U.S. Lawmakers “Pedal” Tax Credits For E-bikes


E Bike TC 1 Biking-Capitol

Have you heard the big news out of Washington, D.C., this week? No, not that news …

We’re talking about the Electric Bicycle Incentive Kickstart for the Environment Act, also known as the EBIKE Act (clever, right?), that was proposed Tuesday by U.S. House of Representatives co-sponsors Earl Blumenauer (Oregon) and Jimmy Panetta (California).

If passed, this legislation would provide a tax credit of 30 percent off (up to $1,500) a new electric bike priced at under $8,000. If you’re one of the many Americans who end up getting money back from the IRS around tax time, this could add to your refund. If you’re eyeing a new Rad model, that’s a potential average credit of $419 in your pocket.

In a statement, Panetta said that this proposal is rooted in the environmental benefits that come from more people jumping on an ebike rather than driving a car.

“Ebikes are not just a fad for a select few, they are a legitimate and practical form of transportation that can help reduce our carbon emission,” the Congressman explained. “By incentivizing the use of electric bicycles to replace car trips through a consumer tax credit, we can not only encourage more Americans to transition to greener modes of transportation, but also help fight the climate crisis.”

The legislation comes on the heels of other bicycle-friendly bills put forward by Blumenauer, the Co-Chair of the Congressional Bike Caucus, including some that would strengthen the nation’s cycling infrastructure and expand tax credits for commuters who bike to work.

“One of the few positive developments of the last year has been the surge in biking. Communities large and small are driving a bike boom,” Blumenauer said in a statement. “Notably, electric bicycles are expanding the range of people who can participate, making bike commuting even easier.”

Our mission from day one has been to revolutionize the world of mobility, and seeing concrete legislative action that’ll motivate more people to turn to ebikes is a surefire sign we’re on the right path.

But like so many bills floated in the nation’s capital, the EBIKE Act won’t pass without a few riders (some legislative humor for ya). In this case, that means Rad riders like you!

If you want to see a consumer tax credit for new e-bikes, contact your Congressional representative and politely ask them to lend their support. Find Your Rep!

And keep an eye on this issue. We’re not counting on seeing this passed by peak riding season and there’s a long road ahead, including making it to the Senate!

How Agricultural Nanotechnology Will Influence the Future of Farming Sustainability


 

Farm Nano ImageForArticle_5647_16127920595039289

                          Image Credit: MrDDK/Shutterstock.com

The agricultural sector is dealing with enormous challenges such as rapid climatic changes, a decrease in soil fertility, macro and micronutrient deficiency, overuse of chemical fertilizers and pesticides, and heavy metal presence in the soil. However, the global population increase has subsequently escalated food demand. Nanotechnology has immensely contributed to sustainable agriculture by enhancing crop production and restoring and improving soil quality.

Nanotechnology is applied in various aspects of agriculture, for example:

  • Nano-pesticide delivery
  • Slow and controlled release of nanoparticles containing biofertilizers
  • Transport of genetic materials for crop development
  • Application of nano-biosensors for rapid detection of phytopathogen and other biotic and abiotic stresses.

This article focuses on the recent applications of nanotechnology for sustainable farming and how it influences the future of agricultural developments.

The poor awareness of the farmers in general and the excessive use of chemicals has severely affected the agricultural land as the toxic agrochemicals pollute the surface and groundwater. The increased use of chemical pesticides also eliminates beneficial microbes, insects, and other wildlife from the soil. The cumulative effect of all of the above results in major degradation of the ecosystem.

Nanoparticles Commonly Used in the Agricultural Sector

Several nanoparticles are commercially used in agriculture. Some of the commonly used nanoparticles are mentioned below:

Polymeric nanoparticles

In the agricultural sector, polymeric nanoparticles are used in the delivery of agrochemicals in a slow and controlled manner. Some of the advantages of polymeric nanoparticles are their superior biocompatibility and minimal impact on non-targeted organisms.

Some of the polymeric nanomaterials used in agriculture are polyethylene glycol, poly(epsilon-caprolactone), poly(lactide-co-glycolides), and poly (γ-glutamic acid).

Silver nanoparticles

Silver nanoparticles are extensively used for their antimicrobial property against a wide range of phytopathogens. Scientists have also reported that silver nanoparticles enhance plant growth. 

Nano alumino-silicates

Many chemical companies use nano alumino-silicate formulations as an efficient pesticide.

Titanium dioxide nanoparticles

These nanoparticles are biocompatible and are used as a disinfecting agent for water. 

Carbon nanomaterials

Carbon nanoparticles such as graphene, graphene oxide, carbon dots, and fullerenes, are used for improved seed germination.

Some of the other nanoparticles that are used in agriculture are zinc oxide, copper oxide nanoparticles, and magnetic nanoparticles.

Video Credit: Luca P./YouTube.com

Agricultural Nanotechnology for the Enhancement of Crop Productivity 

Nanopesticides and nanoherbicides

The application of nanoherbicides and nanopesticides for the management of weed and pests have significantly increased crop productivity. Different types of nanoparticles such as polymeric nanoparticles and inorganic nanoparticles are utilized for the nanoherbicide formulations.

Scientists have developed various routes for the efficient delivery of herbicides. For example, poly (epsiloncaprolactone) nanoparticles encapsulate atrazine, a herbicide. This nanocapsule showed strong control of the targeted species, reduced genotoxicity level, and could also significantly decrease the atrazine mobility in the soil.

Nanomaterials for disease management

Huge agricultural losses are incurred annually owing to microbial (virus, fungus, and bacteria) infections.

Nanomaterials with specific antimicrobial properties help prevent microbial infestations. Some of the common pathogenic fungi that cause diseases are Colletotrichum gloeosporioidesFusarium oxysporum, Fusarium solani, and Dematophora necatrix.

Several nanoparticles such as nickel ferrite nanoparticles and copper nanoparticles, have a strong antifungal property and are effectively used in disease management. In the case of viral infection treatment, chitosan nanoparticles, zinc oxide nanoparticles, and silica nanoparticles are effective against viral diseases such as mosaic virus for tobacco, potato, and alfalfa.

Nanofertilizers

Scientists have used nanotechnology to design a smart delivery system that would release nutrients in a slow and controlled manner to the targeted site to tackle nutrient deficiency in plants.

Nanofertilizers increase crop productivity by enhancing the availability of essential nutrients to the plant.

A significant increase in the yields of millet and cluster beans was found after the application of nanophosphorus fertilizers in arid conditions. Chitosan nanoparticles suspensions containing nitrogen, phosphorus, and sodium have also increased crop production. 

Nanotechnology in seed development 

Seed quality is an important factor which crop productivity depends on.

It has been observed that carbon nanotubes can enter the hard seed coat of tomatoes and significantly improve the germination index and plant growth.

Similarly, the germination percentage increased when soybean and corn seeds were sprayed with a multiwall carbon nanotube. Various nano treatments are available to enhance the germination index of plants.

Nanobiosensors 

Nanobiosensors are highly sensitive and specific when compared to conventional biosensors. These devices convert biological responses to electrical responses via a microprocessor.

Nanobiosensors offer a real-time signal monitoring and are involved in direct or indirect detection of pathogenic microorganisms, antibiotic resistance, pesticides, toxin, and heavy metal contaminants. This technology is also used to monitor crop stress, soil health, plant growth, nutrient content, and food quality.

Futuristic Strategies and Policy Options for Sustainable Farming Using Agricultural Nanotechnology

The following are some of the strategies devised for sustainable farming using agricultural nanotechnology:

  • Controlled green synthesis of nanoparticles
  • Understanding of nanoparticles produced by root endophytes and mycorrhizal fungi, which play an important role in plant productivity and disease management 
  • Interaction of nanoparticles with plant system such as transport mechanism of nanoparticles inside plant body
  • Critical evaluation of the negative side effects of nanoparticles on different environmental conditions
  • Development of portable and user-friendly nanobiosensors for rapid analysis of soil, plants, water, and pesticides

Some of the policy options for the application of nanotechnology for sustainable development of agriculture are listed below:

  • Development of special institutions with expertise for the proper evaluation for biosafety of nanoparticles
  • Formation of clear guidelines following Food Safety and Standards Authority (WHO standards) for monitoring and evaluation of nanoparticle-based systems
  • Proper documentation of nanomaterials-based toxicity to the aquatic organisms
  • More collaborative research and sharing of resources for the development of a better research system
  • For effective use of nano-based products, farmers should be educated by skilled professionals to minimize field problems.

References and Further Readings

Acharya, A., and Pal, P.K. (2020) Agriculture nanotechnology: Translating research outcome to field applications by influencing environmental sustainability. Nano Impact, 19, 100232. https://doi.org/10.1016/j.impact.2020.100232

Prasad, R. et al. (2017) Nanotechnology in Sustainable Agriculture: Recent Developments, Challenges, and Perspectives. Frontiers in Microbiology. 8, 1014. https://doi.org/10.3389/fmicb.2017.01014

Pandey, G. (2018) Challenges and future prospects of agri-nanotechnology for sustainable agriculture in India. Environmental Technology & Innovation. 11, 299-307. https://doi.org/10.1016/j.eti.2018.06.012

Disclaimer: The views expressed here are those of the author expressed in their private capacity and do not necessarily represent the views of AZoM.com Limited T/A AZoNetwork the owner and operator of this website. This disclaimer forms part of the Terms and conditions of use of this website.

University of Barcelona: New Synthesis Method Imitates Basic Formation of Organic Molecules: Sustainable Foundation?


Organic Molecule id41407Researchers from the Institute for Advanced Chemistry of Catalonia (IQAC-CSIC), with support from the Nuclear Magnetic Resonance Service of the Universitat Autònoma de Barcelona (UAB) have developed a method for synthesising organic molecules very selectively, by assembling simple molecules and using an enzyme from E. coli (FSA: D-fructose-6-phosphate aldolase), which acts as a biocatalyst. This is a significant step forward since it replicates the formation of carbohydrates in conditions resembling those that presumably initiated life on the Earth (prebiotic conditions) and because it allows relatively large organic molecules to be obtained very selectively and efficiently.
Furthermore, it is a process with few steps, that does not use organic solvents and generates no waste, and it has great potential in chemistry, especially for obtaining molecules and active ingredients of interest (drugs, supplements, etc.).
E.coli FSA Enzyme
This is an E.coli FSA enzyme. (Image: CSIC)
Pere Clapés, a research professor with the CSIC who led this project, explains that in the synthesis of organic molecules “…it is not only important for them to have the correct structure, but also the right angle and position in space, because this affects their function”.
In fact, this is one of the main problems that can limit the effectiveness of compounds like drugs. In the case of pentoses and hexoses, these are simple sugars (monosaccharides) with five and six carbon atoms, respectively: crucial for life thanks to their function in energy production, structuring, communication and cell-cell recognition.
The results presented in the journal Nature Chemistry (“Asymmetric assembly of aldose carbohydrates from formaldehyde and glycolaldehyde by tandem biocatalytic aldol reactions”) show that the scientists obtained pentoses and hexoses by assembling formaldehyde and glycolaldehyde, with a minimal modification to the FSA enzyme sequence.
A very malleable enzyme
The enzyme FSA was discovered in 2001 and its physiological function in E. coli is still unknown. It is thought to be an ancestral enzyme, and that it is active before a broad range of compounds. What surprised the researchers is that it is a very malleable enzyme, much more so than others. As a result, with only a small number of genetic mutations in the enzyme, its catalytic capacity can be modulated and increased significantly. This is what allows the enzyme to be carefully adapted in order to synthesise several molecules at will.
The metabolism of carbohydrates in living organisms is a complex process, forged over millions of years of evolution. It is no easy task to carry out these processes in a flask, whether by assembling the enzymes involved in the process or by manipulating the metabolic pathways of living organisms. Nor is it simple to obtain carbohydrates with conventional chemical methods, which require several stages and the use of organic solvents.
The procedure was developed by scientists in the Biotransformation and Active Molecules Group of the Spanish National Research Council (CSIC), with support from the Nuclear Magnetic Resonance Service of the UAB. Pere Clapés explains: “we want to prove that the tools of biocatalysis allow complex molecules to be obtained from simpler ones, which are in fact the same ones used in nature”. He goes on: “Over millions of years, living organisms have forged these metabolic strategies to obtain the carbohydrates they need to survive.”
“The process is a simple one, mimicking the prebiotic formation of carbohydrates from compounds that were probably around in the world before life began”, adds Teodor Parella, of the UAB.
For these researchers, the engineering of proteins, in particular of biocatalysts, has enormous potential for the sustainable synthesis of natural molecules and their derived products.
Source: Universitat Autonoma de Barcelona

Smart Grid and Nanotechnologies: How can Nanotechnology Reduce CO2 emissions? A Solution For Clean and Sustainable Energy


Renewable Energy Pix

Environmental sustainability remains a big trend; topics such as climate change and global warming are generating a lot of discussion. Growing world energy demand from fossil fuels plays a key role in the upward trend in CO2 emissions and is the main source of human-induced climate changes. While energy systems around the world remain at vastly different stages of development, all countries share a common problem: they are far away from achieving sustainable energy systems. As levels of CO2 and other greenhouse gases continue to rise in the atmosphere, with historical maximums reached lately, sustainability in energy generation and energy efficiency principles is becoming ever more important.

Introduction

For the first time in recorded history, more people worldwide are living in urban areas than in rural. The urbanization trend picked up pace in the 20th century and has accelerated since. Urbanization manifests itself in two ways: expansion of existing cities and creation of new ones.1 Cities are already the source of close to 80% of global CO2 (carbon-dioxide) emissions and will account for an ever-higher percentage in the coming years.

Too much CO2 in the atmosphere has been linked to climate change. If humanity continued with the same solutions that have been used to address urban development needs in the past, the resulting urban ecological footprint will not be sustainable: we would need the equivalent of two planets to maintain our lifestyles by the 2030s. The challenge is to meet the demands of urbanization in an economically viable, socially inclusive, and environmentally sustainable fashion.1,2

According to a World Energy Council study,3 global demand for primary energy is expected to increase by between 27% and 61% by 2050. Climate change is expected to lead to changes in a range of climatic variables, most notably temperature levels. Since electricity demand is closely influenced by temperature, there is likely to be an impact on power demand patterns. The magnitude of the potential impact of future climate changes on electricity demand will depend on patterns in the power use, as well as long-term socio-economic trends.

The latest assessment by Working Group I of the Intergovernmental Panel on Climate Change, released in September 2013, concluded that climate change remains one of the greatest challenges facing society. Warming of the climate system is unequivocal, human-influenced, and many unprecedented changes have been observed throughout the climate system since 1950. Limiting climate change will require substantial and sustained reductions of greenhouse gas emissions.4

Consumption patterns, together with aging and urbanization in some countries seem to have bigger implications for health and the reduction of carbon emissions than the total number of people in the world.5 As developing and newly industrialized countries improve their standards of living, their use of air conditioning and other weather-dependent consumption will likely increase their sensitivity to climate change.6 On the other hand, reducing consumption and achieving more sustainable lifestyles in rich countries will likely represent the most effective way to reduce carbon emissions.

Nanotech World stock-photo-background-concept-wordcloud-illustration-of-nanotechnology-glowing-light-76352191

How can nanotechnology reduce CO2 emission?

“The Grid” and Improving Efficiencies

Nanotechnology is a platform whereby matter is manipulated at the atomic level. There are various ways that nanotechnology can be applied along the Smart Grid to help reduce CO2 emissions.

The major impact of nanotechnology on the energy sector is likely to improve the efficiency of current technologies to minimize use of fossil fuels. Any effort to reduce emissions in vehicles by reducing their weight and, in turn, decreasing fuel consumption can have an immediate and significant global impact.

It is estimated that a 10% reduction in weight of the vehicle corresponds to a 10% reduction in fuel consumption, leading to a proportionate fall in emissions. In recognition of the above, there is growing interest worldwide in exploring means of achieving weight reduction in automobiles through use of novel materials. For example, use of lighter, stronger, and stiffer nano-composite materials is considered to have the potential to significantly reduce vehicle weight.9,49

Nanotechnology is applied in aircraft coatings, which protect the materials from the special conditions of the environment where they are used (instead of the conventional bulk metals such as steel). Since the amount of CO2 emitted by an aircraft engine is directly related to the amount of fuel burned, CO2 can be reduced by making the airplane lighter.

Nanocoatings are one of the options for aerospace developers, but also for automotive, defense, marine, and plastics industries.49 Lufthansa Cargo uses the most advanced technologies and innovative processes including efficient jet engines, nanotechnology in aircraft coatings, new composites or regular jet engine cleaning – and of course monitoring overall aircraft weight. It is often a matter of only a few grams. However, given 15,000 to 16,000 flights a year and an average flight time of about 6 hours, the cumulative effect of a number of grams can quickly add up to tons. The removal of a 350 gram phone handset resulted in jet fuel savings of 3.5 tons in a year.50

Nanotechnology is already applied to improve fuel efficiency by incorporation of nanocatalysts. Enercat, a third generation nanocatalyst developed by Energenics, uses the oxygen storing cerium oxide nanoparticles to promote complete fuel combustion, which helps in reducing fuel consumption. Recently, the company has demonstrated fuel savings of 8%–10% on a mixed fleet of diesel vehicles in Italy.51

Reducing friction and improving wear resistance in engine and drive train components is of vital importance in the automotive sector. Based on the estimates made by a Swedish company Applied Nano Surfaces, reducing friction can lower the fuel consumption by about 2% and result in cutting down CO2 emissions by 500 million tons per year from trucks and other heavy vehicles in Sweden alone.9 Thanks to nanomaterials like silica, many tires will in the future be capable of attaining the best rating, the green category A. Cars equipped with category A tires consume approximately 7.5% less fuel than those with tires of the minimum standard (category G).52

Residential and commercial buildings contribute to 11% of total greenhouse gas emissions. Space heating and cooling of residential buildings account for 40% of the total residential energy use. Nanostructured materials, such as aerogels, have the potential to greatly reduce heat transfer through building elements and assist in reducing heating loads placed on air-conditioning/heating systems. Aerogel is a nanoporous super-insulating material with extremely low density; silica aerogel is the lightest solid material known with excellent thermal insulating properties, high temperature stability, very low dielectric constant and high surface area.51

Nanotechnology is positioned to create significant change across several domains, especially in energy where it may bring large and possibly sudden performance gains to renewable sources and Smart Grids. Nanotech enhancements may also increase battery power by orders of magnitude, allowing intermittent sources such as solar and wind to provide a larger share of overall electricity supply without sacrificing stability. Nanotech sensors will also enable Smart Grids and foster more flexible and decentralized electricity management.53

Nanotechnology may accelerate the technology behind renewables in various ways:

  • experts are discovering means to apply nanotechnology to photovoltaics, which would produce solar panels with double or triple the output by 2020;
  • wind turbines stand to be improved from high-performance nano-materials like graphene, a nano-engineered one-atom thick layer of mineral graphite that is 100 times stronger than steel. Nanotechnology will enable light and stiff wind blades that spin at lower wind speeds than regular blades;
  • nanotechnology could play a major role in the next generation of batteries. For example, coating the surface of an electrode with nanoparticles increases the surface area, thereby allowing more current to flow between the electrode and the chemicals inside the battery. Such techniques could increase the efficiency of electric and hybrid vehicles by significantly reducing the weight of the batteries. Moreover, superior batteries would complement renewables by storing energy economically, thus offsetting the whole issue of intermittent generation.

In a somewhat more distant future, we may see electricity systems apply nanotechnology in transmission lines. Research indicates that it is possible to develop electrical wires using carbon nanotubes that can carry higher loads and transmit without power losses even over hundreds of kilometers. The implications are significant, as it would increase the efficiency of generating power where the source is easiest to harness.53

Semiconductor devices, transistors, and sensors will benefit from nanotechnology especially in size and speed. Nanotech sensors could be used for the Smart Grid to detect issues ahead of time, ie, to measure degrading of underground cables or to bring down the price of chemical sensors already available for transformers. Nanotechnology will likely become indispensable for the Smart Grid to fully evolve in the near future.54

Energy efficiency is a way of managing and restraining the growth of energy consumption. It is one of the easiest and most cost effective ways to combat climate change, improve the competitiveness of businesses, and reduce energy costs for consumers.7

More on Using Nanotechnology to Reduce Carbon-Based Emissions

Jeff-Long-CO2-New-284x300

Berkley Lab: A Better Way of Scrubbing CO2

Berkeley Lab Researchers Find Way to Improve the Cost-Effectiveness Through the Use of MOFs

A means by which the removal of carbon dioxide (CO2) from coal-fired power plants might one day be done far more efficiently and at far lower costs than today has been discovered by a team of researchers with the U.S. Department of Energy (DOE)’s Lawrence Berkeley National Laboratory (Berkeley Lab). By appending a diamine molecule to the sponge-like solid materials known as metal-organic-frameworks (MOFs), the researchers were able to more than triple the CO2-scrubbing capacity of the MOFs, while significantly reducing parasitic energy.

Read the Full Article Here: https://genesisnanotech.wordpress.com/2015/03/17/berkley-lab-a-better-way-of-scrubbing-co2/

Nanotechnology material could help reduce CO2 emissions from coal-fired power plants

1-KAUST Materials gilles-coinsliderUniversity of Adelaide researchers have  developed a new nanomaterial that could help reduce carbon dioxide emissions  from coal-fired power stations.

The new nanomaterial, described in the Journal of the  American Chemical Society (“Post-synthetic Structural Processing in a  Metal–Organic Framework Material as a Mechanism for Exceptional CO2/N2 Selectivity”), efficiently separates the  greenhouse gas carbon dioxide from nitrogen, the other significant component of  the waste gas released by coal-fired power stations. This would allow the carbon  dioxide to be separated before being stored, rather than released to the  atmosphere.
“A considerable amount of Australia‘s – and the world’s – carbon  dioxide emissions come from coal-fired power stations,” says Associate Professor  Christopher Sumby, project leader and ARC Future Fellow in the  University’s School of Chemistry and Physics.

Read the Full Article Here: https://genesisnanotech.wordpress.com/2013/07/10/nanotechnology-material-could-help-reduce-co2-emissions-from-coal-fired-power-plants/

One Nano-Crystal – Many Facets – Reducing Fuel Toxins

cubic CeO2 nanoparticlesWhen it comes to reducing the toxins released by burning gasoline, coal, or other such fuels, the catalyst needs to be reliable. Yet, a promising catalyst, cerium dioxide (CeO2), seemed erratic. The catalyst’s three different surfaces behaved differently. For the first time, researchers got an atomically resolved view of the three structures, including the placement of previously difficult-to-visualize oxygen atoms. This information may provide insights into why the surfaces have distinct catalytic properties (“Probing the Surface Sites of CeO2 Nanocrystals with Well-Defined Surface Planes via Methanol Adsorption and Desorption”).

Read the Full Article Here: https://genesisnanotech.wordpress.com/2015/06/12/one-nano-crystal-many-facets-reducing-fuel-toxins/

Conclusion

This review demonstrates the potential for reduction of CO2 emissions that Smart Grids can potentially achieve. Power grid modernization is an evolution that will continue for years or decades, and providing a robust foundation for new applications and technologies is imperative.

The electric power industry is facing tremendous opportunities and becoming increasingly important in the emerging low-carbon economy. Governments are still dominant players in high-cost smart-grid investments. This suggests the need for a policy framework that attracts private capital investment, especially from renewable project developers, and communication and ICT companies.

The challenge we face is neither a technical nor policy one – it is political: the current pace of action is simply insufficient. The technologies to reduce emission levels to a level consistent with the 2°C target are available and we know which policies we can use to deploy them. However, the political will to do so remains weak. This lack of political will comes with a price: we will have to undertake steeper and more costly actions to potentially bridge the emissions gap by 2020.4 However, technical possibilities aside, the key to reducing emission levels will be the tough but unavoidable decision that reducing carbon pollution must be of the highest priority.

To Read the Full Article Go Here: http://www.dovepress.com/smart-grid-and-nanotechnologies-a-solution-for-clean-and-sustainable-e-peer-reviewed-fulltext-article-EECT

Turning today’s composite materials innovations into tomorrow’s reality


1-KAUST Materials gilles-coinsliderAs sustainability has increasingly become a central focus in many sectors of the global economy, manufacturers are constantly striving to increase efficiency in terms of energy, weight, emissions and generally reducing their environmental footprint. Those requirements are the primary drivers behind the widespread adoption of composite materials.

Composite “materials” are created when two or more different materials are arranged together according to a microstructure (i.e. the way these materials are arranged together in space). The properties at large scale are intimately related to this microstructure. In other words, starting from the same raw materials but engineering different microstructures can result in completely different behaviors.

That makes this field full of opportunities for optimizing and tailoring the material to the application. When not only the mechanical behavior is considered, but multiple physics together (thermal, electrical) as well as the coupling between them, such materials can be engineered to obtain the complex behaviors needed for achieving multifunctional structures.

Composites are found in sports equipment, buildings, aircraft manufacturing, and the energy sector to name a few. Latest generation composite aircraft, for instance, can have a gain of around 25% efficiency compared to the same metallic design. Composites pipes can be used to make water or oil transportation infrastructures insensitive to corrosion and to reduce the pollution of the conveyed product.

As most common composites make use of carbon, they are often referred as “black metal”. They have of course nothing to do with more classical metallic materials, but this expression well stresses the potential of these materials to become the most popular candidates for large-scale engineering. Yet, we are only at the beginning of the “black metal” revolution.

“Today we are very good at making composite structures; the main problem is how they are going to evolve in time,” says Gilles Lubineau, Associate Professor of Mechanical Engineering at KAUST and Principal Investigator of the Composite and Heterogeneous Materials Analysis and Simulation Laboratory (COHMAS). That means it’s possible to employ innovative composite structure technology to manufacture versatile aircrafts, windmill blades, and industrial pipes — but the big question is ensuring their “stability and service lifetime.”

Prof. Gilles Lubineau working with his PhD students.

Prof. Lubineau and his group’s research thrust essentially focuses on computational modeling and experimental developments to tackle complex problems related to composite engineering. In the group, new materials are developed to meet new challenging operational conditions, techniques are being developed to understand their behavior, monitor their integrity, and computational approaches are being put in place to make possible the prediction of the relations between microstructure, functionality and durability.

Optimizing the microstructure to achieve the best performance

Successfully capturing the structural properties and optimal functionality of composite and heterogeneous materials requires a multi-faceted set of skills. The COHMAS team is split 50 percent with experts in computational mechanics while the other 50 percent has an expertise in experimental mechanics.

One of the particularities of Professor Lubineau’s team, part of the mechanical engineering program and specializing in a wide variety of composite materials, is to bring together people with very different backgrounds, ranging from mechanical engineering, applied mathematics, and theoretical mechanics to material science and chemical engineering.

“This wide variety of background makes the team able to tackle real composite problems that are necessarily multiphysics and multiscale problems. This also makes the team capable of theoretically designing the microstructure to reach the best performance, and then to synthesize it and explore it from the experimental point of view; this ability is quite rare in a single group,” Prof. Lubineau says.

The background of the team being primarily Mechanical Engineering and not Material Science, “we look at the material more from a structural point of view and this completely changes the approach” as Lubineau explains. The COHMAS team sees the material as a structure or as something that is part of a structure.

For illustration purposes, Prof. Lubineau takes the example of an aircraft: “The stresses, strains and everything is very heterogeneous. So it becomes necessary to accommodate the gradients in order to optimize materials at the critical locations in the aircraft’s structure.”

Doing so, Prof. Lubineau’s group has recently design highly conductive polymer fibers with controlled conductivity and piezoresistivity. “Such fibers will help in creating new self sensing and multifunctional structures and fast-response heating components in wearable textiles. They are the building blocks for better functional integration which serves cost reduction, energy efficiency and improved conductivity in service,” said Prof. Lubineau. “This has been made possible only by people with very different backgrounds working together towards a common goal”.

Prof. Lubineau’s group also works on composite materials destined for large industrial pipes, five or six meters in diameter, used for oil or water transportation. Particularly in arid regions like in Saudi Arabia, these pipes can experience high levels of degradation and specific aging conditions due to the extreme environmental conditions. Here again, understanding how the microstructure drives the final performance is key to process and design optimization.

Predicting and monitoring integrity

Material design is important, but understanding how the material is going to evolve in time is at least as crucial. A material might have tremendous properties, and be totally useless if these cannot be sustained at long term in a real working environment.

Among the multitude of factors that need to be considered are: mechanical degradation, aging, coupling with environments.

KAUST PhD students: Lakshmi Selvakumaran (left) and Ali Moussawi.

“You need to be able to predict what will happen in thirty years based on experiments that cannot last for more than a few weeks or a few months. What we want to achieve is more than a classical phenomenological model. We need models that can be use for making predictions with trust, models that can be use for design and exploration of new solutions,” Lubineau said.

Predictive science, with a physics based description of experimental observations later formalized in rigorous models, is then essential to Prof. Lubineau’s group. They have been engaged in designing models for many advanced structures while at Kaust, ranging from composite fuselage integrity to pipes integrity in sour environment.

Prof. Lubineau stresses that the objective is not to replace accelerated testing that is usually the preferred choice in industry (that means subjecting the structure to harsher condition during a shorter time to predict long term degradation).

“The objective of predictive testing is first, to design relevant accelerated testing conditions that are actually representative of what will happen at long term, and to understand the physics well enough to develop techniques for structural health monitoring (SHM),” said Prof. Lubineau.

“Monitoring composites is a real challenge today. Practical technologies are investigated to provide the most efficient and reliable real time monitoring such as optical fiber sensing (with Fiber Bragg Gratings) or electrical impedance/resistivity tomography (EIT/ERT). Thanks to these detection methods more challenging engineering may be envisaged through the design of preventive maintenance strategies.” His team is then investigating how such reliable models can be used for better SHM techniques. Successes have already been met for impedance based monitoring for example.

Computational techniques for better design of Composite structures

A last axis of Prof. Lubineau’s group is the design of adequate computational techniques to predict the integrity of complex structures such as composite made structures.

Prediction of crack propagation in such complex media is particularly challenging. Yet, this is a real industrial need.

“A crack is first of all a discontinuity, and continuum mechanics does not like discontinuities. It makes simulations much more complex and sometimes intractable with current technologies when many of them are involved,” said Prof. Lubineau.

He developed with Boeing a successful technique called “morphing”, published in Journal of the Mechanics and Physics of Solids, in which non-local continuum mechanics can be efficiently glued with classical continuum mechanics. “This provides a natural framework for computing crack nucleation and extension. This is still in its infancy, but we believe a promising technique in the future” adds Prof. Lubineau

Collaborations with Industry

Most of Prof. Lubineau’s research at COHMAS is done in close collaboration with major industrial partners such as Boeing, Sabic, Aramco or Amiantit. The applied research and advanced theoretical concepts are directly tested and applied to concrete problems.

Despite the variety of these projects, they are all related to the application of advanced composite material to some real application such as composite fuselage, composite pipes, composites for civil engineering or the automotive industry. The team helps in bridging the gap between theoretical knowledge and the real application of these materials.

Saudi Arabia is already a major player as a provider of the raw products. But Prof. Lubineau foresees an expanded future role for the Kingdom where, instead of just selling the raw material, Saudi Arabia could directly sell technologies with the more advanced derived material at a much higher added value. “This can really play a role in developing the local economy.”

Big Idea 2013: Designing the Necessities of Life


Tim Brown CEO at IDEO

Humanity's Needs Photo

Humanity spends billions every year designing, developing, and marketing new things. The question I have is, are we directing those efforts appropriately?

Research suggests that beyond a certain point consumption does not increase happiness. So why are we spending so much time creating new things for those of us who already have so much?

The steady increase in new forms of consumption based on a ‘shared economy’ might indicate that many people—especially younger people—are turning away from materialism. Coincidentally, the steady increase in graduates choosing to pursue careers in social entrepreneurship might indicate a search for alternative forms of self-realization.

Most of the greatest challenges that face our species today are not ones that reside at the peak of Maslow’s hierarchy. Instead, they concern life’s most basic needs:

+ How might we create a sustainable balance between the needs of 9 billion people and the productive capacity of the planet?

+ Where will sustainable supplies of energy, food, and water come from in the future?
+ How might we design our cities to be safe, productive, and sustainable places for us to inhabit?
+ How might we conquer the ravages of chronic diseases that threaten to reverse the steady increase in human lifespan?
+ How might we design systems to support graceful aging and dignified death?

+ How might we feed, clothe, educate, and give shelter to the more than 3 billion people who live on less than $2.50 a day?

The list goes on, and yet we are dedicating a tiny proportion of our creative efforts to these challenges. What is especially confounding is that locked up in every one of these challenges is the potential for vast amounts of economic wealth. Never has ‘doing well by doing good’ shown such promise as it does today.
So, my big idea for 2013 is that we go back to basics and direct our creative efforts toward designing the necessities of life.
Which of life’s necessities are you choosing to focus your creative energies on?

(Photo courtesy of IDEO.org — cookstove research in Tanzania)