University of Rochester: Defects on an atomically thin semiconductor can produce light-emitting quantum dots: Applications in Integrated Photonics


Silicon Photonics id39403Researchers at the University of Rochester have shown that defects on an atomically thin semiconductor can produce light-emitting quantum dots. The quantum dots serve as a source of single photons and could be useful for the integration of quantum photonics with solid-state electronics — a combination known as integrated photonics.

Scientists have become interested in integrated solid-state devices for quantum information processing uses. Quantum dots in atomically thin semiconductors could not only provide a framework to explore the fundamental physics of how they interact, but also enable nanophotonics applications, the researchers say.

Quantum dots are often referred to as artificial atoms. They are artificially engineered or naturally occurring defects in solids that are being studied for a wide range of applications. Nick Vamivakas, assistant professor of optics at the University of Rochester and senior author on the paper, adds that atomically thin, 2D materials, such as graphene, have also generated interest among scientists who want to explore their potential for optoelectronics. However, until now, optically active quantum dots have not been observed in 2D materials.

In a paper published in Nature Nanotechnology this week, the Rochester researchers show how tungsten diselenide (WSe2) can be fashioned into an atomically thin semiconductor that serves as a platform for solid-state quantum dots. Perhaps most importantly the defects that create the dots do not inhibit the electrical or optical performance of the semiconductor and they can be controlled by applying electric and magnetic fields.

Vamivakas explains that the brightness of the quantum dot emission can be controlled by applying the voltage. He adds that the next step is to use voltage to “tune the color” of the emitted photons, which can make it possible to integrate these quantum dots with nanophotonic devices.

A key advantage is how much easier it is to create quantum dots in atomically thin tungsten diselenide compared to producing quantum dots in more traditional materials like indium arsenide.

“We start with a black crystal and then we peel layers of it off until we have an extremely thin later left, an atomically thin sheet of tungsten diselenide,” said Vamivakas.1-nano devices howtomakemob

The researchers take two of these atomically thin sheets and lay one over the other one. At the point where they overlap, a quantum dot is created. The overlap creates a defect in the otherwise smooth 2D sheet of semiconductor material. The extremely thin semiconductors are much easier to integrate with other electronics.

The quantum dots in tungsten diselenide also possess an intrinsic quantum degree of freedom — the electron spin. This is a desirable property as the spin can both act as a store of quantum information as well as provide a probe of the local quantum dot environment.

“What makes tungsten diselenide extremely versatile is that the color of the single photons emitted by the quantum dots is correlated with the quantum dot spin,” said first author Chitraleema Chakraborty. Chakraborty added that the ease with which the spins and photons interact with one another should make these systems ideal for quantum information applications as well as nanoscale metrology.


Story Source:

The above story is based on materials provided by University of Rochester. Note: Materials may be edited for content and length.

The “Nano-Tooth Fairy” – Nanoparticles Release Drugs to Reduce Tooth Decay


Tooth Decay 041415 anovelwaytoaTherapeutic agents intended to reduce dental plaque and prevent tooth decay are often removed by saliva and the act of swallowing before they can take effect. But a team of researchers has developed a way to keep the drugs from being washed away.

Dental plaque is made up of bacteria enmeshed in a sticky matrix of polymers—a polymeric matrix—that is firmly attached to teeth. The researchers, led by Danielle Benoit at the University of Rochester and Hyun Koo at the University of Pennsylvania’s School of Dental Medicine, found a new way to deliver an within the plaque, despite the presence of saliva.

Their findings have been published in the journal ACS Nano.

“We had two specific challenges,” said Benoit, an assistant professor of biomedical engineering. “We had to figure out how to deliver the anti-bacterial agent to the teeth and keep it there, and also how to release the agent into the targeted sites.”

To deliver the agent—known as farnesol—to the targeted sites, the researchers created a spherical mass of particles, referred to as a nanoparticle carrier. They constructed the outer layer out of cationic—or positively charged—segments of the polymers. For inside the carrier, they secured the drug with hydrophobic and pH-responsive polymers.

The positively-charged outer layer of the carrier is able to stay in place at the surface of the teeth because the enamel is made up, in part, of HA (hydroxyapatite), which is negatively charged. Just as oppositely charged magnets are attracted to each other, the same is true of the nanoparticles and HA. Because teeth are coated with saliva, the researchers weren’t certain the nanoparticles would adhere. But not only did the particles stay in place, they were also able to bind with the polymeric matrix and stick to dental plaque.

Since the nanoparticles could bind both to saliva-coated teeth and within plaque, Benoit and colleagues used them to carry an anti-bacterial agent to the targeted sites. The researchers then needed to figure out how to effectively release the agent into the plaque.

Tooth Decay 041415 anovelwaytoa

Farnesol is released from the nanoparticle carriers into the cavity-causing dental plaque. Credit: Michael Osadciw/University of Rochester 

A key trait of the inner carrier material is that it destabilizes at acidic—or low pH—levels, such as 4.5, allowing the drug to escape more rapidly. And that’s exactly what happens to the pH level in plaque when it’s exposed to glucose, sucrose, starch, and other food products that cause . In other words, the nanoparticles release the drug when exposed to cavity-causing eating habits—precisely when it is most needed to quickly stop acid-producing bacteria.

The researchers tested the product in rats that were infected with Streptococcus mutans—a microbe that causes tooth decay. “We applied the test solutions to rats’ mouths twice daily for 30 seconds, simulating what a person might do using a mouth rinse morning and night,” said Hyun Koo, a professor in the Department of Orthodontics and co-senior author of the work. “When the drug was administered without the nanoparticle carriers, there was no effect on the number of cavities and only a very small reduction in their severity. But when it was delivered by the nanoparticle carriers, both the number and severity of the cavities were reduced.”

Plaque formation and tooth decay are chronic conditions that need to be monitored through regular visits to the dental office. The researchers hope their results will someday lead to better—and perhaps permanent—treatments for and tooth decay, as well as other biofilm-related diseases.

Water-Repellent Metals: This is NOT Your Father’s Teflon ~ What it means to Developing Countires: Bill & Melinda Gates Foundation


Water Repell lasergeneratScientists at the University of Rochester have used lasers to transform metals into extremely water repellent, or super-hydrophobic, materials without the need for temporary coatings.

Super-hydrophobic are desirable for a number of applications such as rust prevention, anti-icing, or even in sanitation uses. However, as Rochester’s Chunlei Guo explains, most current hydrophobic materials rely on chemical coatings.

In a paper published today in the Journal of Applied Physics, Guo and his colleague at the University’s Institute of Optics, Anatoliy Vorobyev, describe a powerful and precise laser-patterning technique that creates an intricate pattern of micro- and nanoscale structures to give the metals their new properties. This work builds on earlier research by the team in which they used a similar laser-patterning technique that turned metals black. Guo states that using this technique they can create multifunctional surfaces that are not only super-hydrophobic but also highly-absorbent optically.

Water Repell lasergenerat

University of Rochester’s Institute of Optics Professor Chunlei Guo has developed a technique that uses lasers to render materials hydrophobic, illustrated in this image of a water droplet bouncing off a treated sample. Credit: J. Adam Fenster/University of Rochester 

Watch A Short Video Here:

http://phys.org/news/2015-01-laser-generated-surface-extremely-water-repellent-metals.html

Guo adds that one of the big advantages of his team’s process is that “the structures created by our laser on the metals are intrinsically part of the material surface.” That means they won’t rub off. And it is these patterns that make the metals repel .

“The material is so strongly water-repellent, the water actually gets bounced off. Then it lands on the surface again, gets bounced off again, and then it will just roll off from the surface,” said Guo, professor of optics at the University of Rochester. That whole process takes less than a second.

Water Repell 2 newlaserpatt

A femtosecond laser created detailed hierarchical structures in the metals, as shown in this SEM image of the platinum surface. Credit: The Guo Lab/University of Rochester 

The materials Guo has created are much more slippery than Teflon—a common hydrophobic material that often coats nonstick frying pans. Unlike Guo’s laser-treated metals, the Teflon kitchen tools are not super-hydrophobic. The difference is that to make water to roll-off a Teflon coated material, you need to tilt the surface to nearly a 70-degree angle before the water begins to slide off. You can make water roll off Guo’s metals by tilting them less than five degrees.

As the water bounces off the super-hydrophobic surfaces, it also collects dust particles and takes them along for the ride. To test this self-cleaning property, Guo and his team took ordinary dust from a vacuum cleaner and dumped it onto the treated surface. Roughly half of the dust particles were removed with just three drops of water. It took only a dozen drops to leave the surface spotless. Better yet, it remains completely dry.

Guo is excited by potential applications of super-hydrophobic materials in developing countries. It is this potential that has piqued the interest of the Bill and Melinda Gates Foundation, which has supported the work.

“In these regions, collecting rain water is vital and using super-hydrophobic materials could increase the efficiency without the need to use large funnels with high-pitched angles to prevent water from sticking to the surface,” says Guo. “A second application could be creating latrines that are cleaner and healthier to use.”

Latrines are a challenge to keep clean in places with little water. By incorporating super-hydrophobic materials, a latrine could remain clean without the need for water flushing.

But challenges still remain to be addressed before these applications can become a reality, Guo states. It currently takes an hour to pattern a 1 inch by 1 inch metal sample, and scaling up this process would be necessary before it can be deployed in developing countries. The researchers are also looking into ways of applying the technique to other, non- materials.

Guo and Vorobyev use extremely powerful, but ultra-short, laser pulses to change the surface of the metals. A femtosecond laser pulse lasts on the order of a quadrillionth of a second but reaches a peak power equivalent to that of the entire power grid of North America during its short burst.

Guo is keen to stress that this same technique can give rise to multifunctional metals. Metals are naturally excellent reflectors of light. That’s why they appear to have a shiny luster. Turning them black can therefore make them very efficient at absorbing light. The combination of light-absorbing properties with making metals water repellent could lead to more efficient solar absorbers – solar absorbers that don’t rust and do not need much cleaning.

Guo’s team had previously blasted materials with the lasers and turned them hydrophilic, meaning they attract water. In fact, the materials were so hydrophilic that putting them in contact with a drop of water made water run “uphill”.

Guo’s team is now planning on focusing on increasing the speed of patterning the surfaces with the laser, as well as studying how to expand this technique to other materials such as semiconductors or dielectrics, opening up the possibility of electronics.

Explore further: Engineers create ‘superomniphobic’ texture capable of repelling all liquids

Light-Based Hydrogen Production


Nanocrystals and Nickel Catalyst Substantially Improve

Light-Based Hydrogen Production

November 8, 2012

Hydrogen is an attractive fuel source because it can easily be converted into electric energy and gives off no greenhouse emissions. A group of chemists at the University of Rochester is adding to its appeal by increasing the output and lowering the cost of current light-driven hydrogen-production systems.

The work was done by graduate students Zhiji Han and Fen Qiu, as part of a collaboration between chemistry professors Richard Eisenberg, Todd Krauss, and Patrick Holland, which is funded by the U.S. Department of Energy. Their paper will be published later this month (Nov. 23) in the journal Science.

The chemists say their work advances what is sometimes considered the “holy grail” of energy science—efficiently using sunlight to provide clean, carbon-free energy for vehicles and anything that requires electricity.

One disadvantage of current methods of hydrogen production has been the lack of durability in the light-absorbing material, but the Rochester scientists were able to overcome that problem by incorporating nanocrystals. “Organic molecules are typically used to capture light in photocatalytic systems,” said Krauss, who has been working in the field of nanocrystals for over 20 years. “The problem is they only last hours, or, if you’re lucky, a day. These nanocrystals performed without any sign of deterioration for at least two weeks.”

Richard Eisenberg, the Tracy H. Harris Professor of Chemistry, has spent two decades working on solar energy systems. During that time, his systems have typically generated 10,000 instances—called turnovers—of hydrogen atoms being formed without having to replace any components. With the nanocrystals, Eisenberg and his colleagues witnessed turnovers in excess of 600,000.

The researchers managed to overcome other disadvantages of traditional photocatalytic systems. “People have typically used catalysts made from platinum and other expensive metals,” Holland said. “It would be much more sustainable if we used metals that were more easily found on the Earth, more affordable, and lower in toxicity. That would include metals, such as nickel.”

Holland said their work is still in the “basic research stage,” making it impossible to provide cost comparisons with other energy production systems. But he points out that nickel currently sells for about $8 per pound, while the cost of platinum is $24,000 per pound.

While all three researchers say the commercial implementation of their work is years off, Holland points out that an efficient, low-cost system would have uses beyond energy. “Any industry that requires large amounts of hydrogen would benefit, including pharmaceuticals and fertilizers,” said Holland.

The process developed by Holland, Eisenberg, and Krauss is similar to other photocatalytic systems; they needed a chromophore (the light-absorbing material), a catalyst to combine protons and electrons, and a solution, which in this case is water. Krauss, an expert in nanocrystals, provided cadmium selenide (CdSe) quantum dots (nanocrystals) as the chromophore. Holland, whose expertise lies in catalysis and nickel research, supplied a nickel catalyst (nickel nitrate). The nanocrystals were capped with DHLA (dihydrolipoic acid) to make them soluble, and ascorbic acid was added to the water as an electron donor.

Photons from a light source excite electrons in the nanocrystals and transfer them to the nickel catalyst. When two electrons are available, they combine on the catalyst with protons from water, to form a hydrogen molecule (H2).

This system was so robust that it kept producing hydrogen until the source of electrons was removed after two weeks. “Presumably, it could continue even longer, but we ran out of patience!” said Holland.

One of the next steps will be to look at the nature of the nanocrystal. “Some nanocrystals are like M&Ms – they have a core with a shell around it,” said Eisenberg. “Ours is just like the core. So we need to consider if they would they work better if they were enclosed in shells.”