Will Tesla’s “Battery Day” mean “doomsday” for legacy carmakers playing catch-up?


A peek inside a segment of a Tesla Model 3 battery pack.

Tesla is expected to hold its Battery Day in April as Elon Musk announced during the company’s Q4 earnings call. The chief executive said the company has a “compelling story” to tell about things that can “blow people’s minds.”

These statements do not only pique the interest of the electric vehicle community; they also hint of updates that can spell disaster for legacy car manufacturers trying to catch up with Tesla in the electric vehicle market.

Batteries are key to staying on top of the electric vehicle segment and Tesla is the leader of the pack when it comes to batteries and energy efficiency. This has been validated by organizations such as Consumer Reports and even by competitors who go deep into their pockets and go as far as cutting their workforces to catch Tesla in terms of hardware, software, and battery technology.

Come Tesla Battery Day, the obvious would be made more obvious. Tesla could further widen the gap and set itself apart from the rest, not just as the maker of the Model 3, Model Y, Cybertruck or other vehicles in its lineup but as an energy company.

Mass Production Of Cheaper Batteries

Batteries are among the most expensive components of an electric vehicle. This is true for Tesla and other electric vehicle manufacturers. With pricey batteries, car manufacturers cannot lower prices of their vehicles and therefore cannot encourage the mass adoption of zero-emission cars.

Tesla has reportedly been running its “Roadrunner” secret project that can lead to mass production of battery cells at $100/kWh. According to rumors, Tesla already has a pilot manufacturing line in its Fremont facility that can produce higher-density batteries using technology advancements developed in-house and gained through the Maxwell acquisition.

With a $100/kWh battery, the prices of Tesla’s vehicles can be competitive even without government subsidies.”

Tesla Gigafactory 1, where Model 3 battery cells are produced. (Photo: Tesla)

Aside from the Roadrunner project, Tesla has also been setting itself up to succeed in the battery game and dominate the market with its partnerships. It has a long relationship with Panasonic that helped it manufacture batteries in Giga Nevada, but has also signed battery supply agreements with LG Chem and CATL in China.

Battery prices have been going down significantly in the last decade. According to BloombergNEF, the cost of batteries dropped by 13% last year. From $1,100/kWh in 2010, the price went down to around $156.kWh in 2019. This is predicted to come close to the target $100/kWh by 2023. If Tesla achieves the $100/kWH cost sooner than the rest, it will give the company a massive advantage over its competitors and that will eventually lead to better profit margins.

Aside from cheaper batteries, the increased battery production capacity is also key in bringing products such as the all-electric Cybertruck and Tesla Semi to life.

“The thing we’re going to be really focused on is increasing battery production capacity because that’s very fundamental because if you don’t improve battery production capacity, then you end up just shifting unit volume from one product to another and you haven’t actually produced more electric vehicles… make sure we get a very steep ramp in battery production and continue to improve the cost per kilowatt-hour of the batteries,” Musk said during the Q4 2019 earnings call.

Enhanced Tesla Batteries

Tesla already has good batteries through its years of research, experimentation, and partnerships with battery producers. It has invested a good amount of money and effort to make sure it’s leading the battery game.

This advantage is made very clear on how Tesla was able to produce the most efficient electric SUV today in the form of the soon-to-be-released Model Y crossover with an EPA rating of 315 miles per single charge versus the Porsche Taycan with a range of around 200 miles.

The Tesla Model Y crossover. (Credit: Tesla)

With the acquired technologies from companies such as Maxwell and recently a possible purchase of a lithium-ion battery cell specialist startup in Colorado, Tesla demonstrates it’s not stopping its efforts to perfect its battery technology. Maxwell manufactures battery components and ultracapacitors and it’s just a matter of time before Tesla makes use of these technologies.

When asked about Maxwell’s ultracapacitor technology during the Q4 2019 earnings call, Musk said, “It’s an important piece of the puzzle.”

Musk also referenced the Maxwell acquisition during an extensive interview at the Third Row Podcast. “It’s kind of a big deal. Maxwell has a bunch of technologies that if they are applied in the right way I think can have a very big impact,” Musk said during a Third Row Podcast interview.

There are rumors out of China claimingthat Tesla may come up with a battery that combines the best traits of Maxwell’s supercapacitors and dry electrode technologies. This could mean batteries that could charge faster, pack more energy density, and last longer.

Controlling Battery Supply

Knowing what works and what doesn’t for electric car batteries puts Tesla on top of the game. Of course, add to that what could be the best battery management system that makes Tesla vehicles among the most efficient if not the best in utilizing their batteries. With the advantage on hardware and software fronts, the thought of Tesla becoming a battery supplier is far from being a crazy idea.

Its competitors such as Audi and Jaguar have recently expressed concerns about their battery supplies as they both depend on LG Chem. Tesla– aside from its partnerships with Panasonic, LG Chem, and CATL — pushes the limit to develop its new battery cells in-house and that opens up a lot of possibilities for Tesla as a business.

“It would be consistent with the mission of Tesla to help other car companies with electric vehicles on the battery and powertrain front, possibly on other fronts. So it’s something we’re open to. We’re definitely open to supplying batteries and powertrains and perhaps other things to other car companies,” Musk was quoted as saying.

Recent job postings for a cell development engineer and equipment development engineers suggest that Tesla might actually be considering the idea of introducing a battery line of its own. But of course, the next-generation batteries would be first used for its vehicle lineup. Once it meets that demand and hits economies of scale, one can only imagine how Tesla could play the important role of supplying batteries to other carmakers.

Whether Tesla would announce cheaper batteries, enhanced electric car batteries, or give updates about its efforts, Battery Day in April will most definitely be worth the wait. For other car manufacturers, time would pause during that day as they listen to what Elon Musk and his team will say. And most likely, after the company talk, other car manufacturers will have to go back to their drawing boards once more in an attempt to catch up.

Rivian Preparing to Build EVs for Ford, Amazon, and Itself – New Partnerships Emerging


Tesla and Rivian are both modern automakers dedicated to producing only electric vehicles. Both bought mothballed conventional assembly plants to build their new vehicles. Both have reconfigured those facilities as they grapple with how to disrupt manufacturing as their vehicles have aimed to disrupt the auto industry.

One difference: While Tesla CEO Elon Musk spent nights in a sleeping bag at the end of the assembly line at the plant in Fremont, California, Rivian CEO RJ Scaringe has the good sense to sleep in his own bed while overseeing the developing manufacturing process at his company’s plant in Normal, Illinois.

Rivian bought the Normal plant from Mitsubishi in 2017 for $16 million and is preparing it to make an interesting assortment of vehicles. So far, all Rivian prototypes have been built at the Plymouth Engineering and Design Center, but pilot-build vehicles will go down the plant line in the third quarter, with full production of the Rivan R1T five-passenger electric pickup starting in December.

About three months later, the Rivian R1S electric SUV, which has more content and a third row of seats, will roll off the same line. Scaringe says he wishes he could pull production forward but is mindful of the complexity. Also to be added to the factory’s mix: an electric luxury SUV for Ford and a fleet of large electric commercial delivery vans for Amazon, to be branded Prime.

The factory will have one line dedicated to building a skateboard chassis that all three brands will share—skateboard EV chassis bundle the battery pack(s), suspension, electric motors, and other hardware in a vertically short package so that various bodies can be attached. There will be another line tasked with assembling the three different battery packs Rivian will offer, and it will feed those directly to the skateboard-chassis line.

The Ford And Amazon EVs

Ford is designing its own so-called “top hat”—an EV-specific term for the vehicle bodies that use the skateboard architecture—for its high-end electric SUV, but since it will ride on the common architecture, features such as the company’s unique infotainment system must be designed to run on Rivian’s electrical systems. Scaringe would not say when Ford production begins, but design and engineering are locked in and ready to roll. “It’s a very different product from our own SUV, but it’s still in the SUV space,” Scaringe says. While Rivian is going after the adventure market, Ford will pursue luxury buyers, which leads us to deduce it will be sold as a Lincoln. Scaringe would not confirm this supposition, as it’s Ford’s announcement to make, he said. He did say the Ford SUV is “an impressive product, to say the least.”

The Amazon Prime vans will have access to the same three battery packs, and use the same electrical architecture and some drivetrains, as well as share some engine control units. To finish vehicles so wildly different in mission, there will be two separate final trim-assembly lines at the Normal plant. One will be a high-content line handling the Rivian and Ford products, while a second, low-content line will finish the Prime vans, which are essentially big, empty boxes to be filled with parcels.

Musk has said he wants to revolutionize the way vehicles are manufactured. He raised eyebrows with experiments such as his self-admittedly ill-thought robot he called the “flufferbot,” which proved to be more of a hindrance than a leap of efficiency in its attempts to place fiberglass mats atop battery packs. His firm also started building the Model 3 in a tent in 2018 to increase production. But with those experiments behind Tesla, production has normalized, and the automaker delivered a record 112,000 vehicles in the fourth quarter of 2019.

Rivian’s Plant Plans

Scaringe is not necessarily trying to reinvent car building, but he says he has spent a lot of time thinking about how assembly should be done to meet the unique needs of the varied vehicles his company will build. Out of necessity, he’s mapping out the way the former Mitsubishi small-car plant should be laid out to handle its new disparate needs.

The original Mitsubishi plant was 2.6 million square feet, and Rivian has added another 400,000 square feet. Some aspects of the plant are still usable, including some stamping presses, but they needed modifications to handle the steel and aluminum used in the bodies of the delivery vans and the mostly aluminum bodies of the R1T and R1S—the latter need to be picked up via suction cups, not magnets, for example. Presumably, the Ford SUV will feature an aluminum body, as well, given that the company has embraced that strategy with its pickups and large SUVs.

The partnership with Ford has been helpful in this regard, Scaringe says. Ford spent billions revamping its plants to switch the current generation of F-Series pickups and large SUVs to aluminum construction, and the Dearborn-based company now makes about 1 million aluminum-intensive vehicles a year. Ford employees have been generous with their time and expertise in helping Rivian.

The existing paint shop at the Rivian plant had to be scrapped; designed for littler cars, it was many sizes too small. Scaringe could probably sell tickets to watch the new e-coating process that dips vehicle bodies to prevent corrosion.

Like BMW does at its Spartanburg, South Carolina, plant, Scaringe wants vehicles to enter the tank and flip, end over end, four times, to prevent air bubbles that could lead to rust—picture that body ballet with a 30-foot-long delivery van. The plant ceilings aren’t high enough for this, though, so to solve the problem Rivian lowered the floor, digging an eight-foot pit with giant moorings to house dip tanks that stand about 33 feet tall. Scaringe thinks this makes it the world’s largest dip-process setup.

Rivian was founded in 2009 and has since grown to more than 1,800 employees. It could reach 2,500 or more by year’s end as hiring ramps up for the plant while the development team has continued to expand. The Plymouth headquarters is bursting at the seams. The cafeteria area is filled with desks until more office space on a mezzanine level is ready to house more workspace.

At the Normal plant, assembly will be on a single shift initially, but some areas, such as battery lines, will run a second shift.

The two Rivian models have 90 percent shared content—they are identical from the B-pillar forward—and were designed to have an identical build process for ease of assembly.

Normal has the capacity to make 264,000 vehicles a year. The Amazon contract is for 100,000, which Amazon CEO Jeff Bezos said will be filled by 2024. The rest of the capacity is for Rivian and Ford vehicles. On the Rivian side, Scaringe thinks there will be greater demand for the pickup initially, but eventually, orders will be equal for the truck and SUV. And the Rivian lineup will expand.

Tesla battery experts describe million-mile cell in new paper


Tesla-Batteries-18650-Li-ion-Cells.jpg

At the Tesla Autonomy Event in April, Elon Musk said the Disruptors of Detroit were working on a new battery pack that would last a cool million miles, and said it would be available next year. Now Tesla battery research partner Jeff Dahn and his team have released a paper in which they describe this million-mile battery cell.

The new Li-ion battery cell features a next-generation “single crystal” NMC cathode and a new type of electrolyte. Dahn’s team has extensively tested the cells, and believe they could enable a battery pack that lasts over a million miles in an EV.

The team’s paper, A Wide Range of Testing Results on an Excellent Lithium-Ion Cell Chemistry to be used as Benchmarks for New Battery Technologies, was published in the Journal of The Electrochemical Society. The following brief excerpt (via Electrek) describes the results of testing the new cells:

“Up to three years of testing has been completed for some of the tests. Tests include long-term charge-discharge cycling at 20, 40 and 55° C, long-term storage at 20, 40 and 55° C, and high precision coulometry at 40° C. Several different electrolytes are considered in this LiNi0.5Mn0.3Co0.2O2/graphite chemistry, including those that can promote fast charging. The reasons for cell performance degradation and impedance growth are examined using several methods. We conclude that cells of this type should be able to power an electric vehicle for over 1.6 million kilometers (1 million miles) and last at least two decades in grid energy storage.”

This is a huge advance – the new cells last two to three times longer than Tesla’s current cells – and if the company can bring the new technology into production in a reasonable timeframe, it could radically change the economics of EVs.

The paper notes the importance of long-lasting batteries for such vehicles as robotaxis, long-haul trucks and transit buses. In these applications, a battery’s ability to deliver a high number of charge/discharge cycles is critical, in contrast to the consumer vehicle market, in which maximum range is the most important feature (at least from a marketing standpoint).

The paper also mentions vehicle-to-grid applications, which could someday allow EV owners to earn revenue from their cars while they aren’t being driven (see the upcoming issue of Charged for a profile of Fermata Energy, a pioneer in this space).

Meanwhile, job listings on Tesla’s web site seem to confirm rumors that the company plans to start manufacturing its own battery cells (as reported by Electrek).

The possibilities are endless.

Long-term cycling data plotted as percent initial capacity versus equivalent full cycles for NMC/graphite cells as described in the legend. The data from this work for 100% DOD cycling was collected to an upper cutoff potential of 4.3 V. The data from Ecker et al.,2 used 4.2 V as 100% state of charge. The purple and green data (this work) should be compared to the black data (Ecker et al.). Data for restricted range cycling (i.e. 25 – 75% SOC and 40 -60% SOC) for the cells in this work is not available but is expected to be far better than the data shown for 0 – 100% DOD cycling by analogy with the cells tested by Ecker et al.
Capacity remaining versus storage time for NMC/graphite cells as determined by reference performance testing every several months. The data from Ecker et al.2 and Schmitt et al.6 are for Sanyo UR18650E and Sony US18650V3 cells, respectively. The voltages and temperatures at which the cells were stored are given in the legends.
a) Measured properties of the NMC532/graphite 402035 (40 mm x 20 mm x 3.5 mm thick) pouch cells used here. The positive electrode was 94% active material, the loading was 21.1 mg/cm2 (target was 21.3) and the electrode density was 3.5 g/cm3. The negative electrode was 95.4% active material, the loading was 12.2 mg/cm2 (target was 11.8) and the electrode density was 1.55 g/cm3. b) Stack energy density of the NMC532/graphite couple for several electrode thicknesses. b) Stack energy density calculations – gives values for the electrode stack (negative coating/copper/negative coating/separator/positive coating/aluminum/positive coating/separator). Assumptions – copper foil = 8 μm, aluminum foil = 15 μm, separator = 16 μm, N/P capacity ratio = 1.1 at 4.3 V, average cell voltage = 3.75 V. The highlighted row represents the design used in this work.

Source: Journal of The Electrochemical Society 

Tesla Battery Guru Jeff Dahn Claims New FB m derfdjLithium-Ion Thomx gr Cell Outperforms Solid-State morningioujniioatteriesyou svbnygtegdgd


Jeff-Dahn-red-Model-S-frunk

Tesla watchers know that Jeff Dahn and his team at Dalhousie University near Halifax, Nova Scotia, are world leaders in lithium-ion battery research. For years, Dahn worked exclusively for 3M, but when that arrangement ended, Tesla swooped in and signed a contract for Dahn to work for the Silicon Valley car/tech/energy company.

In addition, solid-state batteries are less like to catch fire or explode if they get too hot. That in turn means electric car manufacturers can make simpler, less costly cooling systems for their battery packs, driving down the cost of EVs. It also reassures the public their shiny new electric cars aren’t going to explode in the garage, as recently happened to the owner of a Hyundai Kona EV in Canada.

Research published by Dahn and his team in the journal Nature Energy on July 15 reveals they have created new lithium-ion pouch cells that may outperform solid-state technology battery. Here’s the abstract of that research report:

“Cells with lithium-metal anodes are viewed as the most viable future technology, with higher energy density than existing lithium-ion batteries. Many researchers believe that for lithium-metal cells, the typical liquid electrolyte used in lithium-ion batteries must be replaced with a solid-state electrolyte to maintain the flat, dendrite-free lithium morphologies necessary for long-term stable cycling.

“Here, we show that anode-free lithium-metal pouch cells with a dual-salt LiDFOB/LiBF4 liquid electrolyte have 80% capacity remaining after 90 charge–discharge cycles, which is the longest life demonstrated to date for cells with zero excess lithium. The liquid electrolyte enables smooth dendrite-free lithium morphology comprised of densely packed columns even after 50 charge — discharge cycles. NMR measurements reveal that the electrolyte salts responsible for the excellent lithium morphology are slowly consumed during cycling.”

Jeff-Dahn-Pouch-Cell-Research

Credit: Jeff Dahn, et al./Nature Energy

Those pesky dendrites are the bane of lithium-ion batteries. They are little projections like stalagmites in caves that can poke through the insulating layer inside individual cells, leading to short circuits and potential fires. Eliminating them would be a big step forward, particularly for use in electric vehicles.

img_1343

Is Tesla on the verge of replacing the cylindrical cells in its battery packs with Jeff Dahn’s pouch cells? Not just yet. There is a lot of research and testing left to do before they becomes suitable for commercial production, but they may signal an important step forward for energy storage in the years ahead.

Below is a video of Dahn when he won the prestigious National Sciences and Engineering Research Council of Canada award in 2017. Here is a fellow who knows what he is talking about. If he says pouch cells can outperform solid state cells, we should pay heed.

A Game-Changer For Lithium-Ion Batteries: Dalhousie University, Tesla’s Canadian Electrek and the University of Waterloo Discover New Disruptive LI-On Technology


The latest news in the battery space has been about alternatives to lithium-ion technology, which still dominates the space in electronics and cars but is being increasingly challenged from several directions, notably solid-state batteries.

Now, a team of researchers has reported they have improved lithium-ion batteries in a way that could discourage some challengers.

In a paper published in Nature magazine, the team, led by Jeff Dahn from Dalhousie University, reports they had designed more battery cells with higher energy density without using the solid-state electrolyte that many believe is a necessary condition for enhanced density.

What’s more, the battery cell the team designed demonstrated a longer life than some comparable alternatives.

The team from Dalhousie University was working with Tesla’s Canadian research and development team, Electrek notes in its report of the news, as well as the University of Waterloo.

The EV maker is probably the staunchest proponent of lithium-ion technology for electric car batteries, so it would make sense for it to continue investing in research that would keep the technology’s dominance in the face of multiple challengers.

Recently, for example, Japanese researchers announced they had successfully found a substitute for the lithium ions used in batteries and this substitute was much cheaper and more abundant: sodium.

Last year, scientists from the Australian University of Wollongong announced 

they had solved a problem with sodium batteries that made them too expensive to produce, namely a lot of the other materials used in such an installation besides the sodium itself.

Sodium batteries are among the more advanced challengers to lithium ion dominance, but like other alternatives to Li-ion batteries, they have been plagued by persistent problems with their performance. Even so, work continues to make them competitive with lithium-ion technology.

This fact has probably made li-ion proponents such as Tesla, who have invested substantial amounts in the technology, double their efforts to improve their batteries’ performance or reduce their cost.

As the most expensive component of an electric car, the battery is a top priority for R&D departments in the car-making industry. 

 

Related: Oil Industry Faces Imminent Talent Crisis

Earlier this year, German scientists saidthey had found a way to make lithium ion batteries charge much faster. Charing times are the second most important consideration after cost for potential EV buyers, and another priority for EV makers. What the scientists did was replace the cobalt oxide used in the cathode of a lithium ion battery with another compound, vanadium disulfide.

Millions of electric cars are expected to hit the roads in the coming years. From a certain perspective, the race to faster charging is the race that will make or break the long-term mainstream future of the EV, which, it turns out, is not as certain as some would think.

A J.D.Power survey recently revealed that people are not particularly crazy about EVs, and the reasons they are not crazy about them have to do a lot with the batteries: charging times and range, plus price. In this context, the battery improvement race could (and will) only intensify further.

The Tesla Effect is Reaching Critical Mass – Could it Really Put Big Oil on the Defensive … Really?


Tesla-S3X-Semi-fleet-press-photo-e1548882286108-1024x523

*** This article appeared in TESLARATI and was re-posted in Fully Charged. We have Followed and Written a LOT about the ‘Coming EV Revolution’, about Advances in Charging Stations and Battery Technology. Most recently we posted an article ‘What If Green Energy Isn’t the Future?’

So maybe … just maybe, ‘Green Energy’ might NOT be able to meet the current Projected Carbon Fuel Replacement Schedule …. However, could the EV/ Hydrogen Fuel Cell Revolution replace forever the Internal Combustion Engine (ICE)?  (Hint: We Think So!)

Let Us Know What YOU think! Leave us your thoughts and comments. (below)

Headed by vehicles like the Tesla Model 3, the electric car revolution is showing no signs of stopping. The auto landscape today is very different from what it was years ago. Before, only Tesla and a few automakers were pushing electric cars, and the Model S was proving to the industry that EVs could be objectively better than internal combustion vehicles. Today, practically every automaker has plans to release electric cars. EV startup Bollinger Motors CEO Robert Bollinger summed it up best: “If you want to start a (car company) now, it has to be electric.”

CATALYSTS FOR A TRANSITION

A critical difference between then and now is that veteran automakers today are coming up with decent electric vehicles. No longer were EVs glorified golf carts and compliance cars; today’s electric vehicles are just as attractive, sleek, and powerful than their internal combustion peers. The auto industry has warmed up to electric vehicles as well. The Jaguar I-PACE has been collecting awards left and right since its release, and more recently, the Kia Niro EV was dubbed by Popular Mechanics as the recipient of its Car of the Year award.

A survey by CarGurus earlier this year revealed that 34% of car buyers are open to purchasing an electric car within the next ten years. A survey among young people in the UK last year revealed even more encouraging results, with 50% of respondents stating that they want electric cars. Amidst the disruption being brought about by the Tesla Model 3, which has all but dominated EV sales since production ramped last year, experienced automakers have responded in kind. Volkswagen recently debuted the ID.3, Audi has the e-tron, Hyundai has the Kona EV, and Mercedes-Benz has the EQC. Even Porsche, a low-volume car manufacturer, is attracting the high-end legacy market with the Taycan.

At this point, it appears that Tesla’s mission is going well underway. With the market now open to the idea of electric vehicles, there is an excellent chance that EV adoption will only increase from this point on.

Tesla CEO Elon Musk unveils the Tesla Semi. (Credit: Tesla)

BIG OIL FEELS A CHANGE IN THE WIND

Passenger cars are the No.1 source of demand for oil, and with the potential emergence of a transportation industry whose life and death does not rely on a gas pump, Big Oil could soon find itself on the defensive. Depending on how quickly the auto industry could shift entirely to sustainable transportation and how seriously governments handle issues like climate change, “peak oil” could happen a couple of decades or a few years from now. This could adversely affect investors in the oil industry, who might be at risk of losing their investments if peak oil happens faster than expected. JJ Kinahan, chief market strategist at TD Ameritrade, described this potential scenario in a statement to CNN. “Look at what happened to the coal industry. You have to keep that in the back of your mind and be vigilant. It can turn very, very quickly,” the strategist said.

Paul Sankey of Mizuho Securities previously mentioned that a “Tesla Effect” is starting to be felt in the oil markets. According to the analyst, the Tesla Effect is an increasingly prevalent concept today which states that while the 20th century was driven by oil, the 21st century will be driven by electricity. This, together with the growing movements against climate change today, does not bode well for the oil industry. Adam White, an equity strategist at SunTrust Advisory, stated that investors might not be looking at the oil market with optimism anymore. “A lot of damage has already been done. People are jaded towards the industry,” he said.

Prospective oil developments have been fraudulently overvalued, as claimed by a Complaint filed against Exxon. (Photo: Pixabay)

An analysis from Barclays points to the world’s reliance on oil peaking somewhere between 2030 and 2035, provided that countries keep to their low-carbon goals. The investment bank also noted that peak oil could happen as early as 2025 if more aggressive climate change initiatives are adopted on a wider scale. This all but makes investments in oil stocks very risky in the 2020s, and this risk gets amplified if electric vehicles become more mainstream. Sverre Alvik of research firm DNV GL described this concern. “By 2030, oil shareholders will feel the impact. Electric vehicles are likely to cause light vehicle oil demand to plunge by nearly 50% by 2040,” Alvik said.

Some of today’s prolific oil producers appear to be making the necessary preparations for peak oil’s inevitable decline. Amidst pressures from shareholders, BP, Royal Dutch Shell, and Total have expanded their operations into solar, wind, and electric charging, seemingly as a means to future-proof themselves. On the flipside, there are also big oil players that are ramping their activities. Earlier this month, financial titan Warren Buffet, who recently expressed his skepticism towards Elon Musk’s plan of introducing an insurance service for Tesla’s electric cars, committed $10 billion to Occidental Petroleum, one of the largest oil and gas exploration companies in the United States.

A POINT OF NO RETURN

The auto industry is now at a point where a real transition towards electrification is happening. Tesla’s efforts over the years, from the original Roadster to the Model 3, have played a huge part in this transition. Tesla, as well as its CEO, Elon Musk, have awakened the public’s eye about the viability of electric cars, while showing the auto industry that there is a demand for good, well-designed EVs. Nevertheless, Tesla still has a long journey ahead of it, as the company ramps its activities in the energy storage sector. If Tesla Energy mobilizes and becomes as disruptive as the company’s electric car division, it would deal yet another blow to the oil industry.

At this point, it is pertinent for veteran automakers that have released their own electric cars to ensure that they do not stop. Legacy car makers had long talked the talk when it came to electric vehicles, but today, it is time to walk the walk. German automaker Volkswagen could be a big player in this transition, as hinted at by the reception of its all-electric car, the ID.3. The ID.3 launch was successful, with Volkswagen getting 10,000 preorders for the vehicle in just 24 hours. The German carmaker should see this as writing on the wall: the demand for EVs is there.

The Volkswagen ID.3. (Credit: Volkswagen)

The Volkswagen ID.3 is not as quick or sleek as a Tesla Model 3, nor does it last as long on the road between charges. But considering its price point and its badge, it does not have to be. Volkswagen states that the ID.3 will be priced below 40,000 euros ($45,000) in Germany, which should make it attainable for car buyers in the country.  If done right, the ID.3 could be the second coming of the Beetle, ultimately becoming a car that redeems the company from the stigma of the Dieselgate scandal. Thus, it would be a great shame if Volkswagen drops the ball on the ID.3.

Tesla will likely remain a divisive company for years to come; Elon Musk, even more so. Nevertheless, Tesla and what it stands for is slowly becoming an idea, one that connotes hope for something better and cleaner for the future. And if history’s victories and tragedies are any indication, once something becomes an idea, an intangible concept, it becomes impossible to kill.

Watch and Learn More

Mobility Disruption | Tony Seba

Tony Seba, Silicon Valley entrepreneur, Author and Thought Leader, Lecturer at Stanford University, Keynote The reinvention and connection between infrastructure and mobility will fundamentally disrupt the clean transport model.

Nano-Enabled Batteries and Super Capacitors

Chinese electric car maker BYD reports 632% jump in profits … “Taking Tesla to the Wood Shed”


Electric car maker BYD is speeding ahead of Tesla with respect to profitability.

The Chinese company today (April 28) reported a 632% jump in profits in the first quarter from a year ago. Days earlier, the US car company led by Elon Musk announced one of its worst quarters ever.

BYD is the world’s largest electric vehicle maker (membership), though its brand isn’t widely recognized outside of China. It started out as a battery maker about 25 years ago and transitioned into the car business a little more than a decade ago, making both conventional fossil fuel-powered cars and “new energy vehicles.”

The success of its first mass-produced hybrid caught the attention of legendary US investor Warren Buffett, who in 2008 bought a 10% stake in BYD for $230 million. That investment seems to be really paying off right now.

There is increased demand for electric vehicles in China, BYD says, and it expects continued growth. The company’s profits rose to about 750 million yuan ($111 million) in the first quarter, compared to 102 million yuan a year ago. BYD sold 73,172 new energy vehicles (pdf) in the quarter, up 147% from the same period a year ago.  

Including conventional fuel cars, it sold 73,172 vehicles in the quarter, up 5% from last year. The company is now selling more electric vehiclesthan conventional cars.

“New energy vehicles are expected to continue to sell well in the second quarter, and new energy vehicle sales and revenues continue to maintain strong growth,” the company’s latest stock exchange filing reports.

According to Reuters, BYD expects to sell 655,000 cars in 2019, and will account for a substantial portion of the 1.6 million electric vehicle total that China’s Association of Automobile Manufacturers predicts will be sold this year.

In stark contrast to this positive news for BYD, its US rival Tesla lost nearly $700 million in the first quarter. It attributed over $120 million in losses to a higher return rate than expected after it raised prices for the Model S and Model X.

In its quarterly earnings call, Tesla chief financial officer Zachary Kirkhorn described the first quarter as “one of the most complicated… in the history of the company.”

Beyond its faltering quarterly profits, Tesla also had some bad news in China to contend with recently.

Last week, a video that circulated widely on Chinese social media showed a parked Tesla Model S abruptly caching fire in Shanghai, where the company plans to build its first overseas factory. Earlier in the month, a parked Tesla in the US also caught fire.

The two electric vehicle makers do have something in common, however. Tesla and BYD both plan to expand into each other’s markets. China is the world’s largest car market, and the US comes second.

Read More: BYD Sold Over 28,000 EVs In January — Will China See Over 50% Sales Growth Again This Year? — #CleanTechnica Report

A new battery for EV’s that lasts 1 million Miles – Coming Next Year – Tesla CEO Elon Musk


Tesla CEO Elon Musk says that the automaker is working on a new battery pack to come out next year which will last 1 million miles.

When talking about the economics of Tesla’s future fleet of robotaxis at the Tesla Autonomy Event yesterday, Musk emphasized that the vehicles need to be durable in order for the economics to work:

“The cars currently built are all designed for a million miles of operation. The drive unit is design, tested, and validated for 1 million miles of operation.”

Tesla says it will roll out robotaxis in U.S. next year

But the CEO admitted that the battery packs are not built to last 1 million miles.

Just a week ago, Musk said that they built Model 3 to last as long as a commercial truck, a million miles, and the battery modules should last between 300,000 miles and 500,000 miles.

At the time, he also said that Tesla plans to provide battery module replacements.

Now, Musk added that there’s a new Tesla battery pack coming that will last as long as the rest of the vehicles:

“The new battery pack that is probably going to production next year is designed explicitly for 1 million miles of operation.”

The CEO said that they are optimizing every aspect of the cars, including the tires, in order to achieve minimal maintenance to create an “hyper-efficient” electric robotaxi.

Read More: Tesla acquires robots company to accelerate car production

Electrek’s Take

With Tesla still being relatively young for an automaker, we have a limited set of data to look into the longevity of Tesla’s vehicles.

Early data about Tesla battery degradation show less than 10% reduction in energy capacity after over 160,000 miles, but that’s about all we have.

It’s pretty good, but 1 million miles is a whole new level.

We know that Tesla has been focusing its battery research on longevity for a while now.

Earlier this year, we reported on Tesla’s battery research group led by Jeff Dahn in Halifax applying for a patent that describes a new battery cell chemistry that would result in faster charging and discharging, better longevity, and even lower cost.

The battery technology that Tesla is trying to get through its acquisition of Maxwell could also potentially result in longevity improvements.

Read More About Maxwell: Tesla’s newly acquired battery tech could result in more power, longer range, and more durability

What CEO EM is saying now might be the result of some of those recent advancements in battery technology starting to be implemented by Tesla.

Apple hires Tesla’s head of electric powertrains in effort to bring electric car to market


There has long been a debate about Apple’s secretive automotive project being only about a self-driving system for vehicles rather than a full electric autonomous vehicle. It now looks clear that the latter is the case as Apple hires Tesla’s head of electric powertrains.

Earlier this month, we reported on Tesla losing its VP of Engineering behind its latest electric powertrains; Michael Schwekutsch.

We described his departure from Tesla as a big loss for the company since he is amongst the most experienced engineers who have brought electric powertrain programs to market, not just at Tesla, but in the industry as a whole.

When Schwekutsch joined Tesla back in 2015, we described his background:

Michael Schwekutsch joined Tesla last year to lead powertrain developments after a two-decade long career working for legendary third-party powertrain engineering firms like BorgWarner and GKN Driveline. More recently, he managed programs for the electric and hybrid powertrains of the BMW i8, Porsche 918 Spyder, Fiat 500eV, Volvo XC90, among other popular vehicles.

Today, he is responsible for Tesla’s drive units from the design and engineering to the manufacturing and validation – all operations currently done at the Tesla Factory in Fremont, California.”

At Tesla, he participated in the development of “leading edge Drive Systems like the one of the Tesla Roadster II and Tesla Semi / Tesla Truck.”

Now Electrek learns from separate sources that he joined Apple’s Special Project Group, which includes the Cupertino company’s Project Titan division.

He is the latest of several top Tesla engineers to join the project, which was for a time thought to only consist of a self-driving system for vehicles after a scale-back of the plan.

Now that Schwekutsch, who has exclusively worked on electric powertrains over the last decade, has joined Apple, it is becoming clear that the company plans to bring a complete electric vehicle to market.

Schwekutsch will join back Doug Field, who was a longtime engineering executive at Tesla before going back to Apple to lead their car project last year alongside Bob Mansfield, who Apple brought out of retirement in 2016 to lead its Project Titan car team.

Electrek has learned that Apple is also hiring several other former Tesla employees in what appears to be another wave of the poaching war between the two companies.

At the height of it back in 2015, Tesla CEO Elon Musk said about Apple:

“They have hired people we’ve fired. We always jokingly call Apple the ‘Tesla Graveyard.”

More recently, however, Apple has hired some longtime executives and engineers that don’t appear to have been let go by Tesla. That said, the company has laid off many employees over the last year and some of them did go to Apple, which has experienced employment cut-backs of its own.

Schwekutsch comes to the program after some layoffs within the team confirmed last month.

Electrek’s Take

This is quite significant. Apple producing an electric vehicle from the ground up is a big deal.

Granted, they have no experience building vehicles, but they are hiring some top talent that made happened against all odds in the past, like Field and Schwekutsch.

If you add to that the hundreds of billions in capital and the incredible software and hardware expertise of Apple, I think you have a winning solution.

I don’t want to get my hopes up to much, but I am excited for them to disrupt the space even more. I can see it accelerate the adoption of electric vehicles.

Why Did Elon Musk Spend $218 Million (in stock) on an Ultracapacitor Company? The Answer may be in ‘Dry Electrode Technology’


Tesla_ElectricVehicles_XL_721_420_80_s_c1 (1)          Does Tesla want ultracapacitors? Or dry electrode technology?

Earlier this month, Tesla announced plans to acquire Maxwell Technologies, an established, 380-employee ultracapacitor and storage materials firm for $218 million in an all-stock deal. It’s easy for a transaction of this sort to get lost in the Tesla media cycle.

 

Elon Musk was once intent on studying ultracapacitors at Stanford University, long before Tesla was even a gleam in his eye. Apparently, Musk is still charged up on the technology.

Maxwell’s total revenue was $91.6 million in the first nine months of 2018, with losses of $30.2 million. Revenue in 2017 was $130.3 million with losses of $43.1 million.

So why is Tesla paying above book value (but still not enough, according to some investors) for a money-losing firm (here’s Maxwell’s SEC filing)?

Does Tesla want ultracapacitors?

Maxwell’s core business is ultracapacitors, the wide-temperature-range, high-power-density energy storage component that can rapidly charge and discharge. Also known as supercaps or electronic double layer capacitors, ultracapacitors are geared for high-power and high-cycle applications.

Batteries use a chemical process to store energy, while ultracapacitors store a static electric charge — physically separating positive and negative charges.

Maxwell’s ultracaps deliver peak power as well as regenerative braking, voltage stabilization, backup power and hybrid stop/start. Ultracaps are also used to power the pitch control adjustment in wind turbines during sudden wind speed changes, since replacing batteries at 500 feet above the ground is tricky.

In a previous interview, Maxwell’s CEO estimated that there is $5,000 worth of ultracaps in the typical wind turbine and $15,000 per electric bus. Maxwell declined to respond to GTM to update those figures.

Or dry electrode technology?

But Maxwell’s allure might not be its ultracapacitors — it might be the dry electrode technology developed by Maxwell that really intrigues Elon Musk.

The “dry” in “dry electrode technology” refers to an ultracapacitor manufacturing process that Maxwell claims can improve battery costs, performance and lifetime across a variety of lithium-ion battery chemistries. 

Maxwell states, in a release, that its dry electrode manufacturing technology, historically used to make ultracapacitors, is “a breakthrough technology that can be applied to the manufacturing of batteries.”passive-dry-electrode-schematic_Q320

white paper from Maxwell claims that its dry battery electrode (DBE) coating technology can be used with “classical and advanced” lithium-ion battery chemistries, but “unlike conventional slurry cast wet coated electrode, Maxwell’s DBE produces a thick electrode that allows for high energy density cells with better discharge rate capability than those of a wet coated electrode.” (Right: Passive dry electrode schematic)

presentation from the company claims it has “demonstrated” an energy density of greater than 300 watt-hours per kilogram and has “identified” a path to greater than 500 watt-hours per kilogram. Maxwell claims to have used the process with a number of available anode materials.

A battery expert colleague notes that solvent-free electrode manufacturing “might be worth $200 million” if Maxwell “has really eliminated the toxic solvent without compromising on performance.” Maxwell’s patent filings indicate that work is being done to eliminate solvent usage in both dry-processing and melt-processing of binders.

Other ultracap suppliers include TokinSeikoEatonCAP-XXLS UltracapacitorIoxus and Skeleton.

This deal was Tesla’s fifth acquisition since its founding; the others being manufacturing-automation firm PerbixSolarCityRiviera Tool and Grohmann Engineering.

During Maxwell’s third-quarter 2018 conference call, CEO Franz Fink noted that its dry electrode business was looking for a partner to provide “significant financial support” and expertise in EVs or energy storage systems. 

If this deal goes through in the coming quarters, Maxwell’s CEO will have gotten his wish.

Story from GTM (GreenTechMedia) – Eric Wescoff

%d bloggers like this: