Interface Properties of Graphene Paves Way for New Applications


201306047919620Researchers from North Carolina State University and the University of Texas have revealed more about graphene’s mechanical properties and demonstrated a technique to improve the stretchability of graphene – developments that should help engineers and designers come up with new technologies that make use of the material.

Graphene is a promising material that is used in technologies such as transparent, flexible electrodes and nanocomposites. And while engineers think graphene holds promise for additional applications, they must first have a better understanding of its mechanical properties, including how it works with other materials.

“This research tells us how strong the interface is between graphene and a stretchable substrate,” says Dr. Yong Zhu, an associate professor of mechanical and aerospace engineering at NC State and co-author of a paper on the work. “Industry can use that to design new flexible or stretchable electronics and nanocomposites. For example, it tells us how much we can deform the material before the interface between graphene and other materials fails. Our research has also demonstrated a useful approach for making graphene-based, stretchable devices by ‘buckling’ the graphene.”

The researchers looked at how a graphene monolayer – a layer of graphene only one atom thick – interfaces with an elastic substrate. Specifically, they wanted to know how strong the bond is between the two materials because that tells engineers how much strain can be transferred from the substrate to the graphene, which determines how far the graphene can be stretched.

The researchers applied a monolayer of graphene to a polymer substrate, and then stretched the substrate. They used a spectroscopy technique to monitor the strain at various points in the graphene. Strain is a measure of how far a material has stretched.

Initially, the graphene stretched with substrate. However, while the substrate continued to stretch, the graphene eventually began to stretch more slowly and slide on the surface instead. Typically, the edges of the monolayer began to slide first, with the center of the monolayer stretching further than the edges.

“This tells us a lot about the interface properties of the graphene and substrate,” Zhu says. “For the substrate used in this study, polyethylene terephthalate, the edges of the graphene monolayer began sliding after being stretched 0.3 percent of its initial length. But the center continued stretching until the monolayer had been stretched by 1.2 to 1.6 percent.”

The researchers also found that the graphene monolayer buckled when the elastic substrate was returned to its original length. This created ridges in the graphene that made it more stretchable because the material could stretch out and back, like the bellows of an accordion. The technique for creating the buckled material is similar to one developed by Zhu’s lab for creating elastic conductors out of carbon nanotubes.

The paper, “Interfacial Sliding and Buckling of Monolayer Graphene on a Stretchable Substrate,” was published online Aug. 1 in Advanced Functional Materials. Lead author of the paper is Dr. Tao Jiang, a postdoctoral researcher at NC State. The paper was co-authored by Dr. Rui Huang of the University of Texas. The research was funded by the National Science Foundation (NSF) and the NSF’s ASSIST Engineering Research Center at NC State.

-shipman-

Note to Editors: The study abstract follows.

“Interfacial Sliding and Buckling of Monolayer Graphene on a Stretchable Substrate”

Authors: Tao Jiang and Yong Zhu, North Carolina State University; Rui Huang, University of Texas at Austin

Published: Aug. 1 2013, Advanced Functional Materials

Flexible Electronics Help Create Multi Sensing Cardiac Ablation Catheter


by GENE OSTROVSKY on Nov 16, 2012

flexible cardiac ablation catheter Flexible Electronics Help Create Multi Sensing Cardiac Ablation CatheterFlexible electronics are a fairly new advancement with the promise of radically transforming certain aspects of medicine. Unlike many technologies that take years to reach practical implementation, flexible electronics are already being embedded to significantly improve the functionality of existing devices. As an early example that was just announced, an international team of researchers built and tested a balloon ablation catheter capable of measuring intracardiac pressure, EKG, and local temperature around the device tip. All this data can be monitored in real time by the physician during ablation without having to switch devices.

The technology behind the flexible electronics is being developed by MC10, a company we’ve been following for the last couple of years as they rush to bring new capabilities to medical devices.

From Northwestern University:

Central to the design is a section of catheter that is printed with a thin layer of stretchable electronics. The catheter’s exterior protects the electronics during its trip through the bloodstream; once inside the heart, the catheter is inflated like a balloon, exposing the electronics to a larger surface area inside the heart.

With the catheter is in place, the individual devices within can perform their specific tasks. A pressure sensor determines the pressure on the heart; an EKG sensor monitors the heart’s condition during the procedure; and a temperature sensor controls the temperature so as not to damage surrounding tissue. The temperature can also be controlled during the procedure without removing the catheter.

These devices can deliver critical, high-quality information — such as temperature, mechanical force, and blood flow — to the surgeon in real time, and the system is designed to operate reliably without any changes in properties as the balloon inflates and deflates.

Flexible electronics flashbacks on Medgadget

Northwesten press release: Simplifying Heart Surgery with Stretchable Electronic Devices

More from MC10: MC10′s Latest Research on Cardiac Webs and Instrumented Catheters in the Proceedings of the National Academy of Sciences (PNAS)

Study abstract in PNASElectronic sensor and actuator webs for large-area complex geometry cardiac mapping and therapy