The Knowledge Entrepreneur: A New Paradigm For Preparing Tomorrow’s Engineers And Scientists


Knowledge Entrpreneur Engineering-Researchers.Jan18-1200x801
Photo courtesy of UVA EngineeringWorking in the Link Lab for cyber-physical systems, engineering students at the University of Virginia are designing the next generation of intelligent devices for smart buildings and homes.  *** Special Re-Post from Forbes Leadership – by Bernie Carlson

The Knowledge Entrepreneur: A New Paradigm For Preparing Tomorrow’s Engineers And Scientists

It is tempting to apply the old saying, “East is East, West is West, but the twain shall never meet,” to science and entrepreneurship.  In the popular imagination, scientists discover new knowledge while entrepreneurs build companies to launch new products.

Most people assume that scientists are motivated by the high ideal of advancing human progress while entrepreneurs are driven by the base motives of ego and greed.  Like oil and water, science and entrepreneurship, it would seem, don’t mix.

Yet to solve the major problems confronting humanity—disease, hunger, global warming and terrorism—science and entrepreneurship need to mix. The world needs STEM specialists who possess not only a deep understanding of scientific theory and laboratory practice but also the skills needed to move ideas from the laboratory to the wider world.

At the University of Virginia’s School of Engineering and Applied Science, we call these new experts Knowledge Entrepreneurs.

By Knowledge Entrepreneur, we don’t mean all our STEM students will launch a new startup business [though we hope that some do] but rather that they possess the habits which will allow them to be agents of change, to intentionally shape their research programs and careers in ways that address major challenges.

We share with KEEN [the Kern Entrepreneurial Engineering Network] the vision that engineering students can transform the world by developing an entrepreneurial mindset.

Douglas E. Melton, Ph.D, shares why the entrepreneurial mindset is the key to success for engineering undergraduate students.

An entrepreneurial mindset is particularly important for students pursuing advanced masters and doctoral degrees.  Generally speaking, undergraduate students in engineering and science are passive consumers who master the material in textbooks, lectures, and laboratory exercises.

However, when they move up to graduate studies, we need to teach students how to be active producers of knowledge, to have the skills to not only generate new ideas and designs but also to be able to implement these solutions in society.

To become active producers of knowledge, graduate students should acquire five habits of effective entrepreneurs:

First, as Knowledge Entrepreneurs, students must identify a problem out there in the world and frame it as a question that can be investigated using available scientific techniques. 

While Thomas Edison is often criticized for tinkering and trying random solutions, he always began work on an invention by defining a specific problem that he could solve.

With his electric lighting system in the late 1870s, for instance, Edison decided early on that he wanted an electric lamp which could be substituted for the gas lamps people were already using.  This electric-to-gas analogy led him to experimenting with incandescent lamps and to concentrating on finding the right material for a high-resistance filament.brain-quantum-2-b2b_wsf

Problem definition means engaging multiple stakeholders; for Edison, this meant studying the economics of the gas-lighting industry, talking to potential customers and consulting with leading scientists.

For contemporary STEM graduate students, problem definition requires talking with funding agencies, fellow professionals and end users in order to understand each group’s needs.

In our course on Knowledge Entrepreneurship in UVa’s Engineering School, we borrow customer discovery techniques from the I-Corps program of the National Science Foundation, teaching our Ph.D. students how to ask people from different backgrounds open-ended questions about their problems and wishes.  Depending on their project, we encourage students to reach out to researchers, manufacturers, patients and end-users.

Thomas Edison talking about the invention of the light bulb, late 1920s. Newsreel clip from the Motion Picture Division of the U.S. National Archives.

Second, once they have defined a problem, Knowledge Entrepreneurs mobilize a network of people and resources needed to convert that problem into an opportunity.

To develop his electric lighting system, Edison assembled at Menlo Park a first-class team of technicians and scientists and provided them with laboratory instruments and machine tools as well as technical journals and books.

As Edison’s team zeroed in on a vegetable-based carbon filament, his network became global and he dispatched agents to collect plant samples from around the world; eventually, Edison found that Japanese bamboo made the best lamp filaments.

Drawing on the entrepreneurial effectuation principles of our Darden Business School colleague, Saras Sarasvathy, we show our students how to build a social network that includes faculty advisors, lab support personnel, equipment and space, and data.

One of the most popular lectures in our Knowledge Entrepreneurship course is titled “The Care and Feeding of Dissertation Advisors,” during which we help students to understand how to manage relationships with their mentors.  Emulating Edison, we encourage our students to recognize that science and engineering are complex enterprises and they need to collaborate not only across disciplines but across cultures, seeking opportunities to work with and learn from experts around the world.

Third, Knowledge Entrepreneurs recognize that innovation involves not just the development of a single idea in the laboratory but also the strategic positioning of ideas in the larger world. 

Tesla Elec Semi I 4w2a6750A clear example of this can be seen if we shift from Edison to his rival Nikola Tesla.  Along with perfecting his alternating current motor, Tesla vigorously promoted this invention by securing strong patents, writing papers for engineering journals, giving newspaper interviews and doing spectacular public demonstrations.

By doing so, Tesla secured a lucrative licensing deal with Westinghouse and established himself as a great electrical wizard.

Principles of Effectuation

This Video gives the summary of “Principles of Effectuation”. The original author is Prof. Saras Sarasvathy, Darden University.

While we don’t expect our graduate students to market themselves as wizards, we do work with them to create a strategy for promoting their work through a variety of channels—papers in key journals, presentations at conferences, elevator pitches, popular articles, blogs and websites—which ensure their ideas and designs are accessible to multiple audiences.

In particular, we push our graduate students to view the popularization of their research as not “dumbing it down” but rather as an opportunity to focus and clarify what are the essential elements of their work.  We remind them that every paper and every talk has to answer the question “So what?” in a way which is meaningful to the audience.

Fourth, Knowledge Entrepreneurs understand that innovation requires fostering a positive environment for learning and creativity. 

In developing the first stealth fighter jet at Lockheed in the late seventies, engineer-entrepreneur Ben Rich devoted significant energy to shaping the culture of the Skunk Works, the company’s famous R&D lab.  As Rich recalled, “We encouraged our people to work imaginatively, to improvise and try unconventional approaches to problem-solving, and then get out of their way.”

In doing so, Rich and his team “saved tremendous amounts of time and money, while operating in an atmosphere of trust and cooperation with our Government customers and between our white-collar and blue-collar employees.”

For Ph.D. students in STEM, the critical environment that they will shape will be the classroom.  In the course of their careers as researchers and teachers, they will mentor the next generation of scientists and citizens.

Teaching, however, cannot simply be the transmission of scientific facts and data; as Knowledge Entrepreneurs, our students need to master the latest pedagogical techniques—such as flipped classrooms and maker spaces—so that science is accessible and useful not only for future experts but also ordinary citizens who need to understand the underpinning of modern technology.

Along with doing breakthrough research on electricity, the British scientist Michael Faraday initiated in 1825 the Royal Institution’s Christmas lectures on science, seeking to ensure that Victorians of all social classes had the chance to learn about the wonders of the natural and technological worlds.

60 Minutes feature on author and aeronautical designer and engineer Ben Rich with Ed Bradley. Rich talks about his work in designing the F-117 Stealth Fighter and other spy plane projects while Director of Lockheed Martin’s Skunk Works. Aired on CBS in 1994.

Fifth and finally, Knowledge Entrepreneurs are ethical and compassionate, mindful of the principles of conducting responsible science as well as being aware of how their research can help people.

Complementing our course on Knowledge Entrepreneurship, our Ph.D. students can also take a course on the “Responsible Conduct of Research,” which introduces ethical theory as well as the practical research guidelines mandated by the National Institutes of Health.

Our Ph.D. students are inspired by contemporary entrepreneurs such as Marc Benioff, the CEO of Salesforce, whose motto is “The business of business is improving the state of the world.”  Benioff is leading a movement where he invites other high-tech leaders to join him in committing 1% of product, time, profits or resources to addressing major world problems.

UVA maxresdefault (2)But compassion isn’t just about philanthropy; we invite our students to consider how compassion is integral to innovation.

One story we tell them concerns a Japanese basket-maker and a fisherman.  One day, a fisherman asked the basket-maker to fashion a basket for him so he could carry fish home from his boat.  While the basket-maker pointed out the fisherman’s design would not work very well, the fisherman insisted that he weave it for him.  A week later, the fisherman returned and found that the basket-maker had made him two baskets.  “One basket is the one you asked for,” the basket-maker explained, “and the other is the one that you will find works better.”  The basket-maker only charged the fisherman for one basket and the fisherman went away happy.

The best entrepreneurs know that innovation should be about delighting people and enriching their lives.

As STEM graduate students acquire these entrepreneurial habits, they will possess the skills needed to set themselves on career paths which will allow them to thrive in a variety of settings—in academia, industry or government.

Indeed, an entrepreneurial mindset will help them become leaders in whatever setting our graduates find themselves.  But most importantly, they will have the tools they need to apply their scientific training to the major challenges facing the world.

As Louis Pasteur advised young scientists, “Live in the serene peace of laboratories and libraries.  Say to yourselves first: ‘What have I done for my instruction?’ and, as you gradually advance, ‘What have I done for my country?’”  The Knowledge Entrepreneur understands how to move ideas from the serene laboratory to the bustling, needy world.

Bernie Carlson is professor and chair of the Engineering & Society Department at the University of Virginia. His most recent book is Tesla: Inventor of the Electrical Age (Princeton, 2013).

For More information about Genesis Nanotechnology Go To/ Follow Our Blog:

GNT New Thumbnail LARGE 2016Great Things from Small Things”

Watch a YouTube Video on Our Latest Project:

Advertisements

Rebecca Schwartz: Nanotechnology for the troops


Rising Stars

Schwartz_Rebecca

Much of Rebecca Schwartz’s cutting-edge nanotechnology research at Lockheed Martin is classified, but her work is generally geared toward developing technical solutions to reduce the physical burden of troops in combat. It is part of a larger vision she holds of increasing situational awareness for warfighters while making their equipment smaller, lighter and less power-hungry.

She manages the funding of her research and development projects and has provisional patents for solutions based on her ideas. In short order, Schwartz took her division’s first nanotechnology pursuit from concept to a potential real-world application. As she works to support the Defense Department, she is also helping grow nanotechnology as a business at Lockheed Martin.

The 2013 Rising Stars

Read about all of the winners

“Not only are we looking to advance technology solutions to reduce the burden for warfighters — one of the biggest problems for them today — but we’re looking at strategies…and interfacing with customers to get feedback and really understand what their challenges are,” Schwartz said. “I’m proud seeing a lot of innovations we’re coming up with that are truly things that will help our customers and keep them safe. We’re all about the soldiers, and we’re there to provide technology they need to do their missions.”

Schwartz has been at Lockheed Martin for two years, and the projects she leads often have turnaround times about that long, though some extend for five and even 10 years.

So although she can’t talk about it in detail now, American warfighters might well display and use some of her finest work in the near future.

Linde Electronics’ Carbon Nanotube Inks to Drive Innovation in Next-generation Electronic Devices


QDOTS imagesCAKXSY1K 8(Nanowerk News) Linde Electronics, the global  electronics business of The Linde Group, launched a revolutionary new carbon  nanotube ink to drive innovation in the development of next generation displays,  sensors and other electronic devices. Linde’s carbon nanotube inks can be used  to manufacture completely new technologies, such as a smartphone with a screen  that rolls up like a window shade and a see-through GPS device embedded in the  windshield of a car.                      

Carbon nanotubes are an allotrope of carbon like graphite and  diamond, and they have unique physical and electronic properties. These include  a higher thermal conductivity than diamond; greater mechanical strength than  steel (orders of magnitude by weight); and a larger electrical conductivity than  copper. It is due to these properties that carbon nanotubes will enable  electronic device manufacturers develop more innovative electronic devices.                      

To help device manufacturers and the research and development  community to explore the full potential of carbon nanotube based technologies,  Linde is making its nanotube inks available to developers. These nanotube inks  contain individual carbon nanotubes and are produced without damaging or  shortening the nanotubes and therefore preserve the unique nanotube properties. 

This landmark development drastically improves the performance of transparent  conductive thin films made from the inks and opens the door for the development  of nanotube applications in not only consumer electronics, but also the  healthcare sector and sensor manufacturing.                      

“While we’ve seen a lot of excitement around nanotubes in the  past ten years, we’ve not yet seen a commercially viable nanotube solution in  the market because of challenges in the processing of this great material,” said  Dr Sian Fogden, Market and Technology Development Manager for Linde Electronics’  nanomaterials unit. “Our nanotube technology and our unique nanotube inks  overcome these challenges, paving the way for completely new types of  high-functionality electronic devices.”                      

Linde, which develops and supplies specialist materials and  gases for the world’s leading electronic manufacturers, is in the final  development stages with its single wall carbon nanotube technology. Alongside  the launch of the nanotube ink into the development community, the company will  also provide its nanotube ink at large scale directly to electronic device  manufacturers.                      

About The Linde Group                     

The Linde Group is a world-leading gases and engineering company  with around 62,000 employees in more than 100 countries worldwide. In the 2012  financial year, Linde generated revenue of EUR 15.280 bn. The strategy of the  Group is geared towards long-term profitable growth and focuses on the expansion  of its international business with forward-looking products and services. Linde  acts responsibly towards its shareholders, business partners, employees, society  and the environment — in every one of its business areas, regions and locations  across the globe. The company is committed to technologies and products that  unite the goals of customer value and sustainable development.

For more  information, see The Linde Group online at http://www.linde.com

Read more: http://www.nanowerk.com/news2/newsid=31083.php#ixzz2XZjH00zK