Renewable energy for desalination: An interview with HE Dr Abdulrahman Al-Ibrahim


Water 2.0 open_img

This feature news is part of Singapore International Water Week’s (SIWW) series of one-on-one interviews with global water industry leaders, Conversations with Water Leaders. In this edition, HE Dr Abdulrahman M Al-Ibrahim, Governor of Saline Water Conversion Corporation (SWCC), Kingdom of Saudi Arabia, shares with OOSKAnews correspondent, Renee Martin-Nagle, his thoughts on renewable energy for desalination and the provision of water for all.

HE Dr Abdulrahman M Al-Ibrahim elaborates on how he combined desalination with renewable energy, SWCC’s strive towards operational excellence, environmental responsibility and more.

To start, would you mind speaking about the focus that is being placed by Saudi Arabia on solar energy for desalination?

Certainly. Recently the SWCC board of directors adopted a series of strategic goals, one of which is operational excellence. Part of that operational excellence is to enrich our portfolio of energies, including renewable energies like solar, photovoltaic, thermal, wind, geothermal, and other renewable energies. In the recent past we initiated construction of the first solar desalination plant in Al-Khafji that will produce 30,000 cubic meters per day of desalinated water and is operated by photovoltaic cells with an RO [reverse osmosis] desalination system. The King Abdulaziz City for Science and Technology (KACST) was the leader of this program, and we partnered with KACST to build, manage and maintain the plant throughout its life. We are investigating a more rigorous program to produce around 300,000 cubic metres per day with renewable energies. So, to summarize, renewable energy is not a luxury for us.  It is part of our strategy, and it is a means to enrich our portfolio of energy so that we will have the right mix for our operation.

SA Desal Plant

The Kingdom of Saudi Arabia has the most installed capacity for desalination in the world and currently it is planning to export its technical know-how regionally and internationally. Image: Power Insider Asia

My understanding is that the energy output of solar may not be adequate for some of the older desal technologies such as multi-stage flash.  Is that why you are using it for reverse osmosis?

I’m sure if we want to couple renewable energy with desalination, we will have to look at different technologies and pick the ones that are the best match, which could be Multi-Effect Distillation (MED), RO hybrid or Tri-hybrid. To start with, we selected RO for the Al-Khafji plant because as a rule of thumb, RO requires the least energy, but on the west coast we are investigating other technologies, such as Tri-hybrid. It’s partially an MED as well as an RO plant with Nano-Filtration (NF) and other means. We are devoting R&D to finding the right technologies to adapt to the renewable energies available locally.

All the projects I am currently overseeing are my favorite, but I’ll tell you about my dream. My dream is to have a highly reliable and very efficient desalination plant that becomes a model not just for our kingdom, Saudi Arabia, but a model worldwide.

Saudi Arabia has the most installed capacity for desalination in the world.  As you do research and gather technologies, does the Kingdom intend to become an exporter of technology as well as an importer?

Yes, we do. For the past 30 or 40 years, the ultimate goal of SWCC was to produce desalinated water to meet the needs of the Kingdom. Now we want to go beyond that goal and export know-how regionally as well as internationally. Our roadmap is to be able to develop know-how, intellectual property, prototypes and patents locally. In the past three or four years, we have come to own some patents, and we want to double that number in the next couple of years.

Would you give me an example of the latest technologies that you are exploring?

Sure. SWCC, together with the Water Re-use Promotion Center of Japan and Sasakura Company, conducted a joint research study to develop a fully integrated NF/SWRO/MED tri-hybrid system. This desalination system enabled us to reduce significantly the water production cost per unit, which we see as a break-through. Subsequently, a number of patents have been registered in Saudi Arabia, Japan and China.

How did you personally get involved in desalination?

I’m a graduate of the mechanical engineering program in Jeddah, in the area of thermal science, and at that time, we were required to study two courses in desalination and do two internships in industrial facilities. My second internship was in a small Multi-Stage Flash (MSF) plant in Jeddah, and, after doing a research project, it became my dream to combine desal with renewable energy. Luckily, in around 1986, I also worked with a very small solar desalination plant in Yanbu that used a technology called thermal freezing, where you freeze the seawater using an absorption system to reach almost zero degrees and then recover fresh water from the system. I went on to get a Master’s degree and a PhD in thermal engineering and renewable energies, and moved my expertise to energy efficiency. After 20 or 30 years, combining desal and renewable energy is becoming a reality instead of a pilot.

What changes have you seen in the past 20-25 years since you first got involved with desal? 

Almost two months ago we launched a new plant in Jeddah called Jeddah RO-3 that operates on reverse osmosis. This plant was built on a site where a thermal plant was in operation since the late 70s and produced 40,000 cubic metres. We demolished the old plant and built a new one on the same footprint that now produces 240,000 cubic metres. So in a 25- or 30-year span we were able to increase production by six times over.

The second thing is our local expertise here in Saudi Arabia. In the past, we had to hire multiple international companies to be able to operate our plants and produce the water. In those days, you would seldom find a Saudi person operating or maintaining the plant.  Now, Saudi locals perform 91 per cent of all our operations as engineers, technicians and managers who understand the technologies and who are able to diagnose and fix problems. We admire and respect all international expertise and we utilize it to the best that we can. At the same time, we feel that we are ready now to stretch our arms to regional and international markets and spread our expertise in terms of technologies, IP and manufacturing facilities. The Kingdom of Saudi Arabia has invested in desal, and we hope that it will add value to our GDP.

What will be the criteria for choosing desal technologies in the future?

Two factors will be the criteria for selecting technology — energy consumption and reliability. Membrane technology will be able to attain energy efficiency very well. However, we need to be able to assist it with more devices to make it more reliable. If the price of energy is important in your area, then you need to give it more weight. If reliability is more of an issue, then you give it more weight.

As much as we care about producing water, we also care about the environment, for multiple reasons. The primary factor is that we live in and share the same area, so we need to protect the environment next to us.  Secondly, our intake is affected by its surrounding area, and therefore we should not spoil the water next to the plant itself.

What is the problem with membrane reliability?

Membrane technology is very sensitive to the quality of water it receives. For example, if there is red tide, or an algae bloom, or any other material in the seawater, such as a high Silt Density Index (SDI), you would need to shut down the plant to preserve your membrane, or augment your plant with pre-treatment facilities to clean the water before you introduce it to the membrane. On the other hand, although thermal is very expensive and utilizes maybe two or three times as much energy as membrane technology, it may tolerate any water. Also, to be able to build membrane technology, you need to have a pilot plant for a year or two at the same location and study the water carefully to select the most appropriate pre-treatment process.

SWCC uses seawater for its operations.  What you do with the brine that is left over?

As much as we care about producing water, we also care about the environment, for multiple reasons. The primary factor is that we live in and share the same area, so we need to protect the environment next to us.  Secondly, our intake is affected by its surrounding area, and therefore we should not spoil the water next to the plant itself. We perform multiple procedures so as not to intervene with the eco-system next to the plant. We do this at SWCC and in any saline water industrial facility. For example, one standard procedure is to withdraw up to ten times the amount of water that you intend to desalinate, and discharge the extra with the brine to reduce the effect of high temperature or high salinity. We also measure the temperature of the intake and the discharged brine to make sure we protect the ecosystem next to the plant.

The newly commissioned plant in Jeddah – the Jeddah RO-3 – was built with multiple advanced measures to protect the environment –not only water intake and the brine but also energy efficiency within the building. We reduced the energy consumption through the cooling grade and the lighting system, and we are applying to multiple professional organizations to receive certificates of energy efficiency in the new building as well as in the plant.

There is a desalination plant that is constructed on a floating platform in Yanbu.  Would you describe it?

It’s one of the unique features that we have in Saudi Arabia. We have two barges, each one able to produce 25,000 cubic metres per day, that move on the west coast from Yanbu to Shuaibah to Shuqaiq or anywhere else to augment the production of a desal plant. So we move the barge from one location to the other according to the needs that may occur. The barges are stand-alone, with their own power supplied by liquid fuel.

I always hesitate to ask a parent which of his children is the favorite, but would you tell me if there are any projects that are your favorite?

All the projects I am currently overseeing are my favorite, but I’ll tell you about my dream. My dream is to have a highly reliable and very efficient desalination plant that becomes a model not just for our kingdom, Saudi Arabia, but a model worldwide. I want it to become a benchmark.

What final message would you like to leave with our readers?

The people of Saudi Arabia and the employees of the Saline Water Conversion Corporation are eager to produce water to serve the needs of anyone who lives on the planet earth. And we’re extremely happy to share our technologies and information with anyone who shares the same interest values. We believe, as the people of Saudi Arabia, that water is a commodity that should be made available to anyone who lives on the planet, regardless of his faith, regardless of his type, whether he’s human or animal or anyone else. The commercial aspect is an instrument to enable us to provide water that is necessary for life on earth. I totally believe that water is a value-related issue. It’s not a luxury item that needs to be looked at from a commercial business point of view. It’s something that has to be made available for everyone, so that anyone who lives on earth will have adequate quantity and quality of water.

Saudi Money Shaping U.S. Research


Susan Schmidt | February 11, 2013

qdots-imagescakxsy1k-8.jpgSaudi Arabia’s oil reserves are expected to run dry in fifty years. This prospect has encouraged the Saudis to go shopping for cutting-edge science that can secure the kingdom’s future—at elite American research universities.

 

King Abdullah and Saudi Aramco are spending tens of billions on technology research to make the oil last longer and develop other energy resources that future Saudi generations can someday export.

KAUST_lab

King Abdullah University of Science and Technology opened its doors in 2009 and already has lavished more than $200 million on top U.S. university scientists. Stanford, Cornell, Texas A&M, UC Berkeley, CalTech, Georgia Tech—all are awash in new millions of Saudi cash for research directed at advancing solutions for Saudi energy and water needs. The new university, known as KAUST, has similar partnerships with scientists at Peking University and Oxford.

Many American universities and their scientists, lured by research grants of as much as $25 million, have jumped at the chance to partner with KAUST. Some of those scientists do research at their universities here and spend a small part of their time in Saudi Arabia creating “mirror” labs.

The arrangement with KAUST raises novel and largely unaddressed issues for American universities. With the United States determined to become energy self-sufficient, what are the ramifications of having scientists at top university labs—many of them recipients of U.S. government research dollars—devoting their efforts to energy pursuits selected by Saudi Arabia?

KAUST funding for U.S. scientists is geared to helping the Saudis cut their own heavy oil use at home to lengthen the life of their much more lucrative exports. It’s aimed at getting more oil per well with new technology, finding new reserves and developing new methods of carbon capture for continued use of fossil fuels. American scientists are also working to develop solar technology, including solar panels that can survive sandstorms and power desalinization of the Red Sea for water and electricity.

Among the areas KAUST is not funding is research on biofuels—which compete with oil—except for work on Red Sea algae.

KAUST’s mission statement lays out a plan to rapidly become a top international institution that “will play a crucial role in the development of Saudi Arabia and the world.” KAUST’s goal is not only to find new energy sources, but to create a Silicon Valley-like commercial hub of jobs and innovation. King Abdullah provided a whopping $20 billion endowment to launch the graduate-level research institution, and named the Saudi oil minister chairman of the board of trustees. Aramco built the campus, funds current operating costs and provided administrative leadership.

“It’s an important research lab for Aramco with a university façade,” said Alyn Rockwood, one of several scientists who say they want KAUST to succeed but believe a corporate ethos is stifling academic autonomy.

Some have bridled over changes that require them to get administrative approval in spending their research funds. KAUST officials declined interview requests, but in a Science magazine story late last year that cited some of those complaints, the former Aramco executive who runs KAUST, Nadhmi al-Nasr, acknowledged that he comes from a “top-down” corporate culture and is adjusting to academia.

Scientific research at universities is a key driver of debate over how to meet global energy needs. Often of late, it is the research itself that gets debated. Dueling studies about the environmental impact of biofuels and the safety of hydraulic fracking for natural gas has spurred charges and countercharges about the role of commercial interests biasing the science, for example.

The impact of published studies is not lost on the leaders at KAUST. In fact, the top of its mission statement sets out very specific goals for getting its research published in “prestigious professional journals.” By that measure, KAUST-funded scientists have been highly successful, with stacks of prestigious journal publications and patents to their credit.

One of them is William J. Koros, a Georgia Tech professor who was awarded a $10 million research grant for his work there on hydrocarbons. “They are very generous to home universities,” he said. Koros is working on technology that would help capture impurities from natural gas. “The Middle East is loaded with natural gas. They viewed this as a world problem that intersected with their interests,” he said.

Experts in issues related to academic research funding say KAUST’s relationship with U.S. scientists is unusual, posing pitfalls as well as opportunities.

“I don’t think there is a framework for dealing with foreign governments or corporations who invest in American universities to compete,” Tufts professor Sheldon Krimsky, who has studied conflicts of interest in academic research. Where American researchers get money does not mean the science produced will be anything less than honest. But, he said, scientific inquiry is shaped by the scope of the questions asked.

James Luyten, former director of Woods Hole Oceanographic Institution, sees the creation of a specific research agenda as a problem at KAUST. KAUST awarded Woods Hole $25 million and Luyten spent three years helping set up their Red Sea research center.

“They are using their money to limit and constrain where people put their energy as research scientists,” said Luyten, something that corporate sponsors often try to achieve by carefully choosing which science to fund and which to ignore.

Luyten said he was under “enormous pressure” to devote resources to algae biofuels research, for example, but was discouraged from research on the effect of carbon emissions on Red Sea coral. “A group of us wanted to hold a symposium on climate change,” he said, but the university president rejected the idea. “We were told that was not in the interest of Saudi Arabia,” he said.

KAUST reserves the right to review studies before publication, something that is not generally done by U.S. universities, though scientists and administrators who’ve worked at KAUST say so far it has been pro forma.

American universities, faced with a shrinking pool of research dollars at home, have welcomed the Saudi partnership as a way to fund important science, including in the area of carbon capture, an issue that has global implications. Creating jobs and educating the Saudi populace is seen as vital to making theirs a stable society, something that may benefit the rest of the world, though aiding a repressive regime has drawn objections from faculty on a few U.S. campuses. To bring in foreign scientists, the Saudi king has made KAUST an oasis of modernity, where male and female students are allowed to mix.

Several prominent scientists said KAUST has the resources to have a big impact on scientific research.

“I don’t think there is any university in the world that has as advanced equipment as they have,” said Stanford solar cell researcher Mike McGeehee. He spent a month helping set up a lab at KAUST and leads Stanford’s Center for Advanced Molecular Photovoltaics, created with a $25 million KAUST grant.

Science at KAUST is directed more toward commercial application. “Things are different there. There’s a tighter connection to industry,’’ said McGeehee.

“You can’t do certain kinds of research at US universities—you can’t have industry come in and do experiments because federal dollars are paying for it, and you can’t give one company an advantage over another. But there, the king says I’m paying for it, I want [commercial] spin-offs.”

American university relationships with corporate research sponsors are a hotly debated topic, notably because of controversy over biased drug studies paid for by pharmaceutical companies. Many universities encourage professors to find corporate as well as government funders, but they keep those contractual arrangements confidential, including terms for industry access to research as well as intellectual-property arrangements. The American Association of University Professors is completing a major study on how universities should structure industry relationships.

To date, in fact, KAUST’s website has publicized its grants to a greater degree than the U.S. universities and scientists receiving them. Universities here have reported very few of the KAUST grants and contracts to the U.S. Department of Education, which maintains a public database of foreign funds to American colleges.

AAUP president Cary Nelson, who is working on the report on corporate-sponsored research, said he was not previously aware of the KAUST grants. “What you are looking at is the touchiest area. All funded research should be reviewed by faculty senate or faculty committee. It should be transparent,” he said.

Cornell University campus publications contain more information of its work with KAUST than is available from other universities, but even there administrators are circumspect about terms of Cornell’s $28 million in KAUST grants and contracts.

“It’s not public,” said Celia Szczepura, administrator of the KAUST-Cornell Center for Energy and Sustainability. As for the work Cornell does that may end up aiding the Saudi oil industry, she said: “KAUST isn’t an industry sponsor—it’s a university. What they share with Aramco and what they don’t, you’d have to ask KAUST.”

But separating the Saudi king’s new university from the kingdom’s oil industry is all but impossible. For now, Saudi Arabia’s petroleum interests have a key role in choosing what energy research is pursued by some of America’s leading scientists.

Susan Schmidt is a longtime Washington journalist and a visiting fellow with the Foundation for Defense of Democracies.