Key Patent Analysis on Quantum Dot Displays Released


QDOTS imagesCAKXSY1K 802/21/2013

 

 

 

Note To Readers: While monitoring patent activity is neither novel nor “ground breaking”, it is worthy to note the activity as it applies in certains areas of research with burgeoning interest … such as the application of “nanomaterials” in the OLED/ QLED markets, as being “the next generation display material.”

//
The quantum dot recently emerged as a next-generation display material. Quantum dots, whose diameter is just a few nanometers, are semiconductor crystals. The smaller its particle is, the more short-wavelength light are emitted; the larger its particle is, the more long-wavelength lights get emitted.
Considering that there are more advantages with the quantum dots over conventional light sources, it is not surprising that the quantum dot display gains a lot of attention. The quantum dot display consumes lower power and has a richer color than the conventional OLED. In addition, the white light produced by quantum dots has high brightness and excellent color reproduction, raising its potential to replace the backlight unit (BLU) using the LED. Not surprisingly, leading companies in the display industry are accelerating to secure relevant technologies.

Analysis of Patent Application Trends By country, 93 patents (or 34%) were filed in South Korea, 87 in the U.S., 36 in Japan, 22 in Europe, and 35 under the PCT. By technology, patents on quantum dot light emitting diodes (QLED) technology (188 patents, 69%) were applied the most, followed by those on BLU using the white light source; quantum dot display; and LED-using white light source technologies.

Implications As the quantum dot display has emerged as the next-generation display technology ever since the OLED, the leading companies in the display industry, including Samsung and LG, are making aggressive investment to take a lead in the technology. They not only develop their own technologies, but also purchase patents from; make technology licensing agreements with; or make equity investment in the companies of the field.

The competition to obtain key patents on the quantum dot display is expected to only increase. Monitoring published/issued patents on a regular basis and having a thorough analysis on them have become more important.

Key Patent Report – Quantum Dot Display covers patent application trends and an in-depth analysis.

*** Excerpted from: Flexible OLED/ QLED Screen Markets to Reach $72 Billion by 2016

” … Once freed from today’s relatively heavy, breakable and fixed glass displays, tomorrow’s devices may look very different, with screens that can be rolled out, attached to uneven surfaces, or even stretched. But there’s still some way to go.

“It becomes a product designer’s paradise — once the technology is sorted out,” says Jonathan Melnick, who analyzes display technology for Lux Research.

There is no shortage of prototypes. South Korea’s Samsung Electronics this year showed off a display screen that extends from the side of a device — but obstacles remain: overcoming technical issues, figuring out how to mass produce parts cheaply, and coming up with devices compelling enough for gadget buyers.

Screen technology — with the global small display market expected to more than double to around $72 billion by 2016, according to DisplaySearch — is still dominated by liquid crystal displays (LCDs), which require a backlight and sit between two sheets of glass, making the screen a major contributor to the weight of a device, from laptops to tablets.”

Link Here: https://genesisnanotech.wordpress.com/2013/04/14/flexible-oled-qled-screen-markets-to-reach-72b-by-2016/

Advertisements

Quantum Dot and Quantum Dot Display (QLED): Market Shares, Strategies, and Forecasts, Worldwide, Nanotechnology, 2013 to 2019


QDOTS imagesCAKXSY1K 8

WinterGreen Research announces that it has published a new study Quantum Dot and Quantum Dot Display (QLED) Market Shares, Strategy, and Forecasts, Worldwide, 2013 to 2019. The 2013 study has 221 pages, 80 tables and figures. Quantum dots will cascade into the marketplace. They offer lower cost, longer life, and brighter lighting.

 

According to Susan Eustis, “The commercialization of quantum dots using kilogram quantity mass production is a game-changer. High quality, high quantity and lowest price quantum dots increase product quality in every industry. The rate of change means speeded products cycles are evolving.”

 

Once manufacturers learn to integrate higher efficiency luminescent quantum dots into their products, each vendor will need to follow or dramatically lose market share. This level of change brought by quantum dot and quantum dot displays (QLED) represents a new paradigm that will create new industries, products and jobs in science and industry. The list of possible quantum dot applications is ever expanding. New applications are waiting for the availability of more evolved quantum dots.

Quantum Dot LED (QLED) commercial focus has remained on key optical applications: Optical component lasers are emerging as a significant market. LED backlighting for LCD displays, LED general lighting, and solar power quantum dots are beginning to reach the market. Vendors continue to evaluate other applications.

Quantum dots QDs are minute particles or nano-particles in the range of 2 nm to 10 nm diameter. Quantum dots are tiny bits of semiconductor crystals with optical properties that are determined by their material composition. Their size is small to the nanoparticle level. They are made through a synthesis process. QD Vision synthesizes these materials in solution, and formulates them into inks and films. Quantum Dot LEDs (QLED) enable performance and cost benefits.

The quantum dot cannot be seen with the naked eye, because it is an extremely tiny semiconductor nanocrystal. The nanocrystal is a particle having a particle size of less than 10 nanometers. QDs have great potential as light-emitting materials for next-generation displays with highly saturated colors because of high quantum efficiency, sharp spectral resolution, and easy wavelength tenability. Because QDs convert light to current, QDs have uses in other applications, including solar cells, photo detectors, and image sensors.

 

QLED displays are anticipated to be more efficient than LCDs and OLEDs. They are cheaper to make. Samsung estimates that they cost less than half of what it costs to make LCDs or OLED panels. QLED quantum dot display is better than OLED. It is brighter, cheaper, and saves more energy. Energy-savings is a strong feature. Its power consumption is 1/5 to 1/10 of the LCD’s Samsung offers now. Manufacturing costs of a display are less than half of OLED or LCD. It has a significantly longer life than the OLED.

 

QLED quantum dot display uses active matrix to control the opening and closing of the pixels of each color. Quantum dots have to use a thin film transistor. Emission from quantum dots is due to light or electrical stimulation. The quantum dots are able to produce different colors depending on the quantum shape and size used in the production of materials.

 

Dow Electronic Materials, a business unit of The Dow Chemical Company (NYSE: DOW) and Nanoco Group plc (AIM: NANO) have a global licensing agreement for Nanoco’s cadmium-free quantum dot technology. Under the terms of the agreement, Dow Electronic Materials will have exclusive worldwide rights for the sale, marketing and manufacture of Nanoco’s cadmium-free quantum dots for use in electronic displays.

 

Market Participants

  • Evident Technologies
  • InVisage
  • LG Display
  • Nanoco Technologies
  • Nanoco Group / Dow Chemical
  • Company (NYSE: DOW)
  • Nanoco / Tokyo Electron
  • NanoAxis
  • N-N Labs
  • Nexxus Lighting
  • Quantum Materials Corp
  • Samsung
  • Sigma-A