Mind Reading and Mind Control Technologies Are Coming – Are We Ready?


Mind Control 1 973DA81D-E9E4-4F8A-829DBDDD07992188_source Credit: Alfred Pasieka Getty Images

” … What’s more, five minutes of monitoring electrical activity flowing through your brain, while you do nothing but let your mind wander, can reveal how your individual brain is wired.”

We need to figure out the ethical implications before they arrive

The ability to detect electrical activity in the brain through the scalp, and to control it, will soon transform medicine and change society in profound ways. Patterns of electrical activity in the brain can reveal a person’s cognition—normal and abnormal. New methods to stimulate specific brain circuits can treat neurological and mental illnesses and control behavior. In crossing this threshold of great promise, difficult ethical quandaries confront us.

MIND READING

The ability to interrogate and manipulate electrical activity in the human brain promises to do for the brain what biochemistry did for the body. When you go to the doctor, a chemical analysis of your blood is used to detect your body’s health and potential disease. Forewarned that your cholesterol level is high, and you are at risk of having a stroke, you can take action to avoid suffering one. Likewise, in experimental research destined to soon enter medical practice, just a few minutes of monitoring electrical activity in your brain using EEG and other methods can reveal not only neurological illness but also mental conditions like ADHD and schizophrenia. What’s more, five minutes of monitoring electrical activity flowing through your brain, while you do nothing but let your mind wander, can reveal how your individual brain is wired.

img_1013

Tapping into your wandering mind can measure your IQ, identify your cognitive strengths and weaknesses, perceive your personality and determine your aptitude for learning specific types of information. Electrical activity in a preschooler’s brain be used to can predict, for example, how well that child will be able to read when they go to school. As I recount in my new book, Electric Brain (BenBella, 2020), after having brainwaves in my idling mind recorded using EEG for only five minutes, neuropsychologist Chantel Prat at the University of Washington, in Seattle, pronounced that learning a foreign language would be difficult for me because of weak beta waves in a particular part of my cerebral cortex processing language. (Don’t ask me to speak German or Spanish, languages that I studied but never mastered.) How will this ability to know a person’s mind change education and career choices?

Neuroscientist Marcel Just and colleagues at Carnegie Mellon University are using fMRI brain imaging to decipher what a person is thinking. By using machine learning to analyze complex patterns of activity in a person’s brain when they think of a specific number or object, read a sentence, experience a particular emotion or learn a new type of information, the researchers can read minds and know the person’s specific thoughts and emotions. “Nothing is more private than a thought,” Just says, but that privacy is no longer sacrosanct.

Armed with the ability to know what a person is thinking, scientists can do even more. They can predict what a person might do. Just and his team are able to tell if a person is contemplating suicide, simply by watching how the person’s brain responds to hearing words like “death” or “happiness.” As the tragic deaths of comedian Robin Williams and celebrity chef Anthony Bourdain show, suicide often comes as a shock because people tend to conceal their thoughts of suicide, even from loved ones and therapists.

Such “brain hacking” to uncover that someone is thinking of suicide could be lifesaving. The technique applied to the Columbine high school mass murderers might have prevented the horror of two troubled teens slaughtering their classmates and teachers, as well as their own suicides. But this insight into suicidal ideation is gleaned by judging that the pattern of brain activity in an individual’s brain deviates from what is considered “normal” as defined as the average response from a large population. At what point do we remove a person from society because their brain activity deviates from what is considered normal?

MIND CONTROL

The ability to control electrical activity in brain circuits has the potential to do for brain disorders what electrical stimulation has accomplished in treating cardiac disorders. By beaming electrical or magnetic pulses through the scalp, and by implanting electrodes in the brain, researchers and doctors can treat a vast array of neurological and psychiatric disorders, from Parkinson’s disease to chronic depression.

img_0929-2

But the prospect of “mind control” frightens many, and brain stimulation to modify behavior and treat mental illness has a sordid history. In the 1970s neuropsychologist Robert Heath at Tulane University inserted electrodes into a homosexual man’s brain to “cure” him of his homosexual nature by stimulating his brain’s pleasure center. Spanish neuroscientist José Delgado used brain stimulation in monkeys, people and even a charging bull to understand how, at a neural circuit level, specific behaviors and functions are controlled—and to control them at will by pushing buttons on his radio-controlled device energizing electrodes implanted in the brain. Controlling movements, altering thoughts, evoking memories, rage and passion were all at Delgado’s fingertips. Delgado’s goal was to relieve the world of deviant behavior through brain stimulation and produce a “psychocivilized” society.

The prospect of controlling a person’s brain by electrical stimulation is disturbing for many, but current methods of treating mental and neurological disorders are woefully inadequate and far too blunt. Neurological and psychoactive drugs affect many different neural circuits in addition to the one targeted, causing wide-ranging side effects. Not only the brain but every cell in the body that interacts with the drugs, such as SSRIs for treating chronic depression, will be affected.

At present, drugs available for treating mental illness and neurological conditions are not always effective, and they are often prescribed in a trial-and-error manner. Psychosurgery, notoriously prefrontal lobotomy, also has a tragic history of abuse. Moreover, while any surgeon faces the prospect of losing the patient on the operating table, neurosurgeons face the unique risk of saving a patient’s life but losing the person. Surgical removal of brain tissue can leave patients with physical, cognitive, personality or mood dysfunctions by damaging healthy tissue, or failing to remove all the dysfunctional tissue. Electroconvulsive stimulation (ECT), to treat chronic depression and other mental illnesses, rocks the entire brain with seizure; in the wake of the electrical firestorm, the brain somehow resets itself, and many patients are helped, but not all, and sometimes there are debilitating side effects or the method fails to work.

Rather than blasting the whole brain with bolts of electricity or saturating it with drugs, it makes far more sense to stimulate the precise neural circuit that is malfunctioning. Following the success of deep brain stimulation in treating Parkinson’s disorder, doctors are now applying the same method to treat a wide range of neurological and psychiatric illnesses, from dystonia to OCD. But they are often doing so without the requisite scientific understanding of the disorder at a neural circuit level. This is especially so for mental illnesses, which are poorly represented in nonhuman animals used in research. How electrical stimulation is working to help these conditions, including Parkinson’s disease, is not fully understood. The necessary knowledge of where to put the electrodes or what strength and pattern of electrical stimulation to use is not always available. Such doctors are in effect doing experiments on their patients, but they are doing so because it helps.

Noninvasive means of modifying brainwaves and patterns of electrical activity in specific brain circuits, such as neurofeedback, rhythmic sound or flashing light, ultrasonic and magnetic stimulation through the scalp, can modify neural activity without implanting electrodes in the brain to treat neurological and mental illnesses and improve mood and cognition. The FDA approved treating depression by transcranial magnetic stimulation in 2008, and subsequently expanded approval for treating pain and migraine. Electrical current can be applied by an electrode on the scalp to stimulate or inhibit neurons from firing in appropriate brain regions.

The military is using this method to speed learning and enhance cognitive performance in pilots. The method is so simple, brain stimulation devices can be purchased over the internet or you can make one yourself from nine-volt batteries. But the DIY approach renders the user an experimental guinea pig.

New methods of precision brain stimulation are being developed. Electrical stimulation is notoriously imprecise, following the path of least resistance through brain tissue and stimulating neurons from distant regions of the brain that extend axons past the electrode. In experimental animals, very precise stimulation or inhibition of neuronal firing can be achieved by optogenetics. This method uses genetic engineering to insert light sensitive ion channels into specific neurons to control their firing very precisely using laser light beamed into the brain through a fiber-optic cable. Applied to humans, optogenetic stimulation could relieve many neurological and psychiatric disorders by precision control of specific neural circuits, but using this approach in people is not considered ethical.

CROSSING THE THRESHOLD

Against the historical backdrop of ethical lapses and concerns that curtailed brain stimulation research for mental illnesses decades ago, we are reaching a point where it will become unethical to deny people suffering from severe mental or neurological illness treatments by optogenetic or electrical stimulation of their brain, or to withhold diagnosing their conditions objectively by reading their brain’s electrical activity. The new capabilities of being able to directly monitor and manipulate the brain’s electrical activity raise daunting ethical questions from technology that has not existed previously. But the genie is out of the bottle. We better get to know her.

By R. Douglas Fields for The Scientific American

 

How Lockheed Martin’s and Elcora Advanced Materials (Graphene) Partnership may Revolutionize Military “driverless vehicles” and Lithium-Ion Batteries


Elcora 2 BG-3-elcora

Maintaining a global supply chain is one of the most secretive and understated keys to the success of a military campaign. As described by the U.S. Army, the quick and efficient transport of goods like water, food, fuel, and ammunition has been essential in winning wars for thousands of years. Supply chain and logistics management has evolved to include, “storage of goods, services, and related information between the point of origin and the point of consumption”. In essence, that means the movement of vehicles bringing precious cargo from the home base to the soldiers fighting on the front lines.

Security and strategic operations are critical elements in the fulfillment of this potentially hazardous supply chain. Enemy forces hiding in the bushes can open fire to try to slow down the troops’ movement. With mines littered all over the war zone, all it would take is one wrong step, and the truck and the people in them, would be blown to smithereens.

One ingenious solution is the deployment of an automated military convoy run by a military commander, which can reduce risks and their accompanying vulnerabilities. In line with this, advanced defense contractor Lockheed Martin Canada (NYSE:LMT) has successfully tested “driverless trucks” on two active U.S. military bases.

Call it the soldier’s equivalent of a smart fleet of cars that would take the currently popular concept of self-driving vehicles to a whole new, safer level. Human operators would still be needed to guide the vehicles towards their destinations. However, because this could be accomplished remotely, very little time would be lost to the exchange of hostilities, as these smart military vehicles would be impervious to the enemy’s usual attempts at distraction. And in case firepower does break out, the loss of life, as well as injury to the troops, would be minimal.

The memorandum of agreement signed between Elcora and Lockheed Martin, is not the usual corporate alliance but bears important long-term repercussions for sectors such as transport, security, and the military-industrial complex. Lockheed Martin is a leviathan in the aerospace, defense, weaponry, and other technologies that have been instrumental in keeping many of the nations of the world safe. elcora-advanced-materials 3

The Lithium-ion (or Li-ion) batteries that it uses to store energy in many of its technologies and processes are critical to upholding the operations being conducted in many of its devices, plants, and facilities. The more energy that these batteries can store, the longer the systems and machines can function, without interruption, and in compliance with the highest standards of safety.

This is where Elcora comes in. The future of military supply chain and logistics management is accelerating thanks to Lockheed’s recently signed partnership with end-to-end graphene producer Elcora Advanced Materials (TXSV:ERAOTC:ECORF).

Elcora graphene-uses 1One element that can ensure the consistent and reliable powering up for the Li-ion batteries is graphene, an element derived from graphite minerals. Elcora is one of the few companies that produce and distribute graphene in one dynamic end-to-end operation, from the time that the first rocks are mined in Sri Lanka, to the time that they are refined, developed, and purified in the company’s facilities in Canada. The quality of the graphene that comes out of Elcora’s pipeline is higher than those usually found in the market. This pristine quality can help the Li-ion batteries increase their storage of power without adding further cost.

Li-ion batteries are already being sought after for prolonging the lifespan of power charged in a wide range of devices, from the ubiquitous smartphones, to the electric cars that innovators like Elon Musk are pushing to become more mainstream in our roads and highways. Lockheed Martin will also be using them in the military vehicles that will be guided by their Autonomous Mobility Applique Systems (AMAS), or the ‘driverless military convoy’, as described above. The tests have shown that these near-smart vehicles have already clocked in 55,000 miles. Lockheed is looking forward to completing the tests and fast-forwarding to deploying them for actual use in military campaigns.

Rice Chart for LiIo Batts 2-riceuscienti

The importance of long-lasting Li-ion batteries in the kind of combat arena that Lockheed Martin is expert in cannot be overestimated. With electric storage given a lengthier lifespan by the graphene anode in the batteries, the military commanders guiding the smart convoys do not have to fear any anticipated technical breakdown. They can also count on the batteries to sustain the vehicles’ power and carry them through to the completion of their mission if something unexpected happens. The juice in those Li-ion batteries will last longer, which is critical in crises such as the sudden appearance of combatants.

Sometimes, the winner in war turns out to be the force that is the more resilient and sustaining power. As the ancient Chinese master of war Sun Tzu had warned eons ago, sometimes “the line between order and disorder”—or victory or defeat—“lies in logistics.” Through its graphene-constituted Li-ion batteries, The Lockheed Martin-Elcora alliance can certainly enhance any military force’s capacity in that area.

* Article from Technology.org

Also Read About:

GNT US Tenka EnergySuper Capacitor Assisted Silicon Nanowire and Graphene Batteries for EV and Small Form Factor Markets. A New Class of Battery /Energy Storage Materials is being developed to support the Energy Dense – High Capacity – High Performance High Cycle Battery and Super Capacitor Markets.

Genesis Nanotechnology: “Great Things from Small Things”

U.S. military stresses importance of nanotechnology



If there is one lesson to glean from Picatinny Arsenal’s new course in nanomaterials, it’s this: never underestimate the power of small.
Nanotechnology is the study of manipulating matter on an atomic, molecular, or supermolecular scale. The end result can be found in our everyday products, such as stained glass, sunscreen, cellphones, and pharmaceutical products.

Other examples are in U.S. Army items such as vehicle armor, Soldier uniforms, power sources, and weaponry. All living things also can be considered united forms of nanotechnology produced by the forces of nature.

“People tend to think that nanotechnology is all about these little robots roaming around, fixing the environment or repairing damage to your body, and for many reasons that’s just unrealistic,” said Rajen Patel, a senior engineer within the Energetics and Warheads Manufacturing Technology Division, or EWMTD.

The division is part of the U.S. Army Armament Research, Development and Engineering Center or ARDEC.

Victor Stepanov teaches a course on applied nanomaterials science


Victor Stepanov teaches a course on applied nanomaterials science at the Armament University at Picatinny Arsenal. (Image: Todd Mozes, U.S. Army)

“For me, nanotechnology means getting materials to have these properties that you wouldn’t expect them to have.”

The subject can be separated into multiple types (nanomedicine, nanomachines, nanoelectronics, nanocomposites, nanophotonics and more), which can benefit areas, such as communications, medicine, environment remediation, and manufacturing.

Nanomaterials are defined as materials that have at least one dimension in the 1-100 nm range (there are 25,400,000 nanometers in one inch.) To provide some size perspective: comparing a nanometer to a meter is like comparing a soccer ball to the earth.

Picatinny’s nanomaterials class focuses on nanomaterials’ distinguishing qualities, such as their optical, electronic, thermal and mechanical properties–and teaches how manipulating them in a weapon can benefit the warfighter.

While you could learn similar information at a college course, Patel argues that Picatinny’s nanomaterial class is nothing like a university class.

This is because Picatinny’s nanomaterials class focuses on applied, rather than theoretical nanotechnology, using the arsenal as its main source of examples.

“We talk about things like what kind of properties you get, how to make materials, places you might expect to see nanotechnology within the Army,” explained Patel.

The class is taught at the Armament University. Each class lasts three days. The last one was held in February.

Each class includes approximately 25 students and provides an overview of nanotechnology, covering topics, such as its history, early pioneers in the field, and everyday items that rely on nanotechnology.

Additionally, the course covers how those same concepts apply at Picatinny (for electronics, sensors, energetics, robotics, insensitive munitions, and more) and the major difficulties with experimenting and manufacturing nanotechnology.

Moreover, the class involves guest talks from Picatinny engineers and scientists, such as Dan Kaplan, Christopher Haines, and Venkataraman Swaminathan as well as tours of Picatinny facilities like the Nanotechnology Center and the Explosives Research Laboratory.

It also includes lectures from guest speakers, such as Gordon Thomas from the New Jersey Institute of Technology (NJIT), who spoke about nanomaterials and diabetes research.


3-dimensional tomography generated imaging of pores within a nanoRDEX-based explosive

Nanotechnology holds the promise of future applications that could result in a host of benefits for civilian and military applications. Above, 3-dimensional tomography generated imaging of pores within a nanoRDEX-based explosive. (Image: U.S. Army)

A CLASSROOM COINCIDENCE

Relatively new, the nanomaterials class launched in January 2015. It was pioneered by Patel after he attended an instructional course on teaching at the Armament University, where he met Erin Williams, a technical training analyst at the university.

“At the Armament University, we’re always trying to think of, ‘What new areas of interest should we offer to help our workforce? What forward reaching technologies are needed?’ One topic that came up was nanotechnology,” said Williams about how the nanomaterials class originated.

“I started to do research on the subject, how it might be geared toward Picatinny, and trying to think of ways to organize the class. Then, I enrolled in the instructional course on teaching, where I just so happen to be sitting across from Dr. Rajen Patel, who not only knew about nanotechnology, but taught a few seminars at NJIT, where he did his doctorate,” explained Williams. “I couldn’t believe the coincidence! So, I asked him if he would be interested in teaching a class and he said ‘Yes!'”

“After the first [nanomaterials] class, one of the students came up to me and said ‘This was the best course I’ve ever been to on this arsenal,'” added Williams. “…This is really how Picatinny shines as a team: when you meet people and utilize your knowledge to benefit the organization.”

The success of the first nanomaterials course encouraged Patel to expand his class into specialty fields, designing a two-day nanoenergetics class taught by himself and Victor Stepanov, a senior scientist at EWMTD.

Stepanov works with nano-organic energetics (RDX, HMX, CL-20) and inorganic materials (metals.) He is responsible for creating the first nanoorganic energetic known as nano-RDX. He is involved in research aimed at understanding the various properties of nanoenergetics including sensitivity, performance, and mechanical characteristics. He and Patel teach the nanoenergetics class that was first offered last fall and due to high demand is expected to be offered annually. The next one will be held in September.

“We always ask for everyone’s feedback. And, after our first class, everyone said ‘[Picatinny] is the home of the Army’s lethality–why did we not talk about nanoenergetics?’ So, in response to the student’s feedback, we implemented that nanoenergetics course,” said Patel. “Besides, in the long run, you’ll probably replace most energetics with nano-energetics, as they have far too many advantages.”

TECHNOLOGY EVOLUTION

Since all living things are a form of nanotechnology manipulated by the forces of nature, the history of nanotechnology dates back to the emergence of life. However, a more concrete example can be traced back to ancient times, when nanomaterials were manipulated to create gold and silver art such as Lycurgus Cup, a 4th century Roman glass.

According to Stepanov, ARDEC’s interest in nanotechnology gained significant momentum approximately 20 years ago.
The initiative at ARDEC was directly tied to the emergence of advanced technologies needed for production and characterization of nanomaterials, and was concurrent with adoption of nanotechnologies in other fields such as pharmaceuticals.

In 2010, an article in The Picatinny Voice titled “Tiny particles, big impact: Nanotechnology to help warfighters” discussed Picatinny’s ongoing research on nanopowders.

It noted that Picatinny’s Nanotechnology Lab is the largest facility in North America to produce nanopowders and nanomaterials, which are used to create nanoexplosives.

It also mentioned how using nanomaterials helped to develop lightweight composites as an alternative to traditional steel.

The more recent heightened study is due to the evolution of technology, which has allowed engineers and scientists to be more productive and made nanotechnology more ubiquitous throughout the military.

“Not too long ago making milligram quantities of nanoexplosives was challenging. Now, we have technologies that allow us make pounds of nanoexplosives per hour at low cost,” said Stepanov.

Pilot scale production of nanoexplosives is currently being performed at ARDEC, lead by Ashok Surapaneni of the Explosives Development Branch.

The broad interest in developing nanoenergetics such as nano-RDX and nano-HMX is their remarkably low initiation sensitivity.

These materials can thus be crucial in the development of safer next generation munitions that are much less vulnerable to accidental initiation.

SMALL CHANGES, BIG RESULTS

As a result, working with nanotechnology can have various payoffs, such as enhancing the performance of military products, said Patel. For instance, by manipulating nanomaterials, an engineer could make a weapon stronger, lighter, or increase its reactivity or durability.

“Generally, if you make something more safe, you make it less powerful,” said Stepanov. “But, with nanomaterials, you can make a product more safe and, in many cases, more powerful.”

There are two basic approaches to studying nanomaterials: bottom-up (building a large object atom by atom) and top-down (deconstructing a larger material.) Both approaches have been successfully employed in the development of nanoenergetics at ARDEC.

One of the challenges with manufacturing nonmaterials can be coping with shockwaves.

A shockwave initiates an explosive as it travels through a weapon’s main fill or the booster. When a shockwave travels through an energetic charge, it can hit small regions of defects, or voids, which heat up quickly and build pressure until the explosive reaches detonation. By using nanoenergetics, one could adjust the size and quantity of the defects and voids, so that the pressure isn’t as strong and ultimately prevent accidental detonation.

Nanomaterials also are difficult to process because they tend to agglomerate (stick together) and are also prone to Ostwald Ripening, or spontaneous growth of the crystals, which is especially pronounced at the nano-scale. This effect is commonly observed with ice cream, where ice can re-crystallize, resulting in a gritty texture.

“It’s a major production challenge because if you want to process nanomaterials–if you want to coat it with some polymer for explosives–any kind of medium that can dissolve these types of materials can promote ripening and you can end up with a product which no longer has the nanomaterial that you began with,” explained Stepanov.

However, nanotechnology research continues to grow at Picatinny as the research advances in the U.S. Army.

This ongoing development and future applicability encourages Patel and Stepanov to teach the nanomaterials and nanoenergetics course at Picatinny.

“I’m interested in making things better for the warfighter,” said Patel. “Nano-materials give you so many opportunities to do so. Also, as a scientist, it’s just a fascinating realm because you always get these little interesting surprises.

“You can know all the material science and equations, but then you get in the nano-world, and there’s something like a wrinkle–something you wouldn’t expect,” Patel added.

“It satisfies three deep needs: getting the warfighter technology, producing something of value, and it’s fun. You always see something new.”

Source: U.S. Army

GENESIS NANOTECHNOLY, INC.

           Twitter Icon 042616.jpgFollow Us On Twitter

         Facebook 042616.jpgFollow Us On Facebook

       Website Icon 042616Connect With Our Website