Researchers at Melbourne’s RMIT University Convert CO2 back into Coal in Carbon Breakthrough – (Captured) Carbon produced could also be used as an electrode … Watch Video


 

 

CO2 to Coal 1 1551205544-GettyImages-96390221-960x540

Australian scientists have unlocked a new and more “efficient” way  to turn carbon dioxide back into solid coal, in a world-first breakthrough that could combat rising greenhouse gas levels.

Researchers at Melbourne’s RMIT University have used liquid metals to convert CO2 from a gas to a solid at room temperature.

The technique has potential to “safely and permanently” remove CO2 from the atmosphere, according to the new study published in the journal Nature Communications.

Carbon technologies have previously tended to focus on compressing CO2 into a liquid form, transporting it to a suitable site and injecting it underground.

The use of underground injections to capture and store carbon is not economically viable and sparks fears of an environmental catastrophe due to possible leaks from the storage site.

However, the new technique transforms CO2 into solid flakes of carbon, similar to coal, which can be stored more easily and securely.

Carbon dioxide is dissolved into a beaker containing an electrolyte liquid, then a small amount of the liquid metal catalyst is added, which is then charged with an electrical current.

The electrical current serves as a catalyst to slowly converts the CO2 into solid flakes of carbon.

Watch how researchers made their discovery

This is a “crucial first step” to developing a more sustainable approach to converting CO2 into a solid, RMIT researcher Dr Torben Daeneke said, noting that more research is required cement the process.

He described the process as “efficient and scalable”.

“While we can’t literally turn back time, turning carbon dioxide back into coal and burying it back in the ground is a bit like rewinding the emissions clock.

“To date, CO2 has only been converted into a solid at extremely high temperatures, making it industrially un-viable,” Dr Daeneke said.

The study’s lead author, Dr Dorna Esrafilzadeh, said the carbon produced could also be used as an electrode.

“A side benefit of the process is that the carbon can hold electrical charge, becoming a supercapacitor, so it could potentially be used as a component in future vehicles,” she said.

“The process also produces synthetic fuel as a by-product, which could also have industrial applications.”

The study was completed in collaboration with researchers from Germany (University of Munster), China (Nanjing University of Aeronautics and Astronautics), the US (North Carolina State University) and Australia (UNSW, University of Wollongong, Monash University, QUT).

Learn More About ‘Great Things from Small Things’ ~ Watch A Video on Our Current Project: Nano Enabled Batteries and Super Capacitors

Advertisements

No More Washing: Nano- Enabled Textiles Clean Themselves with Light


nomorewashing 041216

A spot of sunshine is all it could take to get your washing done, thanks to pioneering nano research into self-cleaning textiles.

Researchers at RMIT University in Melbourne, Australia, have developed a cheap and efficient new way to grow special —which can degrade organic matter when exposed to light—directly onto .

The work paves the way towards nano-enhanced textiles that can spontaneously clean themselves of stains and grime simply by being put under a light bulb or worn out in the sun.

Dr Rajesh Ramanathan said the process developed by the team had a variety of applications for catalysis-based industries such as agrochemicals, pharmaceuticals and natural products, and could be easily scaled up to industrial levels.

“The advantage of textiles is they already have a 3D structure so they are great at absorbing light, which in turn speeds up the process of degrading organic matter,” he said.

“There’s more work to do to before we can start throwing out our washing machines, but this advance lays a strong foundation for the future development of fully self-cleaning textiles.”

The researchers from the Ian Potter NanoBioSensing Facility and NanoBiotechnology Research Lab at RMIT worked with copper and silver-based nanostructures, which are known for their ability to absorb visible light.

No more washing: Nano-enhanced textiles clean themselves with light
The red color indicates the presence of silver nanoparticles — the total coverage on the image shows the nanostructures grown by the RMIT team are present throughout the textile. Image magnified 200 times. Credit: RMIT University

When the nanostructures are exposed to light, they receive an energy boost that creates ““. These “hot electrons” release a burst of energy that enables the nanostructures to degrade organic matter.

The challenge for researchers has been to bring the concept out of the lab by working out how to build these nanostructures on an industrial scale and permanently attach them to textiles.

The RMIT team’s novel approach was to grow the nanostructures directly onto the textiles by dipping them into a few solutions, resulting in the development of stable nanostructures within 30 minutes.

No more washing: Nano-enhanced textiles clean themselves with light
Close-up of the nanostructures grown on cotton textiles by RMIT University researchers. Image magnified 150,000 times. Credit: RMIT University

When exposed to , it took less than six minutes for some of the nano-enhanced textiles to spontaneously clean themselves.

“Our next step will be to test our nano-enhanced textiles with organic compounds that could be more relevant to consumers, to see how quickly they can handle common stains like tomato sauce or wine,” Ramanathan said.

The research is published on March 23, 2016 in the high-impact journal Advanced Materials Interfaces.

Explore further: Silver in the washing machine: Nanocoatings release almost no nanoparticles

More information: Samuel R. Anderson et al. Robust Nanostructured Silver and Copper Fabrics with Localized Surface Plasmon Resonance Property for Effective Visible Light Induced Reductive Catalysis, Advanced Materials Interfaces (2016). DOI: 10.1002/admi.201500632

 

 

No more washing: Nano-enhanced textiles clean themselves with light


No More nomorewashin
Cotton textile covered with nanostructures invisible to the naked eye. Image magnified 200 times. Credit: RMIT University

A spot of sunshine is all it could take to get your washing done, thanks to pioneering nano research into self-cleaning textiles.

Researchers at RMIT University in Melbourne, Australia, have developed a cheap and efficient new way to grow special —which can degrade organic matter when exposed to light—directly onto .

The work paves the way towards nano-enhanced textiles that can spontaneously clean themselves of stains and grime simply by being put under a light bulb or worn out in the sun.

Dr Rajesh Ramanathan said the process developed by the team had a variety of applications for catalysis-based industries such as agrochemicals, pharmaceuticals and natural products, and could be easily scaled up to industrial levels.

“The advantage of textiles is they already have a 3D structure so they are great at absorbing light, which in turn speeds up the process of degrading organic matter,” he said.

“There’s more work to do to before we can start throwing out our washing machines, but this advance lays a strong foundation for the future development of fully self-cleaning textiles.”

The researchers from the Ian Potter NanoBioSensing Facility and NanoBiotechnology Research Lab at RMIT worked with copper and silver-based nanostructures, which are known for their ability to absorb visible light.

No more washing: Nano-enhanced textiles clean themselves with light
The red color indicates the presence of silver nanoparticles — the total coverage on the image shows the nanostructures grown by the RMIT team are present throughout the textile. Image magnified 200 times. Credit: RMIT University

When the nanostructures are exposed to light, they receive an energy boost that creates ““. These “hot electrons” release a burst of energy that enables the nanostructures to degrade organic matter.

The challenge for researchers has been to bring the concept out of the lab by working out how to build these nanostructures on an industrial scale and permanently attach them to textiles.

The RMIT team’s novel approach was to grow the nanostructures directly onto the textiles by dipping them into a few solutions, resulting in the development of stable nanostructures within 30 minutes.

No more washing: Nano-enhanced textiles clean themselves with light
Close-up of the nanostructures grown on cotton textiles by RMIT University researchers. Image magnified 150,000 times. Credit: RMIT University

When exposed to , it took less than six minutes for some of the nano-enhanced textiles to spontaneously clean themselves.

“Our next step will be to test our nano-enhanced textiles with organic compounds that could be more relevant to consumers, to see how quickly they can handle common stains like tomato sauce or wine,” Ramanathan said.

The research is published on March 23, 2016 in the high-impact journal Advanced Materials Interfaces.

Explore further: Silver in the washing machine: Nanocoatings release almost no nanoparticles

More information: Samuel R. Anderson et al. Robust Nanostructured Silver and Copper Fabrics with Localized Surface Plasmon Resonance Property for Effective Visible Light Induced Reductive Catalysis, Advanced Materials Interfaces (2016). DOI: 10.1002/admi.201500632

 

RMIT University, Australia:The Formation of Nanofins from Magnetic Nanoparticles: Video


Printing Graphene ChipsPublished on Oct  2, 2013

Heat has become one of the most critical issues in computer and semiconductor design: The ever increasing number of transistors in computer chips requires more efficient cooling approaches for the hot spots which are generated as a result of the operation of the transistors. Researchers at RMIT University in Australia have demonstrated a microfluidic technique of using thermally conductive and magnetic chromium oxide nanoparticles that can form low-dimensional fins in the vicinity of hot spots.

Read more at http://www.nanowerk.com/spotlight/spo…

Watch the Video Here:

New 2-D Material for Next Generation High-Speed Electronics


QDOTS imagesCAKXSY1K 8Jan. 21, 2013 — Scientists at CSIRO and RMIT University have produced a new two-dimensional material that could revolutionise the electronics market, making “nano” more than just a marketing term.

 

 

The material — made up of layers of crystal known as molybdenum oxides — has unique properties that encourage the free flow of electrons at ultra-high speeds.

In a paper published in the January issue of materials science journal Advanced Materials, the researchers explain how they adapted a revolutionary material known as graphene to create a new conductive nano-material.

Graphene was created in 2004 by scientists in the UK and won its inventors a Nobel Prize in 2010. While graphene supports high speed electrons, its physical properties prevent it from being used for high-speed electronics.

The CSIRO’s Dr Serge Zhuiykov said the new nano-material was made up of layered sheets — similar to graphite layers that make up a pencil’s core.

“Within these layers, electrons are able to zip through at high speeds with minimal scattering,” Dr Zhuiykov said.

“The importance of our breakthrough is how quickly and fluently electrons — which conduct electricity — are able to flow through the new material.”

RMIT’s Professor Kourosh Kalantar-zadeh said the researchers were able to remove “road blocks” that could obstruct the electrons, an essential step for the development of high-speed electronics.

“Instead of scattering when they hit road blocks, as they would in conventional materials, they can simply pass through this new material and get through the structure faster,” Professor Kalantar-zadeh said.

“Quite simply, if electrons can pass through a structure quicker, we can build devices that are smaller and transfer data at much higher speeds.

“While more work needs to be done before we can develop actual gadgets using this new 2D nano-material, this breakthrough lays the foundation for a new electronics revolution and we look forward to exploring its potential.”

In the paper titled ‘Enhanced Charge Carrier Mobility in Two-Dimensional High Dielectric Molybdenum Oxide,’ the researchers describe how they used a process known as “exfoliation” to create layers of the material ~11 nm thick.

The material was manipulated to convert it into a semiconductor and nanoscale transistors were then created using molybdenum oxide.

The result was electron mobility values of >1,100 cm2/Vs — exceeding the current industry standard for low dimensional silicon.

The work, with RMIT doctoral researcher Sivacarendran Balendhran as the lead author, was supported by the CSIRO Sensors and Sensor Networks Transformational Capability Platform and the CSIRO Materials Science and Engineering Division.

It was also a result of collaboration between researchers from Monash University, University of California — Los Angeles (UCLA), CSIRO, Massachusetts Institute of Technology (MIT) and RMIT.

Nano-material to revolutionize computing


QDOTS imagesCAKXSY1K 8Nano-material to revolutionize computing

 

 

Jan 7, 2013, 05.37 PM IST: SYDNEY: A two-dimensional  nano-material could usher in nano-transistors and help revolutionise electronics, including ultra fast  computing, says an Australian research.

The new material – made up of layers of crystal known as molybdenum oxides – has unique properties that encourage the free flow of electrons at ultra-high speeds.

Researchers from Commonwealth Scientific and Industrial Research Organisation (CSIRO) explain how they adapted a revolutionary material known as graphene to create a new conductive nano-material, the journal Advanced Materials reports.

Graphene created by scientists in Britain won its inventors a  Nobel Prize in 2010. While the new material supports high speed electrons, its physical properties stump high-speed electronics, according to a  CSIRO statement.

Serge Zhuiykov from the CSIRO said the new nano-material was made up of layered sheets – similar to graphite layers that make up a pencil’s core.

“Within these layers, electrons are able to zip through at high speeds with minimal scattering,” Zhuiykov said.

“The importance of our breakthrough is how quickly and fluently electrons – which conduct electricity – are able to flow through the new material,” he added. Royal Melbourne Institute of Technology (RMIT) doctoral researcher Sivacarendran Balendhran led the study.

Kourosh Kalantar-zadeh, professor at the RMIT, said the researchers were able to remove “road blocks” that could obstruct the electrons, an essential step for the development of high-speed electronics.

“While more work needs to be done before we can develop actual gadgets using this new  2D nano-material, this breakthrough lays the foundation for a new electronics revolution and we look forward to exploring its potential,” he adds.

Solar power captured in fuel


19 October 2012

RMIT UNIVERSITY
TUESDAY, 23 OCTOBER 2012

Solar power captured in fuel

 

 

 

 

 

 

Note To Readers: Our Comments: An abundant FREE source of energy … that is limitless … and GREEN to boot! Quoting from the news release:

” … “Our future scientific goal is to establish a solar water splitting system operated only by abundant sunlight and sea water,” Associate Professor Tachibana remarked. “Fortunately these resources are freely available on this blue planet.

“The key to improving efficiency will be in the development of new “nano-materials” (microscopically small components), along with efficient control of charge transfer reaction processes, and improvement to the structure of devices.”

Cheers! – BWH

It has long been a dream of scientists to use solar energy to produce chemicals which could be stored and later used to create electricity or fuels.

A recent scientific breakthrough is providing hope that this may soon be possible.

The development would offer many benefits, including the ability to store chemicals until needed – current solar power technology has difficulties in this area.

In the laboratory, a new technology mimics photosynthesis, the process used by plants, by combining sunlight and water in such a way that promises storable fuels.

The “solar to chemical energy conversion” process is outlined in an article just published in a prominent journal, Nature Photonics, authored by RMIT University researcher Associate Professor Yasuhiro Tachibana, from the School of Aerospace, Mechanical and Manufacturing Engineering.

Inspired by photosynthesis, in which oxygen and carbohydrates are produced from water and carbon dioxide, the newly developed technology emulates this process using man-made materials.

According to Associate Professor Tachibana, it remains a challenge to construct a device capable of producing molecular fuels like hydrogen at a scale and cost able to compete with fossil fuels.

The key to improving efficiency will be in the development of new “nano-materials” (microscopically small components), along with efficient control of charge transfer reaction processes, and improvement to the structure of devices.

Recent developments in the field of nanotechnology have been leading to promising improvements in cost and effectiveness of the conversion process, Associate Professor Tachibana said.

“Our future scientific goal is to establish a solar water splitting system operated only by abundant sunlight and sea water,” Associate Professor Tachibana remarked.

“Fortunately these resources are freely available on this blue planet.”

Professor Xinghuo Yu, Director of RMIT’s Platform Technologies Research Institute, said the latest research was significant, but challenges remained in how to translate laboratory-scale academic research into a practical, economically viable technology.

In addition to using solar energy, other commercially available renewable energy sources like wind and tidal power could also conceivably be applied, Professor Yu said.

Associate Professor Tachibana’s review paper was published in the August 2012 edition of Nature Photonics, world-renowned as a pre-eminent platform for publication of international research in photonics.

Editor’s Note: Original news release can be found here.