Computer Chips Get Smaller .. Cost Less .. with Nanotechnology


Printing Graphene Chips(Nanowerk News) Not so long ago, a computer filled a  whole room and radio receivers were as big as washing machines. In recent  decades, electronic devices have shrunk considerably in size and this trend is  expected to continue, leading to enormous cost and energy savings, as well as  increasing speed.
Key to shrinking devices is Terascale computing, involving  ultrafast technology supported by single microchips that can perform trillions  of operations per second.
Using Terascale technology, semiconductor components commonly  used to make integrated circuits for all kinds of appliances could measure less  than 10 nanometres within several years. Keeping in mind that a nanometre is  less than 1 billionth of a metre, electronic devices have the potential to  become phenomenally smaller and require significantly less energy than today – a  development that will revolutionise the electronics industry.
Despite progress, the technology for producing these ultra-small  devices has a long way to go before being reliable. To advance the work, the  EU-funded project TRAMS (‘Terascale reliable adaptive memory  systems’) sought to improve reliability by improving chip design.
The TRAMS team conducted in-depth variability and reliability  analyses to develop chip circuits that are much less prone to errors. These  circuits feature new designs that yield reliable memory systems from currently  unreliable nanodevices.
The main challenge was to develop reliable, energy efficient and  cost effective computing using a variety of new technologies with individual  transistors potentially measuring below five nanometres in size.
The team investigated a number of technologies and materials  with potential to make Terascale computing a reality. These included:
  • carbon  nanotubes;
  • new  transistor geometries, such as FinFETs;
  • state-of-the-art  nanowires, which offer very advanced transistor capabilities for use in a new  generation of electronic devices.
Using models, the researchers analysed reliability – from the  technology to the circuit level.
These advances are expected to redefine today’s standard  ‘complementary metal-oxide semiconductors’ (CMOS). The team’s results would help  Europe’s manufacturers develop CMOS devices below the 16 nanometre range. The  biggest challenge will lie in reducing CMOS devices to below five nanometres – a  development that now starts to look possible.
From communication and security to transport and industry,  CMOS-based devices of the future promise to redesign the technology we use,  introducing radical energy and cost savings.
The TRAMS consortium includes universities and companies from  Spain, Belgium and the UK. The project was coordinated by Spain’s Universitat  Politècnica de Catalunya, and received almost EUR 2.5 million in EU funding. The  team concluded its work in December 2012.
Source: Cordis

Read more: http://www.nanowerk.com/news2/newsid=31921.php#ixzz2dIHBO0o7

Advertisements

Lipid Nanoparticles Ideal For Delivering Drugs


QDOTS imagesCAKXSY1K 8A research team from the Faculty of Pharmacy of the Basque Public University(UPV/EHU) – Spain – is using nanotechnology to develop new formulations that can be applied to drugs and gene therapy. Specifically, they are using nanoparticles to design systems for delivering genes and drugs; this helps to get the genes and drugs to the point of action so that they can produce the desired effect. The scientists have shown that lipid nanoparticles are ideal for acting as vectors in gene therapy. Gene therapy is a highly promising alternative for diseases that so far have no effective treatment. It consists of delivering a nucleic acid, for example, a therapeutic gene, to modulate the expression of a protein that is found to be altered in a specific disease, thus reversing the biological disorder.

lipid-nanoparticle

“Using lipid nanoparticles conducts to  new formulations to deliver drugs that are not particularly soluble or which are difficult to absorb”, Dr Rodriguez explained. “40% of the new pharmacologically active molecules are reckoned to be insoluble or not very soluble in water; that prevents many of these potentially active molecules from ever reaching the clinic because of the problems involved in developing a safe, effective formulation.” explains Dr Alicia Rodriguez.

Researchers show that lipid nanoparticles are ideal for delivering genes and drugs

At the Faculty of Pharmacy of the Basque Public University (UPV/EHU) the Pharmacokinetics, Nanotechnology and Gene Therapy research team is using nanotechnology to develop new formulations that can be applied to drugs and gene therapy.Specifically, they are using nanoparticles todesignsystems for delivering genes and drugs; this helps to get the genes and drugs tothe point of action so that they can produce the desired effect.

The research team has shown that lipid nanoparticles, which they have been working on for several years, are ideal for acting as vectors in gene therapy.Gene therapy is a highly promising alternative for diseases that so far have no effective treatment.It consists of delivering a nucleic acid, for example, a therapeutic gene, to modulate the expression of a protein that is found to be altered in a specific disease, thus reversing the biological disorder.

The main obstacle is that the genetic material cannot be formulated in conventional pharmaceutical ways, because it becomes degraded within the organism and cannot perform its function.To overcome this obstacle, viral vectors are normally used and they are able to deliver the therapeutic gene to the cells in which it has to act.However, as Dr Alicia Rodriguez explains, “viral vectors have a great drawback because they have a great potential to develop tumours.That is why there is a lot of interest in developing non-viral vectors, like vectors based on lipid nanoparticles.”

“In this respect,” adds Dr Rodriguez, “we have for several years been working to develop formulations for treating degenerative retina diseases, diseases for which there is currently no effective curative or palliative treatment and which causes blindness in the patients who in many cases are very young people.”The research they have done has borne fruit already, and they have in fact managed to develop a vector capable of making a protein express itself in the eyes of rats after ocular delivery.The work has produced two patents and various papers published in top scientific journals, like Human Gene Therapy.

Aim:to improve drug absorption

Another application of lipid nanoparticles is to develop new formulations to deliver drugs that are not particularly soluble or which are difficult to absorb.Dr Rodriguez explained the problem with these drugs:“40% of the new pharmacologically active molecules are reckoned to be insoluble or not very soluble in water; that prevents many of these potentially active molecules from ever reaching the clinic because of the problems involved in developing a safe, effective formulation.”

The Faculty of Pharmacy’s research team has shown that the strategy of encapsulating drugs of this type in lipid nanoparticles is effective:“They are spheres made of lipids and they have very small particleswhich encase the drug.That way, the absorption of the drug given orally can be increased,” points out Dr Rodriguez.

Part of the research was done in collaboration with the research team led by DrVéroniquePréat, of the Catholic University of Louvain in Belgium.There they studied the capacity of the nanoparticles to pass through the intestinal barrier and therefore increase the permeability of the drug.The results of this work have been published in the Journal of Controlled Release, a leading journal within the specialty.

Furthermore, while considerable advances have been made in both areas (vectors for gene therapy and improvement in insoluble drug absorption), the researchers in the Pharmacokinetics, Nanotechnology and Gene Therapy team are working in a third area linked to hepatitis C in which they also hope to achieve positive results.