MIT: New ‘Solar Skin’ Solar panels get a face-lift with custom Display Capabilities


mit-sistine-solar_0

Startup aims for wider U.S. solar adoption with photovoltaic panels that can display any image.

Founded at the MIT Sloan School of Management, Sistine Solar creates custom solar panels designed to mimic home facades and other environments, as well as display custom designs, with aims of enticing more homeowners to install photovoltaic systems. Courtesy of Sistine Solar

Residential solar power is on a sharp rise in the United States as photovoltaic systems become cheaper and more powerful for homeowners. A 2012 study by the U.S. Department of Energy (DOE) predicts that solar could reach 1 million to 3.8 million homes by 2020, a big leap from just 30,000 homes in 2006.

But that adoption rate could still use a boost, according to MIT spinout Sistine Solar. “If you look at the landscape today, less than 1 percent of U.S. households have gone solar, so it’s nowhere near mass adoption,” says co-founder Senthil Balasubramanian MBA ’13.

Founded at the MIT Sloan School of Management, Sistine creates custom solar panels designed to mimic home facades and other environments, with aims of enticing more homeowners to install photovoltaic systems.

Sistine’s novel technology, SolarSkin, is a layer that can be imprinted with any image and embedded into a solar panel without interfering with the panel’s efficacy. Homeowners can match their rooftop or a grassy lawn. Panels can also be fitted with business logos, advertisements, or even a country’s flag. SolarSkin systems cost about 10 percent more than traditional panel installations. But over the life of the system, a homeowner can still expect to save more than $30,000, according to the startup.

A winner of a 2013 MIT Clean Energy Prize, Sistine has recently garnered significant media attention as a rising “aesthetic solar” startup. Last summer, one of its pilot projects was featured on the Lifetime television series “Designing Spaces,” where the panels blended in with the shingle roof of a log cabin in Hubbardston, Massachusetts.

In December, the startup installed its first residential SolarSkin panels, in a 10-kilowatt system that matches a cedar pattern on a house in Norwell, Massachusetts. Now, the Cambridge-based startup says it has 200 homes seeking installations, primarily in Massachusetts and California, where solar is in high demand.

“We think SolarSkin is going to catch on like wildfire,” Balasubramanian says. “There is a tremendous desire by homeowners to cut utility bills, and solar is finding reception with them — and homeowners care a lot about aesthetics.”

hancock-solar-imagesmountain-solar-images

 

 

 

suburb-solar-images

 

Captivating people with solar – Who Said Solar Can’t Be Beautiful?

SolarSkin is the product of the co-founders’ unique vision, combined with MIT talent that helped make the product a reality.

Balasubramanian came to MIT Sloan in 2011, after several years in the solar-power industry, with hopes of starting his own solar-power startup — a passion shared by classmate and Sistine co-founder Ido Salama MBA ’13.

One day, the two were brainstorming at the Muddy Charles Pub, when a surprisingly overlooked issue popped up: Homeowners, they heard, don’t really like the look of solar panels. That began a nebulous business mission to “captivate people’s imaginations and connect people on an emotional level with solar,” Balasubramanian says.

Recruiting Jonathan Mailoa, then a PhD student in MIT’s Photovoltaic Research Laboratory, and Samantha Holmes, a mosaic artist trained in Italy who is still with the startup, the four designed solar panels that could be embedded on massive sculptures and other 3-D objects. They took the idea to 15.366 (Energy Ventures), where “it was drilled into our heads that you have to do a lot of market testing before you build a product,” Balasubramanian says.

That was a good thing, too, he adds, because they realized their product wasn’t scalable. “We didn’t want to make a few installations that people talk about. … We [wanted to] make solar so prevalent that within our lifetime we can see the entire world convert to 100 percent clean energy,” Balasubramanian says.

The team’s focus then shifted to manufacturing solar panels that could match building facades or street fixtures such as bus shelters and information kiosks. In 2013, the idea earned the team — then officially Sistine Solar — a modest DOE grant and a $20,000 prize from the MIT Clean Energy Prize competition, “which was a game-changer for us,” Balasubramanian says.

But, while trying to construct custom-designed panels, another idea struck: Why not just make a layer to embed into existing solar panels? Recruiting MIT mechanical engineering student Jody Fu, Sistine created the first SolarSkin prototype in 2015, leading to pilot projects for Microsoft, Starwood Hotels, and other companies in the region.

That summer, after earning another DOE grant for $1 million, Sistine recruited Anthony Occidentale, an MIT mechanical engineering student who has since helped further advance SolarSkin. “We benefited from the incredible talent at MIT,” Balasubramanian says. “Anthony is a shining example of someone who resonates with our vision and has all the tools to make this a reality.”

Imagination is the limit

SolarSkin is a layer that employs selective light filtration to display an image while still transmitting light to the underlying solar cells. The ad wraps displayed on bus windows offer a good analogy: The wraps reflect some light to display an image, while allowing the remaining light through so passengers inside the bus can see out. SolarSkin achieves a similar effect — “but the innovation lies in using a minute amount of light to reflect an image [and preserve] a high-efficiency solar module,” Balasubramanian says.

To achieve this, Occidentale and others at Sistine have developed undisclosed innovations in color science and human visual perception. “We’ve come up with a process where we color-correct the minimal information we have of the image on the panels to make that image appear, to the human eye, to be similar to the surrounding backdrop of roof shingles,” Occidentale says.

As for designs, Sistine has amassed a database of common rooftop patterns in the United States, such as asphalt shingles, clay tiles, and slate, in a wide variety of colors. “So if a homeowner says, for instance, ‘We have manufactured shingles in a barkwood pattern,’ we have a matching design for that,” he says. Custom designs aren’t as popular, but test projects include commercial prints for major companies, and even Occidentale’s face on a panel.

Currently, Sistine is testing SolarSkin for efficiency, durability, and longevity at the U.S. National Renewable Energy Laboratory under a DOE grant.

The field of aesthetic solar is still nascent, but it’s growing, with major companies such as Tesla designing entire solar-panel roofs. But, as far as Balasubramanian knows, Sistine is the only company that’s made a layer that can be integrated into any solar panel, and that can display any color as well as intricate patterns and actual images.

Companies could thus use SolarSkin solar panels to double as business signs. Municipalities could install light-powering solar panels on highways that blend in with the surrounding nature. Panels with changeable advertisements could be placed on bus shelters to charge cell phones, information kiosks, and other devices. “You can start putting solar in places you typically didn’t think of before,” Balasubramanian says. “Imagination is really the only limit with this technology.”

Energy-collecting Windows Dream One-Step Closer


window-solar-id45905

Silicon-based luminescent solar concentrator. While most of the light concentrated to the edge of the silicon-based luminescent solar concentrator is actually invisible, we can better see the concentration effect by the naked eye when the slab is illuminated by a “black light” which is composed of mostly ultraviolet wavelengths. (image: Uwe Kortshagen, University of Minnesota)

February 20, 2017

Researchers at the University of Minnesota and University of Milano-Bicocca are bringing the dream of windows that can efficiently collect solar energy one step closer to reality thanks to high tech silicon nanoparticles.

The researchers developed technology to embed the silicon nanoparticles into what they call efficient luminescent solar concentrators (LSCs). These LSCs are the key element of windows that can efficiently collect solar energy. When light shines through the surface, the useful frequencies of light are trapped inside and concentrated to the edges where small solar cells can be put in place to capture the energy.

The research is published today in Nature Photonics (“Highly efficient luminescent solar concentrators based on Earth-abundant indirect-bandgap silicon quantum dots”).

Windows that can collect solar energy, called photovoltaic windows, are the next frontier in renewable energy technologies, as they have the potential to largely increase the surface of buildings suitable for energy generation without impacting their aesthetics—a crucial aspect, especially in metropolitan areas. LSC-based photovoltaic windows do not require any bulky structure to be applied onto their surface and since the photovoltaic cells are hidden in the window frame, they blend invisibly into the built environment.

The idea of solar concentrators and solar cells integrated into building design has been around for decades, but this study included one key difference—silicon nanoparticles. Until recently, the best results had been achieved using relatively complex nanostructures based either on potentially toxic elements, such as cadmium or lead, or on rare substances like indium, which is already massively utilized for other technologies. Silicon is abundant in the environment and non-toxic. It also works more efficiently by absorbing light at different wavelengths than it emits. However, silicon in its conventional bulk form, does not emit light or luminesce.

“In our lab, we ‘trick’ nature by shrinking the dimension of silicon crystals to a few nanometers, that is about one ten-thousandths of the diameter of human hair,” said University of Minnesota mechanical engineering professor Uwe Kortshagen, inventor of the process for creating silicon nanoparticles and one of the senior authors of the study. “At this size, silicon’s properties change and it becomes an efficient light emitter, with the important property not to re-absorb its own luminescence. This is the key feature that makes silicon nanoparticles ideally suited for LSC applications.”

Using the silicon nanoparticles opened up many new possibilities for the research team.

“Over the last few years, the LSC technology has experienced rapid acceleration, thanks also to pioneering studies conducted in Italy, but finding suitable materials for harvesting and concentrating solar light was still an open challenge,” said Sergio Brovelli, physics professor at the University of Milano-Bicocca, co-author of the study, and co-founder of the spin-off company Glass to Power that is industrializing LSCs for photovoltaic windows “Now, it is possible to replace these elements with silicon nanoparticles.”

Researchers say the optical features of silicon nanoparticles and their nearly perfect compatibility with the industrial process for producing the polymer LSCs create a clear path to creating efficient photovoltaic windows that can capture more than 5 percent of the sun’s energy at unprecedented low costs.

“This will make LSC-based photovoltaic windows a real technology for the building-integrated photovoltaic market without the potential limitations of other classes of nanoparticles based on relatively rare materials,” said Francesco Meinardi, physics professor at the University of Milano-Bicocca and one of the first authors of the paper.

The silicon nanoparticles are produced in a high-tech process using a plasma reactor and formed into a powder.

“Each particle is made up of less than two thousand silicon atoms,” said Samantha Ehrenberg, a University of Minnesota mechanical Ph.D. student and another first author of the study. “The powder is turned into an ink-like solution and then embedded into a polymer, either forming a sheet of flexible plastic material or coating a surface with a thin film.”

The University of Minnesota invented the process for creating silicon nanoparticles about a dozen years ago and holds a number of patents on this technology. In 2015, Kortshagen met Brovelli, who is an expert in LSC fabrication and had already demonstrated various successful approaches to efficient LSCs based on other nanoparticle systems. The potential of silicon nanoparticles for this technology was immediately clear and the partnership was born. The University of Minnesota produced the particles and researchers in Italy fabricated the LSCs by embedding them in polymers through an industrial based method, and it worked.

“This was truly a partnership where we gathered the best researchers in their fields to make an old idea truly successful,” Kortshagen said. “We had the expertise in making the silicon nanoparticles and our partners in Milano had expertise in fabricating the luminescent concentrators. When it all came together, we knew we had something special.”

Source: University of Minnesota

 

Stanford University: Solving the “Storage Problem” for Renewable Energies: A New Cost Effective Re-Chargeable Aluminum Battery


stanford-alum-urea-battery-160405175659_1_540x360

One of the biggest missing links in renewable energy is affordable and high performance energy storage, but a new type of battery developed at Stanford University could be the solution.

Solar energy generation works great when the sun is shining [duh…like taking a Space Mission to the Sun .. but only at night! :-)] and wind energy is awesome when it’s windy (double duh…), but neither is very helpful for the grid after dark and when the air is still. That’s long been one of the arguments against renewable energy, even if there are plenty of arguments for developing additional solar and wind energy installations without large-scale energy storage solutions in place. However, if low-cost and high performance batteries were readily available, it could go a long way toward a more sustainable and cleaner grid, and a pair of Stanford engineers have developed what could be a viable option for grid-scale energy storage.

With three relatively abundant and low-cost materials, namely aluminum, graphite, and urea, Stanford chemistry Professor Hongjie Dai and doctoral candidate Michael Angell have created a rechargeable battery that is nonflammable, very efficient, and has a long lifecycle.

“So essentially, what you have is a battery made with some of the cheapest and most abundant materials you can find on Earth. And it actually has good performance. Who would have thought you could take graphite, aluminum, urea, and actually make a battery that can cycle for a pretty long time?” – Dai

A previous version of this rechargeable aluminum battery was found to be efficient and to have a long life, but it also employed an expensive electrolyte, whereas the latest iteration of the aluminum battery uses urea as the base for the electrolyte, which is already produced in large quantities for fertilizer and other uses (it’s also a component of urine, but while a pee-based home battery might seem like just the ticket, it’s probably not going to happen any time soon).

According to Stanford, the new development marks the first time urea has been used in a battery, and because urea isn’t flammable (as lithium-ion batteries are), this makes it a great choice for home energy storage, where safety is of utmost importance. And the fact that the new battery is also efficient and affordable makes it a serious contender when it comes to large-scale energy storage applications as well.

“I would feel safe if my backup battery in my house is made of urea with little chance of causing fire.” – Dai

According to Angell, using the new battery as grid storage “is the main goal,” thanks to the high efficiency and long life cycle, coupled with the low cost of its components. By one metric of efficiency, called Coulombic efficiency, which measures the relationship between the unit of charge put into the battery and the output charge, the new battery is rated at 99.7%, which is high.WEF solarpowersavemoney-628x330

In order to meet the needs of a grid-scale energy storage system, a battery would need to last at least a decade, and while the current urea-based aluminum ion batteries have been able to last through about 1500 charge cycles, the team is still looking into improving its lifetime in its goal of developing a commercial version.

The team has published some of its results in the Proceedings of the National Academy of Sciences, under the title “High Coulombic efficiency aluminum-ion battery using an AlCl3-urea ionic liquid analog electrolyte.”

 

PNL Battery Storage Systems 042016 rd1604_batteriesGrid-scale energy storage to manage our electricity supply would benefit from batteries that can withstand repeated cycling of discharging and charging. Current lithium-ion batteries have lifetimes of only 1,000-3,000 cycles. Now a team of researchers from Stanford University, Taiwan, and China have made a research prototype of an inexpensive, safe aluminum-ion battery that can withstand 7,500 cycles. In the aluminum-ion battery, one electrode is made from affordable aluminum, and the other is composed of carbon in the form of graphite.

Read: A step towards new, faster-charging, and safer batteries

 

New organic-inorganic material creates more flexible, efficient technologies ~ For Solar Cells, Thermo-electric Devices and LED’s


hybrid-material-newmaterialh

Credit: ACS

An organic-inorganic hybrid material may be the future for more efficient technologies that can generate electricity from either light or heat or devices that emit light from electricity.

Florida State University College of Engineering Assistant Professor Shangchao Lin has published a new paper in the journal ACS Nano that predicts how an organic-inorganic hybrid material called organometal halide perovskites could be more mechanically flexible than existing silicon and other inorganic materials used for , and light-emitting diodes.

In a separate study, Lin found that they might be more energy efficient as well.

“We’re addressing this from a theoretical perspective,” Lin said. “Nobody has really looked at the mechanical and thermal properties of this new material and how it could be used.”

Through mathematical simulations, Lin found that organic-inorganic hybrid perovskites should be extremely malleable and flexible. Although plenty of researchers have looked at perovskites for energy technologies, they did not think they were viable for certain devices because of their crystal structure. Scientists thought they would shatter if used for something like a solar panel.

However, Lin found that hybrid perovskites are predicted to fracture slowly through a crystalline-to-amorphous transition, which would make them very damage-tolerant.

Before mechanical failure, they might absorb twice as much elastic energy from external loading than currently used materials in electronic devices, such as silicon and gallium arsenide.

In a previous paper published in the journal Advanced Functional Materials, Lin and his team predicted that hybrid perovskites possess very due to the organic component. This could make them ideal materials for high efficiency thermoelectric energy conversion.

Specifically, his work suggested that hybrid perovskites are twice as efficient as the current state-of-art thermoelectric material, bismuth telluride, which is very expensive and composed of rare-earth elements.

“The amazing found in perovskites has put it at the frontier of material discovery,” Lin said. “Even more exciting, -based solar cells are four times as efficient, in terms of quantum yield, than polymer-based ones. They are also as efficient as the current, mainstream but are much more flexible and cheaper to make from a solution phase through a procedure very similar to inkjet printing.”

perovskite-solar-cell-generic-structure

Read More About: Will New Method of Making Perovskites Solar Cells Make Solar Energy More Efficient – Less Costly?

Lin hopes to follow these two studies by teaming with experimental chemists, material scientists and device engineers who could put his theoretical framework to the test.

“Computational materials-by-design will be a powerful predicting tool for researchers at FSU and at other universities and industry to use as they move forward in this field,” he said.

Explore further: Discovery of new crystal structure holds promise for optoelectronic devices

More information: Mingchao Wang et al. Anisotropic and Ultralow Phonon Thermal Transport in Organic-Inorganic Hybrid Perovskites: Atomistic Insights into Solar Cell Thermal Management and Thermoelectric Energy Conversion Efficiency, Advanced Functional Materials (2016). DOI: 10.1002/adfm.201600284

Jingui Yu et al. Probing the Soft and Nanoductile Mechanical Nature of Single and Polycrystalline Organic–Inorganic Hybrid Perovskites for Flexible Functional Devices, ACS Nano (2016). DOI: 10.1021/acsnano.6b05913

New class of materials could revolutionize biomedical, alternative energy industries: Cancer Therapies ~ Low Cost Solar Cells


poly-new-material-170125145735_1_540x360Polyarylboranes are a new class of materials that could be used in biomedical, personal computer and alternative energy applications. Credit: Mark Lee

Polyhedral boranes, or clusters of boron atoms bound to hydrogen atoms, are transforming the biomedical industry. These humanmade materials have become the basis for the creation of cancer therapies, enhanced drug delivery and new contrast agents needed for radioimaging and diagnosis. Now, a researcher at the University of Missouri has discovered an entirely new class of materials based on boranes that might have widespread potential applications, including improved diagnostic tools for cancer and other diseases as well as low-cost solar energy cells.

Mark Lee Jr., an assistant professor of chemistry in the MU College of Arts and Science, discovered the new class of hybrid nanomolecules by combining boranes with carbon and hydrogen. Boranes are chemically stable and have been tested at extreme heat of up to 900 degrees Celsius or 1,652 degrees Fahrenheit. It is the thermodynamic stability these molecules exhibit that make them non-toxic and attractive to the biomedical, personal computer and alternative energy industries.

“Despite their stability, we discovered that boranes react with aromatic hydrocarbons at mildly elevated temperatures, replacing many of the hydrogen atoms with rings of carbon,” Lee said. “Polyhedral boranes are incredibly inert, and it is their reaction with aromatic hydrocarbons like benzene that will make them more useful.”

Lee also showed that the attached hydrocarbons communicate with the borane core.

“The result is that these new materials are highly fluorescent in solution,” Lee said. “Fluorescence can be used in applications such as bio-imaging agents and organic light-emitting diodes like those in phones or television screens. Solar cells and other alternative energy sources also use fluorescence, so there are many practical uses for these new materials.”

Lee’s discovery is based on decades of research. Lee’s doctoral advisor, M. Frederick Hawthorne, MU Curators Distinguished Professor of Chemistry and Radiology, discovered several of these boron clusters as early as 1959. In the past, boranes have been used for medical imaging, drug delivery, neutron-based treatments for cancer and rheumatoid arthritis, catalysis and molecular motors. Borane researchers also have created a specific type of nanoparticle that selectively targets cancer cells.

“When these molecules were discovered years ago we never could have imagined that they would lead to so many advancements in biomedicine,” Lee said. “Now, my group is expanding on the scope of this new chemistry to examine the possibilities. These new materials, called ‘polyarylboranes,’ are much broader than we imagined, and now my students are systematically exploring the use of these new clusters.”


Story Source:

Materials provided by University of Missouri-Columbia. Note: Content may be edited for style and length.


Journal Reference:

  1. Mark W. Lee. Catalyst-Free Polyhydroboration of Dodecaborate Yields Highly Photoluminescent Ionic Polyarylated Clusters. Angewandte Chemie, 2017; 129 (1): 144 DOI: 10.1002/ange.201608249

Europe’s nanotechnology ‘Sunflower’ project to design and use less toxic photovoltaic materials (w/video)


Posted: Jan 27, 2017




The University Institute for Advanced Materials Research at the Universitat Jaume I (UJI) has participated in the European Project Sunflower, whose objective has been the development of organic photovoltaic materials less toxic and viable for industrial production. 

A consortium of 17 research and business institutions has carried out this European project in the field of nanotechnology for four years and with an overall budget of 14.2 million euros, with funding of 10.1 million euros from the Seventh Framework Programme of the European Commission.

An introduction to Sunflower

Researchers at Sunflower have carried out several studies, among the most successful of which there are the design of an organic photovoltaic cell that can be printed and, consequently, has great versatility. In short, “we can assure that, thanks to these works, progress has been made in the achievement of solar cells with a good performance, low cost and very interesting architectural characteristics”, states the director of the University Institute for Advanced Materials Research (INAM) Juan Bisquert.

The goals of Sunflower were very ambitious, according to Antonio Guerrero, researcher at the Department of Physics integrated in the INAM, since it was intended “not only to improve the stability and efficiency of the photovoltaic materials, but also to reduce their costs of production”. 

In fact, according to Guerrero, “the processes for making the leap from the laboratory to the industrial scale have been improved because, among others, non-halogenated solvents have been used that are compatible with industrial production methods and that considerably reduce the toxic loading of halogenates”.

“The involvement of our institute in these projects has a great interest because one of our priority lines of research is the new materials to develop renewable energies,” says Bisquert, who is also professor of Applied Physics. In addition, these consortia involve the work of academia and industry. According to the researcher, “the transfer of knowledge to society is favoured and, in this case, we demonstrate that organic materials investigated for twenty years are already close to become viable technologies”.

Change of use of plastic materials

The participation of UJI researchers at Sunflower has focused on “improving the aspect of chemical reactivity of materials or structural compatibility”, says Germà García, professor of Applied Physics and member of INAM. 

“We have worked to move from the concepts of inorganic electronics to photovoltaic cells to the part of organic electronics,” he adds. The researchers wanted to take advantage of the faculties of absorption and conduction of plastic materials and to verify its capacity of solar production, an unusual use because normally they are used as an electrical insulation.

At UJI laboratories, they have studied the organic materials, very complex devices because they have up to eight nanometric layers. “We have made advanced electrical measurements to see where the energy losses were and thus to inform producers of materials and devices in order to improve the stability and efficiency of solar cells,” explains Guerrero.

Solar energy in everyday objects

“The potential applications of organic photovoltaic technology (OPV) are numerous, ranging from mobile consumer electronics to architecture,” says the project coordinator Giovanni Nisato, from the Swiss Centre for Electronics and Microtechnology (CSEM). 

“Thanks to the results we have obtained, printed organic photovoltaics will become part of our daily lives, and will allow us to use renewable energy and respect the environment with a positive impact on our quality of life,” according to Nisato.

The European Sunflower project has been developed over 48 months with the main objective of extending the life and cost-efficiency of organic photovoltaic technology through better process control and understanding of materials. In addition, in the opinion of those responsible, the results of this research could double the share of renewable energy in its energy matrix, from 14% in 2012 to 27-30% by 2030. In fact, Sunflower has facilitated a significant increase in the use of solar energy incorporated in everyday objects.

The Sunflower consortium consists of 17 partners from across Europe: CSEM (Switzerland), DuPont Teijin Films UK Ltd (UK), Amcor Flexibles Kreuzlingen AG (Switzerland), Agfa-Gevaert NV (Belgium), Fluxim AG (Switzerland), University of Antwerp (Belgium), SAES Getters SpA (Italy), Consiglio Nazionale delle Ricerche-ISMN-Bologna (Italy), Hochschule für Life Sciences FHNW (Switzerland), Chalmers Tekniska Hoegskola AB (Sweden), Fraunhofer Institut der angewandten Forschung zur Foerderung @EV (Germany), Linköpings Universitet (Sweden), Universitat Jaume I (Spain), Genes’Ink (France), National Centre for Scientific Research (France), Belectric OPV GmbH (Germany) and Merck KGaA (Germany).

Meanwhile, the main lines of research at the INAM focus on new types of materials for clean energy devices, solar cells based on low cost compounds, such as perovskite and other organic compounds. Furthermore, INAM studies the production of fuels from sunlight, breaking water molecules and producing hydrogen and other catalytic materials in the chemical aspect, all of great importance in the context of international research.

Source: Ruvid

SolarWindow™ nveils new energy-generating glass that Bends


solarwindow-corning-willow-glass-energy-generating-coating-1580x462

VIEW SLIDESHOW

SolarWindow made headlines for their business-card thin solar coating for curved glass surfaces in late 2016, and now they’re going a step further with a new kind of flexible glass capable of generating clean energy. The firm created a super thin, bendable “glass ‘veneer’” that if applied to skyscrapers, cars, or even planes, could totally transform the way we produce and obtain solar power.

SolarWindow, SolarWindow glass, glass, electricity, solar, solar power, solar energy, clean energy, renewable energy, skyscraper, flexible, bendable, business card, thin, technology, clean technology, green technology

SolarWindow created the revolutionary flexible glass by applying layers of their liquid Electricity Generating Coating to Corning Willow Glass and laminating the product, simulating the temperatures and high pressures commercial producers utilize when they manufacture regular old stiff glass. This time they were able to produce what they call a veneer that’s again as thin as a business card, but can still generate electricity.

Related: SolarWindow unveils ultra-thin solar film for curved glass surfaces

SolarWindow CEO John Conklin said in a statement, “Along with our SolarWindow liquid coatings for rigid glass, we’re excited to expand our capabilities with brand new ways of generating clean electricity on almost any surface imaginable by using flexible Corning Willow Glass. As leaders in the sector, we’re setting out a clear vision for the future with this new, innovative technology.”

SolarWindow’s vision for the glass is to refashion skyscrapers into super green “vertical power generators,” allowing buildings to generate renewable energy just by standing in the sun. But it’s not only buildings that can benefit from their new glass; as it’s bendable and flexible, the glass could be applied to cars, boats, trucks, buses, or airplanes.

The SolarWindow glass isn’t ready for the market yet, but that’s the ultimate goal. They’re developing their products under a Cooperative Research and Development Agreement (CRADA) with the United States government’s National Renewable Energy Laboratory, and say the primary goal of a CRADA is commercialization. When the glass is finally ready, it could radically help companies and families reduce their carbon footprint.

 

Nanotechnology to “Super-Size” Green Energy


renewable-energy-wind-and-ocean1

Nanotechnology is a field that’s receiving a lot of attention at the moment as scientists learn more every day about the benefits it can bring to both the environment and our health. There are various ways in which nanotechnology has proved itself useful including in developing enhanced solar cells and more efficient rechargeable batteries, and in saving raw materials and energy.

 

When it comes to nanotechnology, even the smallest achievements make huge differences, and on November 23, 2016, future technologies were presented to the international congress as part of the “Next Generation Solar Energy Meets Nanotechnology.” Out of the ten projects, three of them were located in Wurzburg and are explained in a little more detail below:

  • Eco-friendly inks for organic solar cells: Over at the University of Erlangen-Nuremberg, Professors Vladimir Dyakonov and Christoph Brabec have created eco-friendly photovoltaic inks using nanomaterials and have developed a new simulation process at the same time. Dyakonov explains, “They allow us to predict which combinations of solvents and materials are suitable for the eco-friendly production of organic solar cells.”
  • Nanodiamonds for ultra-fast electrical storage: If we want to have powerful, yet highly efficient electric vehicles then we need some way of storing the energy as a standard battery couldn’t handle it. Supercapacitors are great regarding acting as an efficient energy storage system. But, because their energy density is so low they need to be quite large in order to deliver any reasonable amount of energy. However, further work is being done in this area currently, and progress is promising.  Professor Anke Kruger, head of the project, says “Based on these findings, it is now possible to build application-oriented energy stores and test their applicability.”

 

  • Increased storage capacity of hybrid capacitors: Better energy storage systems were also the focus of Professor Gerhard Sextl and his team’s project. Their hybrid capacitors can store more energy due to the embedded lithium ions and can do it quickly through the use of a supercapacitor. Sextl says, “We have managed to develop a material that combines the advantages of both systems. This has brought us one step closer to implementing a new, fast and reliable storage concept.”

Read More:

Read the rest of the story (click here) NEW SUPER-BATTERIES ARE FINALLY HERE

Czech Battery NanotechnologyCompany HE3DA President Jan Prochazka shows qualities of a new battery during the official start of a battery production line in Prague, on Monday, Dec. 19, 2016. The new battery is based on nanotechnology and is supposed to be be more efficient, long-lasting, cheaper, lighter and above all safer. The battery is designed to store energy from renewable electric sources and cooperate with smart grids. Next planned type will be suitable for electric cars. (Michal Kamaryt /CTK via AP)

It’s been a long time coming, but the wait is now over for a battery that lasts longer than your milk. Having to replace batteries in games, remotes, and other electrical devices are annoying, especially when you seem to be doing it every month. But, that may all be a thing of the past thanks to the Prague-based company, HE3DA. New superbatteries have finally been created that are capable of charging faster and lasting longer than any other technology out there and are being mass produced as you read this.

 

Perovskite solar cells hit new world efficiency record


Dr. Anita Ho-Baillie, a Senior Research Fellow at the Australian Centre for Advanced Photovoltaics at UNSW, with the new perovskite cell. Credit: Rob Largent/UNSW

They’re flexible, cheap to produce and simple to make – which is why perovskites are the hottest new material in solar cell design. And now, engineers at Australia’s University of New South Wales in Sydney have smashed the trendy new compound’s world efficiency record.

Speaking at the Asia-Pacific Solar Research Conference in Canberra on Friday 2 December, Anita Ho-Baillie, a Senior Research Fellow at the Australian Centre for Advanced Photovoltaics (ACAP), announced that her team at UNSW has achieved the highest efficiency rating with the largest perovskite solar cells to date.

The 12.1% efficiency rating was for a 16 cm2 perovskite solar cell, the largest single perovskite photovoltaic cell certified with the highest energy conversion efficiency, and was independently confirmed by the international testing centre Newport Corp, in Bozeman, Montana.
The new cell is at least 10 times bigger than the current certified high-efficiency perovskite solar cells on record.

Her team has also achieved an 18% efficiency rating on a 1.2 cm2 single perovskite cell, and an 11.5% for a 16 cm2 four-cell perovskite mini-module, both independently certified by Newport.

“This is a very hot area of research, with many teams competing to advance photovoltaic design,” said Ho-Baillie. “Perovskites came out of nowhere in 2009, with an efficiency rating of 3.8%, and have since grown in leaps and bounds.

These results place UNSW amongst the best groups in the world producing state-of-the-art high-performance perovskite solar cells. And I think we can get to 24% within a year or so.”


Perovskite is a structured compound, where a hybrid organic-inorganic lead or tin halide-based material acts as the light-harvesting active layer. They are the fastest-advancing solar technology to date, and are attractive because the compound is cheap to produce and simple to manufacture, and can even be sprayed onto surfaces.

“The versatility of solution deposition of perovskite makes it possible to spray-coat, print or paint on solar cells,” said Ho-Baillie. “The diversity of chemical compositions also allows cells be transparent, or made of different colours. Imagine being able to cover every surface of buildings, devices and cars with solar cells.”

Most of the world’s commercial solar cells are made from a refined, highly purified silicon crystal and, like the most efficient commercial silicon cells (known as PERC cells and invented at UNSW), need to be baked above 800?C in multiple high-temperature steps.

Perovskites, on the other hand, are made at low temperatures and 200 times thinner than silicon cells.

But although perovskites hold much promise for cost-effective solar energy, they are currently prone to fluctuating temperatures and moisture, making them last only a few months without protection. Along with every other team in the world, Ho-Baillie’s is trying to extend its durability.

Thanks to what engineers learned from more than 40 years of work with layered silicon, they’re are confident they can extend this.

 

Nevertheless, there are many existing applications where even disposable low-cost, high-efficiency solar cells could be attractive, such as use in disaster response, device charging and lighting in electricity-poor regions of the world.
Perovskite solar cells also have the highest power to weight ratio amongst viable photovoltaic technologies.

“We will capitalise on the advantages of perovskites and continue to tackle issues important for commercialisation, like scaling to larger areas and improving cell durability,” said Martin Green, Director of the ACAP and Ho-Baillie’s mentor. The project’s goal is to lift perovskite solar cell efficiency to 26%.

The research is part of a collaboration backed by $3.6 million in funding through the Australian Renewable Energy Agency’s (ARENA) ‘solar excellence’ initiative. ARENA’s CEO Ivor Frischknecht said the achievement demonstrated the importance of supporting early stage renewable energy technologies:
“In the future, this world-leading R&D could deliver efficiency wins for households and businesses through rooftop solar as well as for big solar projects like those being advanced through ARENA’s investment in large-scale solar.”

To make a perovskite solar cells, engineers grow crystals into a structure known as ‘perovskite’, named after Lev Perovski, the Russian mineralogist who discovered it. They first dissolve a selection of compounds in a liquid to make the ‘ink’, then deposit this on a specialised glass which can conduct electricity. When the ink dries, it leaves behind a thin film that crystallises on top of the glass when mild heat is applied, resulting in a thin layer of perovskite crystals.

The tricky part is growing a thin film of perovskite crystals so the resulting solar cell absorbs a maximum amount of light.

Worldwide, engineers are working to create smooth and regular layers of perovskite with large crystal grain sizes in order to increase photovoltaic yields.

Ho-Baillie, who obtained her PhD at UNSW in 2004, is a former chief engineer for Solar Sailor, an Australian company which integrates solar cells into purpose-designed commercial marine ferries which currently ply waterways in Sydney, Shanghai and Hong Kong.

A “Smart-Solar” Window ~ Privacy and light control on demand: YouTube Video


smart-window-300x168

Smart windows get darker to filter out the sun’s rays on bright days, and turn clear on cloudy days to let more light in. This feature can help control indoor temperatures and offers some privacy without resorting to aids such as mini-blinds.Now scientists report a new development in this growing niche: solar smart windows that can turn opaque on demand and even power other devices. The study appears in ACS Photonics (“Electrically Controllable Light Trapping for Self-Powered Switchable Solar Windows”).

 

Smart windows get darker to filter out the sun’s rays on bright days, and turn clear on cloudy days to let more light in. This feature can help control indoor temperatures and offers some privacy without resorting to mini-blinds. Now scientists report a new development in this growing niche: solar smart windows that can turn opaque on demand and even power other devices.

Most existing solar-powered smart windows are designed to respond automatically to changing conditions, such as light or heat. But this means that on cool or cloudy days, consumers can’t flip a switch and tint the windows for privacy.
Also, these devices often operate on a mere fraction of the light energy they are exposed to while the rest gets absorbed by the windows. This heats them up, which can add warmth to a room that the windows are supposed to help keep cool. Jeremy Munday and colleagues wanted to address these limitations.
The researchers created a new smart window by sandwiching a polymer matrix containing microdroplets of liquid crystal materials, and an amorphous silicon layer — the type often used in solar cells — between two glass panes.

 

When the window is “off,” the liquid crystals scatter light, making the glass opaque. The silicon layer absorbs the light and provides the low power needed to align the crystals so light can pass through and make the window transparent when the window is turned “on” by the user.

The extra energy that doesn’t go toward operating the window is harvested and could be redirected to power other devices, such as lights, TVs or smartphones, the researchers say.
Source: American Chemical Society

 

Reinvent the Future

Simplify, man

The Earth of Brain

Chinese, language, learn, speak, write, textbook, contract, beginner, advanced, intermediate, commercial, marketing, correspondence, characters, radicals, decomposition, business, numbers, numerals

Chinese Commercial Correspondence

Chinese, language, learn, speak, write, textbook, contract, beginner, advanced, intermediate, commercial, marketing, correspondence, characters, radicals, decomposition, business, numbers, numerals, contract

CAMP USA

CAMP Technical Adventure Equipment

store-dot

"The Wind and the Waves are Always on the side of the Ablest Navigators." - Edward Gibbon

Think Exponential

Leverage Technology Trends

Drexel News Blog

Stories from Drexel University's media relations team

Pangaea Ventures - Latest blog entries

"The Wind and the Waves are Always on the side of the Ablest Navigators." - Edward Gibbon

Great Things from Small Things .. Nanotechnology Innovation

"The Wind and the Waves are Always on the side of the Ablest Navigators." - Edward Gibbon

Funding Report

"The Wind and the Waves are Always on the side of the Ablest Navigators." - Edward Gibbon

Genesis Nano Technology

Great Things From Small Things .. "The winds and the waves are always on the side of the ablest navigators." - Edward Gibbon

Quantum Innovation Solutions

Accelerating Emerging Technologies in Emerging Nations

%d bloggers like this: