the researchers made their structures using a van der Waals assembly technique, also known as “atomic-scale Lego”, which was invented thanks to research on graphene. “We cleave atomically flat nanocrystals just 50 and 200 nanometre in thickness from bulk graphite and then place strips of monolayer graphene onto the surface of these nanocrystals,” explains Dr. Radha Boya, a co-author of the research paper. “These strips serve as spacers between the two crystals when a similar atomically-flat crystal is subsequently placed on top. The resulting trilayer assembly can be viewed as a pair of edge dislocations connected with a flat void in between. This space can accommodate only one atomic layer of water.”

Using the  monolayers as spacers is a first and this is what makes the new channels different from any previous structures, she says.

The Manchester scientists designed their 2-D capillaries to be 130 nm wide and several microns in length. They assembled them atop a silicon nitride membrane that separated two isolated containers to ensure that the channels were the only pathway through which water and ions could flow.

Until now, researchers had only been able to measure water flowing though capillaries that had much thicker spacers (around 6.7 A high). And while some of their  indicated that smaller 2-D cavities should collapse because of van der Waals attraction between the opposite walls, other calculations pointed to the fact that  inside the slits could actually act as a support and prevent even one-atom-high slits (just 3.4 A tall) from falling down. This is indeed what the Manchester team has now found in its experiments.

Measuring water and ion flow

“We measured water permeation through our channels using a technique known as gravimetry,” says Radha. “Here, we allow water in a small sealed container to evaporate exclusively through the capillaries and we then accurately measure (to microgram precision) how much weight the container loses over a period of several hours.”

To do this, the researchers say they built a large number of channels (over a hundred) in parallel to increase the sensitivity of their measurements. They also used thicker top crystals to prevent sagging, and clipped the top opening of the capillaries (using plasma etching) to remove any potential blockages by thin edges present here.

To measure ion flow, they forced ions to move through the capillaries by applying an electric field and then measured the resulting currents. “If our capillaries were two atoms high, we found that small ions can move freely though them, just like what happens in bulk water,” says Radha. “In contrast, no ions could pass through our ultimately-small one-atom-high channels.

“The exception was protons, which are known to move through water as true subatomic particles, rather than ions dressed up in relatively large hydration shells several angstroms in diameter. Our channels thus block all hydrated ions but allow protons to pass.”

Since these  behave in the same way as protein channels, they will be important for better understanding how water and ions behave on the molecular scale – as in angstrom-scale biological filters. “Our work (both present and previous) shows that atomically-confined water has very different properties from those of bulk ,” explains Geim. “For example, it becomes strongly layered, has a different structure, and exhibits radically dissimilar dielectric properties.”

 Explore further: Devices made from 2-D materials separate salts in seawater

More information: Dorri Halbertal et al. Imaging resonant dissipation from individual atomic defects in graphene, Science (2017). DOI: 10.1126/science.aan0877 , https://arxiv.org/abs/1811.09227

Want to Read More About Cutting Edge Desalination, Energy Storage and Carbon Nanotubes?

opt-cnts-for-water-wang-mutha-nanotubes_0MIT: Optimizing carbon nanotube electrodes for energy storage and water desalination applications

 

 

 

Graphene for Water Desalination

 

Water, one of the world’s most abundant and highly demanded resources for sustaining life, agriculture, and industry, is being contaminated globally or is unsafe for drinking, creating a need for new and better desalination methods. Current desalination methods have high financial, energy, construction, and operating costs, resulting in them contributing to less than 1% of the world’s reserve water supplies. Advances in nanoscale science and engineering suggest that more cost effective and environmentally friendly desalination process using graphene is possible …

Advertisements

NIST Research Suggests Graphene Can Stretch to be a Tunable Ion Filter – Applications for nanoscale sensors, drug delivery and water purification


 

 

Researchers at the National Institute of Standards and Technology (NIST) have conducted simulations suggesting that graphene, in addition to its many other useful features, can be modified with special pores to act as a tunable filter or strainer for ions (charged atoms) in a liquid.

The concept, which may also work with other membrane materials, could have applications such as nanoscale mechanical sensors, drug delivery, water purification and sieves or pumps for ion mixtures similar to biological ion channels, which are critical to the function of living cells. The research is described in the November 26 issue of Nature Materials.

“Imagine something like a fine-mesh kitchen strainer with sugar flowing through it,” project leader Alex Smolyanitsky said. “You stretch that strainer in such a way that every hole in the mesh becomes 1-2 percent larger. You’d expect that the flow through that mesh will be increased by roughly the same amount. Well, here it actually increases 1,000 percent. I think that’s pretty cool, with tons of applications.”

If it can be achieved experimentally, this graphene sieve would be the first artificial ion channel offering an exponential increase in ion flow when stretched, offering possibilities for fast ion separations or pumps or precise salinity control. Collaborators plan laboratory studies of these systems, Smolyanitsky said.

Graphene is a layer of carbon atoms arranged in hexagons, similar in shape to chicken wire, that conducts electricity. The NIST molecular dynamics simulations focused on a graphene sheet 5.5 by 6.4 nanometers (nm) in size and featuring small holes lined with oxygen atoms. These pores are crown ethers—electrically neutral circular molecules known to trap metal ions. A previous NIST simulation study showed this type of graphene membrane might be used for nanofluidic computing.

In the simulations, the graphene was suspended in water containing potassium chloride, a salt that splits into potassium and chlorine ions. The crown ether pores can trap potassium ions, which have a positive charge. The trapping and release rates can be controlled electrically. An electric field of various strengths was applied to drive the ion current flowing through the membrane.

Researchers then simulated tugging on the membrane with various degrees of force to stretch and dilate the pores, greatly increasing the flow of potassium ions through the membrane. Stretching in all directions had the biggest effect, but even tugging in just one direction had a partial effect.

Researchers found that the unexpectedly large increase in ion flow was due to a subtle interplay of a number of factors, including the thinness of graphene; interactions between ions and the surrounding liquid; and the ion-pore interactions, which weaken when pores are slightly stretched. There is a very sensitive balance between ions and their surroundings, Smolyanitsky said.

The research was funded by the Materials Genome Initiative.


Paper: A. Fang, K. Kroenlein, D. Riccardi and A. Smolyanitsky. Highly mechanosensitive ion channels from graphene-embedded crown ethers. Nature Materials. Published online November 26, 2018. DOI: 10.1038/s41563-018-0220-4

MIT: Faster, more durable water filters: Plugging up (the holes) in leaky graphene


Graphene Mem 050815 3-anewapproachMassachusetts Institute of Technology

Summary: For faster, longer-lasting water filters, some scientists are looking to graphene –thin, strong sheets of carbon — to serve as ultrathin membranes, filtering out contaminants to quickly purify high volumes of water. Graphene’s unique properties make it a potentially ideal membrane for water filtration or desalination. But there’s been one main drawback to its wider use: Making membranes in one-atom-thick layers of graphene is a meticulous process that can tear the thin material — creating defects through which contaminants can leak. Now engineers have devised a process to repair these leaks.

Graphene’s unique properties make it a potentially ideal membrane for water filtration or desalination. But there’s been one main drawback to its wider use: Making membranes in one-atom-thick layers of graphene is a meticulous process that can tear the thin material — creating defects through which contaminants can leak.

Now engineers at MIT, Oak Ridge National Laboratory, and King Fahd University of Petroleum and Minerals (KFUPM) have devised a process to repair these leaks, filling cracks and plugging holes using a combination of chemical deposition and polymerization techniques. The team then used a process it developed previously to create tiny, uniform pores in the material, small enough to allow only water to pass through.

Graphene Mem 050815 3-anewapproach

Combining these two techniques, the researchers were able to engineer a relatively large defect-free graphene membrane — about the size of a penny. The membrane’s size is significant: To be exploited as a filtration membrane, graphene would have to be manufactured at a scale of centimeters, or larger.

In experiments, the researchers pumped water through a graphene membrane treated with both defect-sealing and pore-producing processes, and found that water flowed through at rates comparable to current desalination membranes. The graphene was able to filter out most large-molecule contaminants, such as magnesium sulfate and dextran.

Rohit Karnik, an associate professor of mechanical engineering at MIT, says the group’s results, published in the journal Nano Letters, represent the first success in plugging graphene’s leaks.

“We’ve been able to seal defects, at least on the lab scale, to realize molecular filtration across a macroscopic area of graphene, which has not been possible before,” Karnik says. “If we have better process control, maybe in the future we don’t even need defect sealing. But I think it’s very unlikely that we’ll ever have perfect graphene — there will always be some need to control leakages. These two [techniques] are examples which enable filtration.”

Sean O’Hern, a former graduate research assistant at MIT, is the paper’s first author. Other contributors include MIT graduate student Doojoon Jang, former graduate student Suman Bose, and Professor Jing Kong.

A delicate transfer

“The current types of membranes that can produce freshwater from saltwater are fairly thick, on the order of 200 nanometers,” O’Hern says. “The benefit of a graphene membrane is, instead of being hundreds of nanometers thick, we’re on the order of three angstroms — 600 times thinner than existing membranes. This enables you to have a higher flow rate over the same area.”

O’Hern and Karnik have been investigating graphene’s potential as a filtration membrane for the past several years. In 2009, the group began fabricating membranes from graphene grown on copper — a metal that supports the growth of graphene across relatively large areas. However, copper is impermeable, requiring the group to transfer the graphene to a porous substrate following fabrication.

However, O’Hern noticed that this transfer process would create tears in graphene. What’s more, he observed intrinsic defects created during the growth process, resulting perhaps from impurities in the original material.

Plugging graphene’s leaks

To plug graphene’s leaks, the team came up with a technique to first tackle the smaller intrinsic defects, then the larger transfer-induced defects. For the intrinsic defects, the researchers used a process called “atomic layer deposition,” placing the graphene membrane in a vacuum chamber, then pulsing in a hafnium-containing chemical that does not normally interact with graphene. However, if the chemical comes in contact with a small opening in graphene, it will tend to stick to that opening, attracted by the area’s higher surface energy.

The team applied several rounds of atomic layer deposition, finding that the deposited hafnium oxide successfully filled in graphene’s nanometer-scale intrinsic defects. However, O’Hern realized that using the same process to fill in much larger holes and tears — on the order of hundreds of nanometers — would require too much time.

Instead, he and his colleagues came up with a second technique to fill in larger defects, using a process called “interfacial polymerization” that is often employed in membrane synthesis. After they filled in graphene’s intrinsic defects, the researchers submerged the membrane at the interface of two solutions: a water bath and an organic solvent that, like oil, does not mix with water.

In the two solutions, the researchers dissolved two different molecules that can react to form nylon. Once O’Hern placed the graphene membrane at the interface of the two solutions, he observed that nylon plugs formed only in tears and holes — regions where the two molecules could come in contact because of tears in the otherwise impermeable graphene — effectively sealing the remaining defects.

Using a technique they developed last year, the researchers then etched tiny, uniform holes in graphene — small enough to let water molecules through, but not larger contaminants. In experiments, the group tested the membrane with water containing several different molecules, including salt, and found that the membrane rejected up to 90 percent of larger molecules. However, it let salt through at a faster rate than water.

The preliminary tests suggest that graphene may be a viable alternative to existing filtration membranes, although Karnik says techniques to seal its defects and control its permeability will need further improvements.

“Water desalination and nanofiltration are big applications where, if things work out and this technology withstands the different demands of real-world tests, it would have a large impact,” Karnik says. “But one could also imagine applications for fine chemical- or biological-sample processing, where these membranes could be useful. And this is the first report of a centimeter-scale graphene membrane that does any kind of molecular filtration. That’s exciting.”


Story Source:

The above story is based on materials provided by Massachusetts Institute of Technology. Note: Materials may be edited for content and length.


Journal Reference:

  1. Sean C. O’Hern, Doojoon Jang, Suman Bose, Juan-Carlos Idrobo, Yi Song, Tahar Laoui, Jing Kong, Rohit Karnik. Nanofiltration across Defect-Sealed Nanoporous Monolayer Graphene. Nano Letters, 2015; 150427124208006 DOI: 10.1021/acs.nanolett.5b00456