Quantum Dot Company (Nanoco) Meteoric Rise


QDOTS imagesCAKXSY1K 8Shares in AIM 100-quoted technology company Nanoco have quite comfortably beaten every other stock on the market for the past three months and analysts think there could be more to come.

Nanoco Technologies: http://www.nanocotechnologies.com/

 

Manchester-based Nanoco makes what are known as ‘quantum dots’, or nano particles, which are used in televisions, lights and solar cells. More specifically, big name manufacturers of LCD TVs and LED lighting are beginning to use quantum dots in their products because they improve colour quality.

To illustrate this, in February Sony announced details of its new HD Bravia LED TVs which happen to use quantum dots from Nanoco’s competitor, QD Vision. Analysts viewed this development as generally positive for Nanoco because Sony’s adoption of quantum dots in its displays was seen as a ringing endorsement of the technology.

For Sony, however, the good news is limited because QD Vision’s nano particles are made using a heavy metal called cadmium, which is regulated to the point of being banned in some countries. So Sony will only be able to sell its new TVs in certain markets. The good news for Nanoco and its investors is that its quantum dots don’t use cadmium.

Janardan Menon and Eoin Lambe from Liberum Capital, concluded that the Sony development was “not particularly negative” for Nanoco and said they though that the likes of Samsung and LG were highly unlikely to use quantum dots containing cadmium.

Market re-rating

Nanoco originally floated on AIM in May 2009 after reversing in to then-cash shell Evolutec. Back then its revenues stood at just short of £2 million, with pre-tax losses of £0.78 million. By 2012, those revenues had risen only modestly to £2.95 million but losses had widened to £4.35 million. So what’s changed?

Its stellar recent performance began last December after a comparatively muted 12 months where the stock struggled to break out from a narrow range that peaked in March 2012 at 80p. By late February 2013 the shares were touching 199p and although they have retraced slightly, the stock remains around 100p ahead of where it was three months ago.

Behind that meteoric rise was an announcement in January that Dow Chemical Materials – part of the global giant Dow Chemical – had agreed to licence Nanoco’s quantum dots for use in TVs. Dow is a major supplier of electronic materials to the global display industry and is planning to boost manufacturing capacity in Asia to supply these products to its customers in the region. Full production is slated to begin in the first half of 2014.

While no financial details were released (they are expected later this year), analysts are agreed that the impact of this licensing deal will be significant for Nanoco. John-Marc Bunce at Nomura Code said it was likely that Nanoco would have sought “a significant multimillion dollar upfront licensing fee” for the global exclusive manufacturing rights and that the announcement should be seen as “financially significant”.

Liberum Capital described it as “a game changer”, with major potential customers like Samsung and LG likely to move much faster in adopting its quantum dot technology in their displays due to confidence in Dow’s high volume manufacturing capabilities. In response the broker raised its price target from 160p to 260p and maintained a strong buy recommendation on the stock.

In addition, Nanoco’s contribution (estimated at £10 million) to the capex required to establish the new production facilities may not need to be pulled from its current cash pile of around £15 million. Liberum reckons the costs should be covered by customer funding, customer pre-payments or from future royalty cash flows.

Consensus view

With a market cap of £366 million, Nanoco’s valuation has plainly lost touch with its fundamentals, with analysts setting price targets based somewhere between 20 and 25x 2016 earnings. House broker Canaccord Genuity claim that Nanoco is “a genuinely unique asset” with technology that could prove truly disruptive to the $100bn LCD market and as such warrants a ‘strategic valuation’. Its 275p price target is based on 20x estimated FY16 earnings – based on the assumption there will be no contribution from the Dow deal until FY15. Thereafter it estimates that revenues will grow fourfold in year one.

But not everyone is as bullish. Nomura Code, another broker, offers a more conservative view, raising its price target to 150p and predicting that the Dow deal could signal a short term peak in Nanoco’s valuation. Thereafter, its analysts “expect calculations of the timescales and real financial impact to potentially put a more restrained view on Nanoco’s near term value”.

Overall, there is a consensus view that Nanoco’s Dow deal will transform the company over the medium term and that other industry partnerships are likely to follow. After a three month surge, investors may now be waiting for more financial details, more deals and more revenue before driving the share price further. Nanoco’s interim results are due on 18 March.

Advertisements

A New Entry into the Mass Production of Quantum Dots


QDOTS imagesCAKXSY1K 8  Quantum Technology Group  

 

 

Quantum Technology Group (QTG) owns the patent rights for a unique non-toxic ZnSe nanoparticle (quantum dot – QD) and a manufacturing process that specifically addresses industry demands. QTG has recently entered the marketplace as a bulk chemical manufacturer with sales of QD’s to industry.

Laboratory manufacturing has been established by collaboration with an existing chemical synthesis firm with decades of experience. QTG offers a stable platform technology for product development ventures and eliminates the need for QD sourcing and the licensing requirements or possible infringements of combined technologies and patents.

The Quantum Technology Group’s patent portfolio establishes broad implications for utilization by a wide variety of industries. Our technology represents university based research patents that now are exclusively licensed to QTG.The products QTG produces are in critical demand by industry and represent the platform or core technology they require. Specific quality characteristics have been identified and our products meet and exceed industry requirements. Furthermore, our capabilities produce a nontoxic alternative for current manufacturers. We currently meet RoHS (Restrictions of Hazardous Substances) standard Sand Green Leaf Certifications.   Our unique manufacturing process also presents the ability to produce nontoxic quantum dots and deliver bulk manufacturing.

Specific industries demand large quantity production, QTG can meet these needs.   Our scientific competencies also extend into product development and collaborations with industry. QTG welcomes inquiries and offers it’s considerable resources and those of the well established commercial and academic scientific community. QTG is located in the center of the technology corridor north of Boston Massachusetts.

Our unique manufacturing process also presents the ability to produce nontoxic quantum dots and deliver bulk manufacturing. Specific industries demand large quantity production, QTG can meet these needs.   Our scientific competencies also extend into product development and collaborations with industry. QTG welcomes inquiries and offers it’s considerable resources and those of the well established commercial and academic scientific community. QTG is located in the center of the technology corridor north of Boston Massachusetts.

The Quantum Technology Group team consists of a highly competent staff comprised of individuals from science and business. QTG employs university based inventors preeminent in the fields of chemical engineering and nanotechnology. QTG has also partnered with a well known firm highly proficient in the field of chemical synthesis, their expertise spans decades of successful chemical manufacturing and scale up. The combined resources now represent a team focused on producing quantum dots, specific surface modifications and bulk manufacturing.

The QTG business organization has engaged individuals with decades of experience involving complex product commercialization, particularly involving international markets. The QTG business team has targeted international and domestic opportunities and remains dedicated to understanding and meeting the demands of specific industries.

DANIEL FORTE – FOUNDER – Marketing and business development professional. Appointed by the United States Secretary of Commerce to the Export Trade Council.

ERIK JOHANSSON SALES AND MARKETING – Direct sales management

JON KREMSKY PhD DIRECTOR OF MANUFACTURING – Chemical synthesis and industrial scale-up expert. Former Director Process Chemistry, Millipore

JAMES MCKEARIN PhD – PRINCIPAL SCIENTIST – Group leader chemical synthesis process engineering expert.

PERRY CATCHINGS – RESEARCH AND DEVELOPMENT MANAGER – Former senior management Polaroid, transfer of technology from R&D, Development and

Chemical Manufacturing

ULF DUNBERGER – PRODUCT INNOVATION – Expert automation and conceptual design business processes engineer focused on the validation of operational effectiveness for corporate control environments.

JUN WANG PhD – DIRECTOR RESEARCH AND DEVELOPMENT – Co-Inventor – Research Professor University of Massachusetts

LAKIS MOUNTZIARIS PhD – Inventor – Chairman Chemical Engineering University of Massachusetts.

COMPETITIVE ADVANTAGE

Key issues concerning commercial product development involve:

• Rapid manufacturing of QD with specified product qualities

• Bulk manufacturing capability (kilo quantity)

• Costs of goods – manufacturing

• Toxicity

• Desired stable emission frequencies

• Quantum absorption

• Quantum emission

• Surface modifications

• Key patents based on the QTG platform

The QD’s contained within the QTG patent portfolio address the above noted key issues. Capabilities offer a stable platform for product development ventures.

How Quantum Dots could be in and will help your next TV


QDOTS imagesCAKXSY1K 8Nano-tech that could be in your next television

by Geferry Morrison: Posted February 18 2013

002Sony_Press_Conference_CES_2013_610x407

At CES in January, Sony announced several LCD TVs with “Triluminos,” a new backlighting method that they promise offered “rich, authentic color, and excellent red and green reproduction.” Digging deeper, it turns out Triluminos includes an optical component produced by QD Vision, Inc. called “Color IQ” which uses quantum dots to help create light.

OK, so what are quantum dots?

Quantum dots are a “semiconductor nanocrystal technology.” If you remember your high school (college?) physics, avail yourself of the Wiki page.

If you don’t know your valence bands from your conduction bands, you can think of a quantum dot as this: tiny pieces of matter with unique properties, including the ability to emit light at very specific wavelengths. Sort of like microscopic pieces of glitter that glow green, red, or blue depending on their size.

 

Red, green, and blue spectra for red, green, and blue quantum dots.

(Credit: QD Vision)

Specific wavelengths of light are good. We need specific wavelengths of light, the more specific the better. All televisions create an image by combining the three additive primary colors: red, green, and blue (RGB). Sharp adds yellow, a secondary color, but this isn’t in any content and is created by the TV. Mixing RGB in varying amounts gives us all the colors possible in our current TV system.

All LCDs create these colors with filters. Plasma displays create them with phosphors that glow in the required color (similar to the way CRT tube TVs worked). OLED, depending on the company, is one or the other. LG’s method creates a “white” OLED then adds color filters. Samsung‘s method has specific red, green, and blue OLED sub-pixels.

So where do quantum dots come in? Sony has a method.

Sony’s X900 and W900 lines Three of Sony’s 2013 TVs will use quantum dots in their backlighting, in the guise of QD Vision’s Color IQ tech (the 65X900, 55X900, and 55W900). A traditional LED LCD uses blue LEDs, coated with a yellow phosphor, to create “white” light. While reasonably efficient compared to other technologies (i.e. CCFL LCDs and plasmas), this still creates a lot of “wasted” energy. Orange, for example, doesn’t make it past the color filters on the front of the TV (instead, red and green are combined to create orange).

Triluminos uses blue LEDs, but instead of coating them with a yellow phosphor, the blue light from the LEDs passes through the Color IQ optical element containing red and green quantum dots. So the blue LEDs have two functions: create blue light, but also energize red- and green-emitting quantum dots so they in turn can create red and green light. About two-thirds of the light created by the blue LEDs is used to excite the QDs. Cool, right?

White_LED_vs_Blue_with_QD_Vertical_crop

This diagram is a top-down view of one side of two edge-lit LCDs (the front is “up” in this case, the back is “down”). The upper image shows a traditional “white” LED (blue, with yellow phosphor). The lower image is the method used in Sony’s Triluminos: a blue LED that passes through red and green quantum dots. This RGB light bounces off the light guide, and out through the liquid crystal and other layers just like a regular LCD TV.

(Credit: QD Vision)

 

If you’re curious about how LCD backlighting works, check out Is LCD and LED LCD HDTV uniformity a problem? which has images and diagrams of how backlights work. Oh, and if the “Triluminos” name sounds familiar, Sony has used it before. This time, as shown, it’s referring to an edge-lighting technology, not the RGB LED backlighting as in 2008.

Sony claims this allows for a wider color gamut compared to LCD TVs using “white” LEDs, as in more potential colors. Since all modern TVs are fully capable of reproducing every color in all current HDTV content, this is a bit of marketing hyperbole.

However, the benefits of this could go beyond cool, futuristic tech and WowNeeto-based marketing. When I’ve reviewed LED-lit projectors, I’ve found that the color possible from RGB LEDs looks more realistic than the same Rec. 709-calibrated colors created by color filters (DLP) or dichromatic mirrors (LCD/LCOS) as lit by UHP lamps. One TV engineer I asked about this phenomenon replied “LEDs are like painting with purer paint.”

Our own David Katzmaier often remarks in his reviews on the bluish cast seen on some conventional LED-based TVs compared to, say, plasma sets. “It’s usually most prevalent in dark areas, but I sometimes see a slight bluish ‘coldness’ in brighter material and skin tones too. In some cases I see it despite seemingly excellent color measurements from my instruments.”

So it’s possible that even with the same measured color points, quantum dot-enhanced displays could produce more realistic color. Will they? Will the color mixing required to create Rec. 709 from wildly oversaturated color points cause other issues? What effect will the color filters, which are still necessary on LCDs, have on this “purer” light? These are questions we can’t answer until we see the X900 series, and any future TVs with quantum dots.

This whole column and not one “Quantum Leap” joke. Oh dammit.

 

Atomic Force Microscopy (AFM) image of sparse QDs (white) on a semiconductor background (black). Individual QDs, as well as close-packed small groups can be resolved.

(Credit: MIT)

The current generation of quantum dot technology requires a primary light source like the blue LEDs in Sony’s Triluminos. This won’t always necessarily be the case. It will be possible to excite the quantum dots directly. This could be a full QD backlight, but it could be more. How about a direct-emissive display like OLED, but instead of Organic Light-Emitting Diodes, it’s sub-pixels filled with red, green, or blue quantum dots. QD Vision calls this a “QLED,” and it could have similar performance characteristics as OLED (like a truly infinite contrast ratio). Will it be easier to produce, offer better color, or have even lower power consumption? At this point, we have no idea. Given the production difficulties OLED has had, just the fact that there’s something on the horizon that could offer potentially similar performance is exciting.

Bottom line Unlike many of the new technologies on display at CES every year, quantum dots are real, and are potentially very cool. For now they reside only in a few high-end LCDs, but like OLED, they could hint at what a display of the future might be. Will they? We shall see.

Adoption by TV makers Expands Market for light-emitting nanocrystals. (Quantum Dot’s)


QDOTS imagesCAKXSY1K 8Quantum Dots Go on Display

 

 

 

Sony has announced that it will embed quantum dots in its latest flat-screen televisions.

Steve Marcus/REUTERS

Sony Announces Use of QD's in TV Screens

Live from your living room, in super­saturated colour: it’s the quantum-dot TV! Researchers working with nanoscale fluorescent particles called quantum dots have long predicted groundbreaking achievements, such as ultra-efficient light-emitting diodes (LEDs) and solar cells, but the technology has found mainly niche applications. That could change with the announcement last week that QD Vision, based in Lexington, Massachusetts, would supply Sony Corporation of Tokyo with quantum dots for flat-screen televisions that will transmit more richly coloured images than other TVs on the market.

Demand for quantum-dot displays, say industry watchers, could benefit quantum-dot companies, bring down the price of these nanomaterials and boost other applications that have stalled. “Displays are a potential market that could help quantum-dot companies find traction,” says Jonathan Melnick, an analyst at Lux Research in Boston, Massachusetts.

Quantum dots are crystals about 10 nano­metres in diameter, made from a semiconductor material, commonly cadmium selenide. They are so tiny that their shape and size affect the quantum properties of their electrons, in particular their energy gap — the energy needed to kick electrons into a higher-energy band — which determines the colour of light that the mater­ial can emit. Whereas a bulk semiconductor is limited to emitting a single colour of light, researchers can tune the precise colour a quantum dot will absorb and re-emit by tailoring its size.

Discovered in 1981, quantum dots did not find applications until 2002. That was when the Quantum Dot Corporation of Hayward, California, began selling them to cell biologists, who prize them as fluorescent imaging labels for proteins and other biological molecules. As recently as 2010, the biomedical sector was responsible for US$48 million of $67 million in total quantum-dot revenues, according to BCC Research of Wellesley, Massachusetts.

Quantum dots have shown promise for electronics, too — for example in solar cells, in which a mix of quantum dots tuned to absorb different wavelengths of light could capture more of the energy in the solar spectrum. But one hurdle to their exploitation was their temperature sensitivity. Near the backlight of a liquid-crystal display (LCD), for example, temperatures can be around 100 °C. At this temperature, the dots lose efficiency and up to half of their brightness, says QD Vision co-founder and chief technology officer Seth Coe-Sullivan. He says that the company spent a long time tuning the chemistry of its quantum dots to make them stable at higher temperatures.

Moungi Bawendi, a chemist at the Massachusetts Institute of Technology in Cambridge and a co-founder of QD Vision, admits that the company also made some business miscalculations. For its first product, in 2009, it provided Nexxus Lighting of Charlotte, North Carolina, with quantum-dot coatings to convert the harsh glare of LEDs into a warmer glow, to make them more appealing as long-life, low-energy light bulbs. But Bawendi says that LED designs and technology for the light-bulb market evolved too fast for the quantum-dot coatings to keep up. “You design something, and six months later it doesn’t work,” Bawendi says. “Television technology is more stable.”

His optimism will be tested this spring with the company’s quantum-dot debut in Sony LCD televisions, to be sold under the Tri­luminos brand name. The contrast with today’s flat screens begins with the light source. Conventional LCDs use a high-intensity blue LED backlight whose glow is converted by a phosphor coating to create a broadband, white light used to make the moving TV images. The new Triluminos tele­visions instead pair an uncoated blue LED with a thin glass tube filled with quantum dots. Two kinds of quantum dots in the tube absorb some of the blue light from the backlight and re-emit it as pure red andgreen light. The resulting white light is more intense at the wavelengths of these three specific colours than the white light made by a phosphor-coated LED, so that more colour comes through in the images.

Another quantum-dot company, Nanosys of Palo Alto, California, is providing 3M of St Paul, Minnesota, with material for a similar product. 3M will make a polymer film seeded with quantum dots that does the same jobas QD Vision’s glass tube. The film is layered between the LCD’s stack of light filters, diffusers and polarizers, and similarly converts raw blue light into white light made up of pure colours. Nanosys and 3M announced their partnership in June 2012, but have not yet named any customers.

BCC predicts that, by 2015, optoelectronics, including display components, will make up $310 million of a total $666 million in quantum-dot revenues. Melnick says that these numbers might be overly optimistic, because quantum dots remain expensive. “Even on the low end, they still cost in the hundreds of dollars per gram, and range up to $10,000 per gram,” he says. But demand from 3M and Sony could help to bring prices down. Although neither QD Vision nor Nanosys would comment on the volume of material they expect to make this year, or their selling price, both say that they are scaling up their manufacturing volume.

Bawendi is not surprised that it took quantum dots so long to find their footing. “You could argue that 30 years is about the right amount of time from fundamental discovery to applications,” he says.