South Korea and Sweden are the most innovative countries in the world – Israel Becoming ‘Tech Titan’

” … These are the most innovative countries in the world, South Korea, Sweden and Singapore top the list … “Image: REUTERS/Carlo Allegri

South Korea and Sweden are the most innovative countries in the world, according to a league table covering everything from the concentration of tech companies to the number of science and engineering graduates.

The index on innovative countries highlights South Korea’s position as the economy whose companies filed the most patents in 2017. 

Bloomberg, which compiles the index based on data from sources including the World Bank, IMF and OECD, credits South Korea’s top ranking to Samsung. 

The electronics giant is South Korea’s most valuable company and has received more US patents than any company other than IBM since the start of the millennium. This innovation trickles down the supply chain and throughout South Korea’s economy.

Sweden in second place is fast gaining a reputation as Europe’s tech start-up capital.

The Scandinavian country is home to Europe’s largest tech companies and its capital is second only to Silicon Valley when it comes to the number of “unicorns” – billion-dollar tech companies – that it produces per capita.

Education hinders the US

The US dropped out of the top 10 in the 2018 Bloomberg Innovation Index, for the first time in the six years the gauge has been compiled. 

Bloomberg attributed its fall to 11th place from ninth last year largely to an eight-spot slump in the rating of its tertiary education, which includes an assessment of the share of new science and engineering graduates in the labour force.

The US is now ranked 43 out of 50 nations for “tertiary efficiency”. Singapore and Iran take the top two spots.

The US’ ranking marks another setback for its higher education sector’s global standing in recent months: in September it was revealed neither of the world’s top two universities were considered to be American. Those honours went to the UK’s Oxford and Cambridge universities respectively.

In addition to the US’ education slump in the innovation index, Bloomberg claims the country also lost ground when it came to value-added manufacturing. The country is now ranked in 23rd place, while Ireland and South Korea take the top two spots.

Despite these setbacks, the Bloomberg Innovation Index still ranks the US as number 1 when it comes to its density of tech companies.

The US is also second only to South Korea for patent activity.

These rankings may explain the disparity between Bloomberg’s list of innovative countries and the World Economic Forum’s own list of the 10 most innovative economies.

Image: WEF

Under this ranking, compiled as part of The Global Competitiveness Report 2017-2018, the US is listed as the second most innovative country in the world after Switzerland.

The US’ inclusion in this league table, and South Korea’s exclusion, are the two most notable differences between the different rankings.

Other than these nations, the majority of countries included in the top 10s are the same in both lists.

Tech titan Israel

One nation to feature prominently in both innovation rankings is Israel.

Taking third spot in the Global Competitiveness Report’s innovation league table, Israel is ranked 10th best country in the world for innovation overall by Bloomberg.

However, its index also ranks Israel as number 1 for two categories of innovation: R&D intensity and concentration of researchers.

Israel’s talent for research and development is illustrated by some of the major tech innovations to come out of the country.

These include the USB flash drive, the first Intel PC processor and Google’s Suggest function, to name just three.

Despite being smaller than the US state of New Jersey with fewer people, Israel punches well above its weight on the global tech stage.

It has about 4000 startups, and raises venture capital per capita at two-and-a-half times the rate of the US and 30 times that of Europe.

When it comes to being a world leader at innovation, it may simply be the case that you get out what you put in: according to OECD figures, Israel spends more money on research and development as a proportion of its economy than any other country – 4.3% of GDP against second-placed Korea’s 4.2%. 

Switzerland is in third place spending 3.4% of its GDP on R&D, while Sweden spends 3.3%. The US spends just 2.8%.

Inkjet printing of graphene for flexible electronics

how-nanotechnology-could-change-solar-panels-photovoltaic_66790_600x450(Nanowerk Spotlight) Graphene has a unique combination  of properties that is ideal for next-generation electronics, including  mechanical flexibility, high electrical conductivity, and chemical stability.  Combine this with inkjet printing, already extensively demonstrated with  conductive metal nanoparticle ink (see for instance: “Low-cost  nanotechnology substitute for gold and silver in printable electronics”),  and you get an inexpensive and scalable path for exploiting these properties in  real-world technologies.

Although liquid-phase graphene dispersions have been  demonstrated (see: “Inkjet-printed  graphene opens the door to foldable electronics”), researchers are still  struggling with sophisticated inkjet printing technologies that allow efficient  and reliable mass production of high-quality graphene patterns for practical  applications. There are several challenges that need to be overcome:  

  • a  good ink should possess proper fluidic properties, in particular the right  viscosity and surface tension;
  • the  graphene concentration in these solvents is often quite low so that several tens  of print passes are required to obtain functional films, reducing efficiency of  the technique;
  • graphene  flakes easily aggregate in inks or during solvent evaporation, which decreases  the ink stability and/ or degrades the film/device performance;
  • ideal  solvents for graphene dispersions are toxic so that their corresponding inks  cannot be used in an open environment;
  • most  studies published thus far on inkjet printing of graphene are actually based on  graphene oxide inks, not graphene inks.

Recent work by researchers at the KTH Royal Institute of  Technology in Sweden has addressed these issues and proposes an approach to  overcome these problems. Reporting their findings in a recent issue of  Advanced Materials (“Efficient Inkjet Printing of Graphene”), a team  led by Max Lemme and Mikael Östling, professors at the School of  Information and Communication Technology at KTH, demonstrates a mature but  simple technology for inkjet printing of high-quality few-layer graphene.

Inkjet printed graphene patterns

Inkjet printed graphene patterns. a–c) Optical images of as-printed  patterns on glass slides: a) droplet matrix, b) lines, and c) a film corner.  (Reprinted with permission from Wiley-VCH Verlag)  


The approach is based on the team’s previously published  distillation-assisted solvent exchange technique to prepare high-concentration  graphene dispersions (“A simple route towards high-concentration  surfactant-free graphene dispersions”). They first  exfoliate graphene from  graphite flakes in dimethylformamide (DMF), and then DMF is exchanged by  terpineol through distillation by virtue of the large difference between their  boiling points.

Therefore, graphene can be significantly concentrated if  terpineol is of much lower volume than DMF. More importantly, the solvent is  changed from low-viscosity and toxic DMF to high-viscosity (about 40 cP at 20°  C) and environmentally-friendly terpineol.   They write, though, that the disadvantages of the technique in  the previous work – a short stable period (the dispersion can only be stable for  about 10 hours) and severe flake aggregation during solvent evaporation –  prevent the dispersions from being practical inks. “In this work, we have  improved the ink formulation mainly through polymer stabilization.

Before  distillation, a small amount of polymer (ethyl cellulose) is added into the  harvested graphene/DMF dispersion to protect the graphene flakes from  agglomeration. After printing, the stabilizing poly mers can be effectively  removed through a simple annealing process.”   The resulting graphene dispersion had a stable period of at  least several weeks.

The researchers point out that the inks provide  well-directed and constant jetting out of all nozzles at an even velocity, which  is comparable to the performance of commercially available inks.   To investigate the quality of the printed graphene, the team  fabricated large-area centimeter-scale graphene thin films with between 1 and 6  printing layers on glass slides.


“Printed transparent conductive films attain a sheet resistance  around 200 /sq at a transmittance of about 90%,” they summarize their results.  “Printed narrow-line resistors exhibit a resistance range from a few kΩ to  several MΩ. Printed few-layer graphene thin film transistors can be modulated by  the electric field effect.

Printed micro-supercapacitors achieve a high specific  capacitance of 0.59 mF cm-2 and a rapid  frequency response time around 13 ms.”   The team concludes that the present technology provides an  efficient and low-cost method to fabricate a variety of graphene electronic  devices with good performance and is a promising alternative for future  commercial applications in printed and flexible electronics.


By Michael Berger. Copyright © Nanowerk
Read more:

%d bloggers like this: