Gold ‘Nanoprobes’ Key to Treating Killer Diseases

201306047919620Researchers have developed a technique to help treat fatal diseases more effectively. Dr Sumeet Mahajan and his group from the Institute for Life Sciences at the University of Southampton are using gold nanoprobes to identify different types of cells, so that they can use the right ones in stem cell therapies.This image shows Dr. Sumeet Mahajan at work in the lab. Credit: The University of Southampton

Stem cell therapy is in its infancy, but has the potential to change the way we treat cancer and other life-threatening diseases, by replacing damaged or diseased cells with healthy ones. One of the key limitations of stem cell therapy is identifying the right cells to use for different therapies. This fundamental problem with the treatment is being tackled by this new research.

Dr Mahajan, Senior Chemistry Lecturer in Life Science Interface, says: “Stem cells could hold the key to tackling many diseases. They develop into all the various kinds of cells needed in the body – blood, nerves and organs – but it is almost impossible to tell them apart during their initial development without complex techniques, even with the most advanced microscopes. Up to now, scientists have used intrusive fluorescent markers to tag molecules and track each cell, a process which can render them useless for therapeutic purposes anyway. By using a technique discovered at Southampton in the 1970s, known as Surface Enhanced Raman Spectroscopy (SERS), we have been able to look at adult stem cells on a molecular scale to distinguish one from another, meaning we can still use the cells for therapeutic purposes.”

The team who discovered SERS in the 1970s found that by roughening a metal surface upon which they had placed molecules to be examined, they could increase the signal by which they could detect these molecules, by a million times. This allowed them to detect molecules in far smaller quantities than ever before. SERS has been used in many different capacities around the world and across industries, but this new research marks the first time it has been used in the field of cell therapeutics. Dr Mahajan’s research could mean that stem cell and other cell-based therapies could be advanced much further than the current most common uses, such as bone marrow transplants.

Dr Mahajan comments: “Scientists studying neurodegenerative diseases such as Parkinson’s disease believe replenishing a patient’s depleted dopamine-generating cells, may be an effective treatment. However, in order to avoid fatal complications, we must be sure we are using the right type of replacement cells, which the work we are doing at Southampton is enabling us to do. In addition, the technique can also allow us to see if drugs are working effectively in cells, and can also be used to diagnose diseases as well as treat them.”



Pfizer inks deal with nanotechnology drugmaker

QDOTS imagesCAKXSY1K 8CAMBRIDGE, Mass. (AP)BIND Therapeutics said Wednesday that Pfizer Inc. has agreed to pay at least $160 million per drug as part of a collaboration to develop targeted medicines using nanotechnology which use particles measured in billionths of a meter.

BIND is developing an experimental group of targeted, programmable medicines called Accurins to treat cancer, heart disease and inflammatory disorders. The privately held company’s technology comes from two laboratories that specialize in nanotechnology at Harvard Medical School and the Massachusetts Institute of Technology.

Pfizer will make initial payments of roughly $50 million, plus $160 million in regulatory and milestone payments for each targeted drug, according to an announcement from BIND.

Both companies will work on early-stage research for the drugs, and Pfizer will have the exclusive option to develop and market any products produced from the collaboration.

BIND has one product in early-stage clinical testing called Bind-014, a targeted Accurin that contains the chemotherapy drug docetaxel. The product is designed to attach itself to a protein that is expressed in some cancer cells and new blood vessels that feed tumors.

In an unrelated announcement Wednesday, the Children’s Hospital of Philadelphia said it will collaborate with Pfizer on therapies for children. Pfizer has research relationships with 21 academic hospitals throughout the U.S. with the aim of developing new products.end of story marker

Introduction to Nanotechnology in Drug Delivery

September 28, 2012 by tildabarliya

Nanotechnology in drug delivery







Nanotechnology is simply defined as the technology to manipulate the matter on the atomic and/or molecular scale. It is generalized to materials, devices and structures with dimensions sizes at the nanoscale of 1 to 1000 nanometers (nm) (1,2).

Nanotachnology can be applied to many fields including sensors, biomaterials for tissue engineering, and nanostructures or 3D materials for molecular imaging and drug delivery among others. In medicine, nanotechnology is essentially a multidisciplinary field of physics, organic and polymer chemistry as well as molecular biology, pharmacology and engineering. These fields team up together to design a better and most opt treatment option for a disease using “the right drug, the right vehicle and the right route of administration”. In pharmaceutical industries, a new molecular entity (NME) that demonstrates potent biological activity but poor water solubility, or a very short circulating halflife, will likely face significant development challenges or be deemed undevelopable. There is always a degree of compromise, and such tradeoffs may inevitably result in the production of less-ideal drugs. However, with the emerging trends and recent advances in nanotechnology, it has become increasingly possible to address some of the shortcomings associated with potential NMEs. By using nanoscale delivery vehicles, the pharmacological properties (e.g., solubility and circulating half-life) of such NMEs can be drastically improved, essentially leading to the discovery of optimally safe and effective drug candidates. (3,4).

This is just one example which demonstrates the degree to which nanotechnology may revolutionize the rules and possibilities of drug discovery and change the landscape of pharmaceutical industries. (5)

Nanomedicine is facing many challenges in overcoming biological barriers, arrival and accumulation at the target site, therefore advances in nanoparticle engineering, as well as advances in understanding the importance of nanoparticle characteristics such as size, shape and surface properties for biological interactions, are necessary to create new opportunities for the development of nanoparticles for therapeutic applications (6).

Compared to conventional drug delivery, the first generation nanosystems provide a number of advantages. In particular, they can enhance the therapeutic activity by prolonging drug half-life, improving solubility of hydrophobic drugs, reducing potential immunogenicity, and/or releasing drugs in a sustained or stimuli-triggered fashion. Thus, the toxic side effects of drugs can be reduced, as well as the administration frequency. In addition, nanoscale particles can passively accumulate in specific tissues (e.g., tumors) through the enhanced permeability and retention (EPR) effect. Beyond these clinically efficacious nanosystems, nanotechnology has been utilized to enable new therapies and to develop next generation nanosystems for “smart” drug delivery (such as gene theraphy).

In summary; there are several factors that need to be included for a rational nanocarrier design:

–          Protect the drug from premature degradation

–          Protect the drug from premature interaction with biological environment

–          Enhance the absorption of the drug into the selected tissue-site

–          Improve intracellular drug penetration

–          Improve and control the drug pharmacokinetics and distribution profile.

Moreover there are several other factors that need to be taken into consideration to effectively influence the clinical translation of the drug delivery system (DDS) i.e materials that are biodegradable and biocompatible, easily functionalized, exhibit high differential uptake efficiency etc.(7-9).

In the next few chapters, we will try to address some of these factors as well as some examples that succeeded in the clinical setting as well as those who failed.


  1. Nanotechnology and Drug Delivery Part 1: Background and Applications Nelson A Ochekpe, Patrick O Olorunfemi and Ndidi C Ngwuluka.Tropical Journal of Pharmaceutical Research, June 2009; 8 (3): 265-274.
  2. Davis, M. E., Chen, Z. & Shin, D. M.Nanoparticle therapeutics: an emerging treatment modality for cancer. Nature Rev. Drug Discov. 7, 771–782 (2008).
  3. Nanotechnology in Drug Delivery and Tissue Engineering: From Discovery to Applications Jinjun Shi,†,§ Alexander R. Votruba,§ Omid C. Farokhzad,†,§ and Robert Langer*,†,‡. Nano Lett. 2010, 10, 3223–3230.’09.pdf
  4. Sengupta, S. et al. Temporal targeting of tumour cells and neovasculature with a nanoscale delivery system. Nature 436, 568–572 (2005)
  5. Torchilin, V. P. Recent advances with liposomes as pharmaceutical carriers. Nature Rev. Drug Discov. 4, 145–160 (2005).
  6. Decuzzi, P. et al. Size and shape effects in the biodistribution of intravascularly injected particles. J. Control. Release 141, 320–327 (2010)
  7. Nanocarriers as an emerging platform for cancer therapy. Dan Peer1†, Jeffrey M. Karp2,3†, Seungpyo Hong4†, Omid C. Farokhzad5, Rimona Margalit6 and Robert Langer3,4*. nature nanotechnology 2007 |  vol 2 751-760.
  8. Alonso, M. J. Nanomedicines for overcoming biological barriers. Biomed. Pharmacother. 58, 168–172 2004.
  9. Torchilin, V. P. Recent advances with liposomes as pharmaceutical carriers. Nat. Rev. Drug Discov.4, 145–160 (2005)

Share this: