A Quantum Leap In Display Quality From Quantum Dots: 3 Players Set to Dominate Emerging Markets


Q Dot Displays 1415226538155Quantum dots are improving screens worldwide, but their cadmium content worries some

Long the object of ivory tower fascination, quantum dots are entering the commercial realm. Factories that manufacture the nanomaterials are opening, and popular consumer products that use them are hitting the market.

Behind the gee-whiz technology are three companies with three different approaches to producing and delivering quantum dots. The firms—Nanosys, QD Vision, and Dow Chemical (Nanoco) — are racing to capture a share of the emerging market, but there may not be a place for everyone at the finish line.

Developed at Bell Labs in the 1980s, quantum dots are semiconducting inorganic particles small enough to force the quantum confinement of electrons. Ranging in size from 2 to 6 nm, the dots emit light after electrons are excited and return to the ground state. Larger ones emit red light, medium-sized ones emit green, and smaller ones emit blue.

Quantum dots have been proposed for all sorts of applications, including lighting and medical diagnostics, but the market that is taking off now is enhancing liquid-crystal displays (LCDs).

According to Yoosung Chung, an analyst who follows the quantum dot business for the consulting firm NPD DisplaySearch, last year saw the introduction of the first commercial display products to incorporate quantum dots: Bravia brand televisions from Sony and the Kindle Fire HDX tablet from Amazon. This year, the Chinese company TCL introduced a quantum-dot-containing TV and Taiwan’s Asus shipped a quantum dot laptop.

What quantum dots bring to displays is more vibrant colors generated with less energy. The liquid crystals in conventional LCD screens create colors by selectively filtering white light emitted by a light-emitting diode (LED) backlight, which typically runs along one edge of the screen. But that white light is broad spectrum and not optimal for producing the highly saturated reds, greens, and blues needed for lifelike images.

Jeff Yurek, a marketing manager at Nanosys, says the color performance of LCDs is only 70% of what is provided by more expensive organic light-emitting diode (OLED) displays.

Q Dot Displays 1415226538155

Quantum-dot-enabled displays incorporate a backlight that gives off blue light, some of which the dots convert into pure red and green. The three colors combine into an improved white light that the LCDs draw on to create pictures that are almost as vivid as those achieved with OLEDs.

Moreover, because no light is wasted, energy costs are lowered. That’s important, according to Yurek, because the display accounts for half of the power consumed in a mobile device. By incorporating Nanosys’s quantum dots in its new HDX tablet, Amazon was able to cut display power consumption by 20%, he claims.

“Going from the HD to the HDX, they made a thinner, lighter, higher resolution, more colorful display with longer battery life,” Yurek says.

On the strength of demand from companies such as Amazon, Nanosys has been investing in its quantum dot plant in Milpitas, Calif. According to Yurek, the company is now completing an expansion that will more than double its output. Soon, he says, the firm will have the capacity to supply dots for 250 million 10-inch tablet devices a year.

Also expanding is QD Vision, a Lexington, Mass.-based firm founded on chemistry developed at Massachusetts Institute of Technology. Its dots can be found in Sony’s Bravia line and are set to appear in TVs made by TCL, which is the third-largest TV maker after Samsung and LG.

Seth Coe-Sullivan, QD Vision’s chief technology officer and cofounder, explains that his firm and Nanosys use the same basic manufacturing technique: They decompose organocadmium and other compounds at high heat in the presence of surfactants and solvents. The resulting monomers nucleate and form nanocrystals. Size can be controlled stoichiometrically or by thermally quenching the growing crystals.

Where the two firms differ is the way in which they embed quantum dots in a consumer product. Nanosys works with companies such as 3M to create quantum-dot-containing films that are placed between the LED backlight and the LCDs in tablets and other displays. For example, the Asus quantum-dot-containing laptop, known as the NX500 Notebook PC, incorporates the 3M/Nanosys film.

QD Vision, in contrast, encapsulates its quantum dots in a polymer matrix inside a glass tube that is placed directly against the LED backlight. It’s a hot environment but one that the dots can withstand, Coe-Sullivan says, because of how they are synthesized and packaged.

QD Vision manufactures its dots in Lexington and ships them to a contractor in Asia to be packaged in the tubes. The contractor is in the process of quadrupling capacity to 4 million tubes per month, which is enough, Coe-Sullivan says, to supply a quarter of the world’s TV industry.

ON FIRE
The display in Amazon’s Kindle Fire HDX tablet is enhanced with quantum dots.
Credit: Amazon

09245-bus2-FireHDX2cxd

He argues that his firm’s tube approach is suited to TVs and other large displays, whereas a film works better with smaller tablets and laptops. So far, marketplace adoption bears this contention out. “I honestly don’t feel our products compete with each other,” Coe-Sullivan says.

Dow, however, is throwing down the gauntlet against both approaches. Using technology licensed from the British firm Nanoco, Dow is developing cadmium-free quantum dots. It is betting that the display industry is uneasy with the cadmium content of dots from Nanosys and QD Vision and that it will flock to a cadmium-free alternative.

In September, Dow announced that it will use the Nanoco technology to build the world’s first large-scale, cadmium-free quantum dot plant at its site in Cheonan, South Korea. When the plant opens in the first half of 2015, Dow says, it will enable the manufacture of millions of quantum dot TVs and other display devices.

Dow and Nanoco haven’t disclosed the active material in their quantum dots and declined an interview with C&EN. They acknowledge that the dots contain indium but insist that they aren’t indium phosphide, as their competitors claim.

The use of one heavy metal versus another might not seem to make a big difference environmentally. But in the European Union, cadmium is one of six substances regulated by the Restriction of Hazardous Substances, or RoHS, directive. Cadmium cannot be present in electronics at levels above 100 ppm without an exemption.

Larger amounts of cadmium are allowed in LED-containing displays under an exemption that expired on July 1. Late last year, in a consultation process moderated by Oeko-Institut (Institute for Applied Ecology), a German nonprofit, the major quantum dot players made their cases for why the expiring exemption should or shouldn’t be extended.

Nanosys, QD Vision, 3M, and others lobbied for extension to at least 2019, arguing that the benefits of cadmium-based quantum dots outweigh any potential harm. One big reason is that they lower energy consumption by devices, meaning less use of coal in power plants and fewer of the cadmium emissions that can come from burning coal.

In April, Oeko recommended to the EU that the exemption be extended—but only to July 1, 2017, in light of emerging technology that could reduce or eliminate the need for cadmium quantum dots. Industry executives expect the EU to adopt the recommendation by the end of the year.

In their submissions to the consultation process, Dow and Nanoco argued that no extension is necessary because cadmium-free dots are already here. In fact, the Korea Times recently reported that LG and Samsung plan to launch cadmium-free TVs in 2015 with quantum dots from Dow.

Coe-Sullivan says he’ll believe it when he sees it. “The idea that the product is just around the corner has been around for a long time,” he observes. Cadmium-free displays from LG and Samsung were expected to appear at the recent IFA electronics trade show in Berlin, he says, but ended up being a no-show.

The reason, according to cadmium dot proponents, is that indium-based dots have about half the energy efficiency and a narrower color range. “Cad-free today does not have the same performance as cadmium-containing quantum dots,” Coe-Sullivan says. QD Vision and Nanosys also contend that indium-containing quantum dots aren’t environmentally superior, pointing to indium phosphide’s presence on a list of substances being considered for inclusion in RoHS.

Meanwhile, Coe-Sullivan notes, QD Vision has moved away from the metal-alkyl precursors and phosphorus-containing solvents that can make quantum dot manufacturing hazardous. It now uses metal-carboxylate precursors and more benign alkane solvents. Last month, the shift won it one of the Environmental Protection Agency’s Presidential Green Chemistry Challenge Awards.

Chung, the DisplaySearch analyst, is watching the jousting between the cadmium and cadmium-free camps with interest, although he isn’t ready to predict a winner yet. Display makers are concerned about cadmium, he notes, yet they also have qualms about the lower efficiency of cadmium-free quantum dots.

Chung may not know which technology will prevail, but he is sure about one thing. “Now is the time for quantum dots to penetrate the market,” he says.  

Chemical & Engineering News
ISSN 0009-2347
Copyright © 2015 American Chemical Society
Advertisements

What Are Quantum Dots, and Why Do I Want Them in My TV?


Quantum dots glow a specific color when they are hit with any kind of light. Here, a vial of green quantum dots are activated by a blue LED backlight system.

Quantum dots glow a specific color when they are hit with any kind of light. Here, a vial of green quantum dots are activated by a blue LED backlight system.

If you look at the CES 2015 word cloud—a neon blob of buzz radiating from the Nevada desert, visible from space—much of it is a retweet of last year’s list. Wearables. 4K. The Internet of Things, still unbowed by its stupid name. Connected cars. HDR. Curved everything. It’s the same-old, same-old, huddled together for their annual #usie at the butt-end of a selfie stick.

But there at the margin, ready to photobomb the shot, is the new kid: quantum dot. It goes by other names, too, which is confusing, and we’ll get to that in a minute. Regardless of what you call it, QD was all over CES this year, rubbing shoulders with the 4K crowd. You may have heard people say it’s all hype. Those people can go pound sand. Quantum dot is gonna be the next big thing in TVs‎, bringing better image quality to cheaper sets.

A Quantum-Dot TV Is an LCD TV

The first thing to know is quantum-dot televisions are a new type of LED-backlit LCD TV. The image is created just like it is on an LCD screen, but quantum-dot technology enhances the color.

On an LCD TV, you have a backlight system, which is a bank of LEDs mounted at the edge of the screen or immediately behind it. That light is diffused, directed by a light-guide plate and beamed through a polarized filter. The photons then hit a layer of liquid crystals that either block the light or allow it to pass through a second polarized filter.

Where a Nanosys quantum-dot film sheet (QDEF) fits into an LCD display.

Before it gets to that second polarizer, light passes through a layer of red, blue, and green (and sometimes yellow) color filters. These are the subpixels. Electrical charges applied to the subpixels moderate the blend of colored light visible on the other side. This light cocktail creates the color value of each pixel on the screen.

With a quantum-dot set, there are no major changes to that process. The same pros and cons cited for LCD TVs also apply. You can have full-array backlit quantum-dot sets with local-dimming technology (Translation: good for image uniformity and deeper blacks). There can be edge-lit quantum-dot sets with no local dimming (Translation: thinner, but you may see light banding and grayer blacks). You can have 1080p quantum-dot sets, but you’re more likely to see only 4K quantum-dot sets because of the industry’s big push toward UltraHD/4K resolution.

But a Quantum-Dot TV Is Different

In a quantum-dot set, the changes start with the color of the backlight. The LEDs in most LCD TVs emit white light, but those in quantum-dot televisions emit blue light. Both types actually use blue LEDs, but they’re coated with yellow phosphor in normal LCD televisions and therefore emit white light.

Quantum dots can be arranged along the entire back of the display in a film insert or in a "quantum rail" alongside an edge-lit system. This is QD Vision's quantum rail insert alongside a TCL TV.

Here’s where the quantum dots come in. The blue LED light drives the blue hues of the picture, but red and green light is created by the quantum dots. The quantum dots are either arranged in a tube—a “quantum rail”—adjacent to the LEDs or in a sheet of film atop the light-guide plate.

Quantum dots have one job, and that is to emit one color. They excel at this. When a quantum dot is struck by light, it glows with a very specific color that can be finely tuned. When those blue LEDs shine on the quantum dots, the dots glow with the intensity of angry fireflies.

“Blue is an important part of the spectrum, and it’s the highest-energy portion—greater than red or green,” explains John Volkmann, chief marketing officer at QD Vision, which makes quantum dots for several TVs and monitors. “You start with high energy light and refract it to a lower energy state to create red or green… Starting with red or green would be pushing a rock uphill.”

Quantum dots are tiny, and their size determines their color. There are two sizes of dots in these TVs. The “big” ones glow red, and they have a diameter of about 50 atoms. The smaller ones, which glow green, have a diameter of about 30 atoms. There are billions of them in a quantum-dot TV.

This is a batch of red quantum dots being prepared in a 70-liter vat. It's lit with an ultraviolet flashlight, which is what makes the dots glow red.

If you observed quantum-dot light with a spectrometer, you would see a very sharp and narrow emission peak. Translation: Pure red and pure green light, which travels with the blue light through the polarizers, liquid crystals, and color filters.

Because that colored light is the good stuff, quantum dots have an advantage over traditional LCD TVs when it comes to vivid hues and color gamut. In a normal LCD, white light produced by the LEDs has a wider spectrum. It’s kind of dirty, with a lot of light falling in a color range unusable by the set’s color filters.

“A filter is a very lossy thing,” says Nanosys President and CEO Jason Hartlove. Nanosys makes film-based quantum-dot systems for several products. “When you purify the color using a color filter, then you will get practically no transmission through the filter. The purer the color you start with, the more relaxed the filter function can be. That translates directly to efficiency.”

So with a quantum-dot set, there is very little wasted light. You can get brighter, more-saturated, and more-accurate colors. The sets I saw in person at CES 2015 certainly looked punchier than your average LCD.

That Sounds Expensive

There’s no doubt that quantum-dot TVs will cost more than normal LCDs—especially because they’re likely to be 4K sets. But quantum-dot is getting a lot of buzz because its cheaper than OLED.

In most peoples’ eyes, OLED TVs are the best tech available. But they’re expensive to build and expensive to buy—you’re looking at $3,500 to as much as $20,000—and the manufacturing process differs in several key ways. That’s a big reason LG is the only company putting big money into building them.

Conversely, quantum-dot sets don’t require overhauling the LCD fabrication process, and they produce a much wider color gamut than traditional LCDs. They’re closer to OLED in color performance, and they also can get brighter. That’s important for HDR video.

“The attraction to the OEM is that this is a pure drop-in solution,” says Nanoco CEO Michael Edelman, whose company makes quantum-dot film in a licensing deal with Dow Chemical. “They remove a diffuser sheet in front of the light-guide plate and replace it with quantum-dot film. Nothing in the supply chain gets changed, nothing in the factory gets changed. They get, in some cases, better than OLED-type color at a fraction of the cost.”

As you’d expect, companies making film-based and tube-based solutions are touting each approach as superior. QD Vision claims its tube-based approach is easier and cheaper to implement, and it can boost the color performance of cheaper edge-lit LCD sets. According to QD Vision, the oxygen-barrier film needed for film-based dots is costly, which explains why Nanoco and Nanosys are partnering with Dow and 3M for that film.

Film-based suppliers say their method has the upper hand due to “light coupling,” or the ability to feed all that quantum-dot light directly into a light-guide plate. The film layer also purportedly works better with full-array backlight systems, which will be used in a lot of UHD and HDR TVs.

Super! So This Is OLED for Less Money?

Not entirely. Color gamut is important, but it’s only one aspect of picture quality. Because these are LCD sets, they won’t have the blackest blacks, super-wide viewing angles, and amazing contrast of OLED. And while the extra brightness and saturation makes onscreen colors really pop, all that luminance may create light bleeding.

Here's a sheet of quantum-dot film on top of a blue LED backlight system. The red and green quantum dots combine with blue light to produce a "pure" white that can be efficiently channeled by the set's color filters.

Some quantum dots also contain cadmium, which is toxic at high levels—think “factory emission” levels rather than “sealed tube or film in your TV” levels. Still, there are health and environmental concerns, especially if a bunch of quantum-dot TVs end up in landfills. The European Union restricts the use of cadmium in household appliances. Some quantum-dot producers are marketing their product as cadmium-free. QD Vision, which supplies quantum dots for TCL’s new flagship 4K TV, Sony’s well-reviewed 2013 Triluminos sets, and Philips and AOC monitors, still uses cadmium.

“There are only a couple of materials that deliver on the promise of quantum dots,” says QD Vision’s Volkmann. “The other is based on indium. Cadmium is superior with respect to delivering higher-quality color, meaning a broader color gamut. But also much more energy-efficient at converting blue light to other forms of light that allow you to fill out that spectrum. The folks making indium-based solutions like to paint cadmium as the bad guy… Cadmium is under observation by different regulatory agencies around the world, but it turns out indium is too.”

Nanosys, which produces both cadmium and cadmium-free quantum dots, agrees that cadmium-based dots are more efficient.

“Cadmium-based materials have a narrower spectral width,” says Nanosys’s Hartlove. “More pure color. And what that means is the other things the system has to do in order to keep that color pure, the burden on the rest of the system is reduced.”

Hartlove also says that cadmium may be a greener solution. The cad selenide crystal used in quantum dots isn’t as toxic as pure metallic cadmium, and the efficiency of their color-producing ways has benefits.

“The type of power we generate in the US from coal-based power plants throws cadmium into the atmosphere,” says Hartlove. “That’s one of the byproducts of burning coal. And you look at the net cadmium content over this whole lifecycle, and it turns out that cadmium sequestration is actually net better for the environment.”

Why Isn’t Everybody Calling It “Quantum Dot”?

Each manufacturer with a quantum-dot TV set seemingly has a different name for the technology. Samsung likes “nano-crystal semiconductors.” Sony has new Triluminos TVs that “incorporate the same benefits as quantum dots.” LG, TCL, Hisense, and Changhong are actually calling it quantum dot, which is nice.

“The term quantum dot is generic,” says Hartlove. “Each company kind of wants to grab this for their own and brand it their own way. That will probably lead to some consumer confusion… but I think most of the industry will converge on a way to describe this technology.”

There are slight differences between the technologies everyone’s using, but they’re variations on a theme. The differences center on whether the TVs are edge-lit or back-lit with quantum dots, and whether the systems use cadmium- or indium-based quantum dots.

Who Is Making Quantum Dots?

At this stage, three companies are the big players in the quantum-dot TV landscape.

QD Vision specializes in glass-tube “edge-lit” components, and its systems will be found in TCL TVs and monitors from Philips and AOC. It supplied the quantum-dot component for Sony’s 2013 Triluminos sets, but Sony recently ditched the company in favor of another.

Nanoco focuses on cadmium-free, film-based quantum dot systems. They have a licensing deal with Dow Chemical, and Dow is currently building a factory in South Korea to ramp up production of quantum-dot film. Nanoco’s cadmium-free technology will be found in LG’s quantum-dot TVs in 2015.

Nanosys is another film-based producer that has partnered with 3M on the film-sheet tech. It makes both cadmium-based and cadmium-free quantum dots. They are the company behind Amazon’s HDX 7 display and the Asus Zenbook NX500, and Samsung licenses the cadmium-free quantum-dot tech in its new SUHD 4K sets from Nanosys. Nanosys is also working with Panasonic, Hisense, TCL, Changhong, and Skyworth on future TVs.

When Can I Get One, and What Will It Cost?

The new TVs showcased at CES each year usually start hitting stores in the spring, but some higher-end models don’t arrive until the fall. That’s a little bit of a wait, but it’s probably for the best—there are UltraHD content-delivery complications to work out, anyway.

The TV we know the most about in terms of pricing is TCL’s 55-inch H9700, and we still don’t know much. It’s already available in China for around $2,000 U.S., and TCL representatives at CES hinted that it will be close to that mark when it hits the U.S.

Expect that to be at the low end of the quantum-dot price bracket; LG, Samsung, and Sony generally have pricy TVs, and similar 4K LCDs from last year—minus the quantum dots—went in the $2,000 to $3,000 range for a 55-incher. For this initial wave of quantum-dot TVs, most MSRPs will probably fall between $2,500 to $4,000 for a 55-inch 4K set.

QD Vision Receives New Funding Round: Advances Quantum Dot Technology for TV’s and Monitors: Steve Ward Named Executive Chairman


QD Vision 12b7ab45e82d26f423cd4d5650b1d58eJanuary 5th, 2015

 

Abstract:
QD Vision today announced significant new investments to meet surging demand for its Color IQ™ quantum dot technology for televisions and monitors. The new funding will help accelerate the growth of the company, particularly by expanding sales and marketing operations in China – the global center of TV manufacturing and consumption. The new funding will also be used to expand QD Vision’s product portfolio by extending its leading-edge color technologies to the fullest range of hardware and content platforms.

Graphen Sensor NewsImage_31004

Story:
QD Vision also announced the appointment of Steve Ward as the company’s Executive Chairman, with responsibility for driving global strategy and operations. Mr. Ward, who served as a member of QD vision’s Board of Directors, was previously the CEO of Lenovo, the international company formed by the merger of Lenovo of China and IBM’s PC business. Mr. Ward also has significant experience in building successful global technology businesses, including IBM and numerous startups.

“Today’s announcements underscore our confidence that 2015 is the year QD Vision brings the world’s best color to the mainstream,” said Seth Coe-Sullivan, Founder and Chief Technology Officer of QD Vision. “Under Steve Ward’s leadership, our company is well-positioned to deliver the world’s best color to a broad audience on a global scale.”

“QD Vision is a clear technology leader in an exciting new category that is about to explode,” said Steve Ward, newly appointed Executive Chairman of QD Vision. “I am honored to be given this opportunity to help the company bring its unique and valuable contributions to market.”

Nanoco (Quantum Dot Nano-Materials Manufacture) Ready to Roll


QDOTS imagesCAKXSY1K 8Quantum dots developer’s Dow deal a game-changer for digital displays.

The Manchester University spin-off develops and makes quantum dots, tiny, fluorescent semiconductors used to make next-generation electronics. Nanoco’s IP-protected manufacturing method avoids cadmium, a heavy metal banned in many countries, and its trademarked NanoDot technology is used in several applications; solid state lighting, solar panels, even some medical devices.

As we originally predicted, it is in digital displays where the biggest breakthrough has come thanks to a landmark global licensing deal with US giant Dow Chemical (DOW:NYSE) at the start of the year (23 Jan). Quantum dot LED (QLED) displays are set to become the next big trend in consumer electronics.

NANOCO GROUP - Comparison Line Chart (Rebased to first)

Market potential

A report in March from technology analyst Wintergreen Research predicts the QLED display market will hit $6.4 billion by 2019 from a standing start just a couple of years back. The report backs up our theory that once manufacturers learn to integrate quantum dots into products they will be falling over themselves to do so thanks to the technology’s lower energy use and cheaper manufacturing cost.

According to Wintergreen, Samsung (005930:KS) reckons QLED displays could cost half as much as LCD or organic LED (OLED) panels. It also estimates 80% better energy efficiency, for thinner devices with a sharper display.

TVs are a starting point, but expect QLED in smartphones and tablets too as device manufacturers desperately seek ways to defend market share in high margin top-of-the-range products.

As analysts at house broker Canaccord Genuity point out, an increasing number of industry participants share Dow Chemical’s and Nanoco’s confidence that quantum dots are on the cusp of widespread adoption in a $100 billion display market.

Sony (6758:T) already has launched the world’s first quantum dot TV using cadmium-based technology from Nanoco’s privately owned rival QD Vision. But since sales will be barred in many major markets, the US and European Union, mass market products look destined to follow the cadmium-free technology route. Nanoco is already expanding its factory in Runcorn, Cheshire from an annual 25kg capacity to 70kg, beyond initial plans to expand it to 40kg. It is rumoured to be eyeing a brand new set-up in Asia post the Dow deal, with Korea the hot tip.

Liberum sees year to July royalty-based revenues of £4 million rising to £4.6 million in 2014, before the really exciting sales flood in, hitting over £100 million inside five years from a licensing/royalty business model similar to that of UK chip champ ARM (ARM). That would imply over £90 million pre-tax profit thanks to 88% operating margins.

With cash burn running at around £5.5 million a year, its £12.5 million of cash pile should mean Nanoco is unlikely to tap investors for fresh funds. Liberum sees the shares hitting 260p over the next year, while Canaccord is even more optimistic, setting a 275p target price. That could be just scratching the surface of the shares’ longer-term profits potential.

 

Quantum Dot Markets: Emerging Commercial Technologies


NANOSPHERESPublished: August 14, 2013 Category: Advanced Materials Emerging Electronics

 

 

NanoMarkets believes that Quantum Dots (QDs) have good potential to be a dominant large display format technology in the near term, but will take some more time to find commercial applications in the small display segment. In addition, NanoMarkets believes that in the near to mid-term, the lighting industry is likely to witness a good number of commercial launches, particularly in the solid-state lighting (SSL) segment, in which QDs have the potential to replace LED phosphor-based lighting solutions.

Downstream suppliers of QD raw materials are likely to expand their manufacturing facilities in order to meet the growing demand for QDs from consumer electronics producers, particularly TV manufacturers, as well as research facilities and some SSL-based lighting solution providers.

The QD market can be broadly classified into two segments:

Displays employing QD technology in large (TVs) and small formats (smartphones, tablets, etc.) Although QD-based TVs have begun to emerge commercially, it will take some time for the market to realize their full potential. Meanwhile, small display formats are likely to test the commercial viability of QD-based solutions in their commercial products.

Solid-state lighting solutions, where QDs have begun to find applicability in personal electronic devices, such as smartphones and tablets, and exterior signage. However, certain pitfalls with regard to tuning the color range, producing a true white color, and high costs have limited the application of QDs in home and commercial lighting setups.

NanoMarkets expects the U.S. to be at the forefront of QD-related research activities, as evident from the presence of a wide network of QD research-based start-ups and the number of collaborative deals that some of these start-ups have struck with established raw materials suppliers and OEMs, particularly in the consumer electronic display segment.

QD TVs Emerge, While QD-Based Smartphones and Laptops Have Yet to Gain Commercial Acceptance

Large display segment: QD-based solutions have made significant inroads in large format displays such as TVs, primarily because of the versatile applicability of QDs in a wide range of display devices combined with their better color production, color purity, and power efficiency.

Large format QD-based display solutions are mostly licensed to OEMs by a few innovative start-ups, such as QD Vision, Nanosys, Nano Photonica, and Nanoco Group.

An early entrant, QD Vision, is likely to lead the market. The company has strong collaborations with several leading TV manufacturers. Two of its patented technologies hold significant potential:

• Using currently available QD technology for displays that require a backlight source, Sony has incorporated QD Vision’s proprietary Color IQ technology in its 55-inch Triluminous brand of LCD TVs.  These QDs emit pure green and pure red light and have superior color reproduction capabilities compared to those found in most commercially available TVs.

• A quantum dot light emitting diode (QLED) is a direct-emissive display technology that is likely to do away with the requirement for an underlying substrate and backlight source. The technology is currently on the verge of commercialization and is likely to find application in next-generation electronic displays because of its proven superiority to organic light emitting diodes (OLEDs) in terms of reduced manufacturing costs, better power efficiency, and the ability to emit pure colors.

In addition to Sony, other notable consumer electronics players that are vying for a sizable share of the large format QD display segment include:

• Samsung, which is currently working in collaboration with Nano Photonica to incorporate the latter’s proprietary S-QLED technology, which seems to promise low cost and versatility across all display sizes, into TVs that should reach the market in late 2014 or early 2015.

• LG, which has also been working with multiple entities that have patented QD technologies, such as Nanosys and QD Vision; however, there are uncertainties regarding the timeframe for commercial launch of any QD-based products.

• Sharp, which has reportedly been working on QD technology; however, nothing concrete has been officially confirmed by the company. It is a general concern among manufacturers to alter existing processes in order to accommodate commercial production of any product based on a new technology.

The same applies to the adoption of QD technology. In order to address such manufacturing concerns, Nanosys, in collaboration with 3M’s Optical Systems Division, has developed proprietary Quantum Dot Enhancement Film (QDEF) technology that is designed to replace the traditional LCD backlighting unit. This technology therefore offers TV manufactures a readymade solution for incorporating QDs into their existing manufacturing facilities with minimal incremental cost.

Despite rumors of a significant extended product development time, 3M has indicated that it expects to commercially roll out the QDEF-based solutions for OEMs offering TVs, smartphones, and tablets by the end of 2013. Due to the adaptive nature of the technology within the existing LCD manufacturing framework, QDEF could potentially replace other competing phosphor-based technologies and OLEDs in the next generation of TVs.

Small display segment: The flexibility and high energy efficiency of ultra-thin film QDs make these nanomaterials potentially valuable for small displays. However, despite this strong potential (including that of technologies such as QDEF (patented by Nanosys)), only a few commercial QD-based products have been developed for this segment. Some of the barriers to entry to this segment, which limit the participation in this industry, include the dominance of OLED technology in the market, the longer time required for commercialization of these products, and lack of initiatives to set up large-scale manufacturing facilities.

A few notable players pursuing the small display strategy include:

• Osram, which is one of the few suppliers of QD backlighting solutions (through its MicroSideled brand) that offer minimal color loss and high power efficiency for personal electronic devices, such as tablets, ultra-books, and smartphones.

• Sony, which is one of the few electronic OEMs that currently offers its proprietary QD-based display (Triluminous) in its Xperia range of smartphones and Vaio range of laptops. The entry of established players in the small display segment will likely spur additional research efforts and increase the scope of possible commercial launches.

 

Key concerns in the display industry: QDs are likely to face stiff competition from OLEDs, a technology in which some of the leading OEMs, such as Samsung, have already invested heavily. It is expected that Samsung and other OEMs will require some time to recoup their investments before shifting to a new technology such as QDs.

Some of the key business concerns in the display industry regarding QD-based solutions are:

• The role of start-ups and their IP positions,

• The race among OEMs to secure licensing deals, and

• The verified performance improvements that QDs provide compared to OLEDs.

The QD supplier community is typically comprised of technology start-ups with IP rights that either license their products to OEMs or directly sell to research facilities. Consumer electronics OEMs are likely to generate the maximum demand for QDs in the coming years. Thus, it makes sense for QD providers holding IP positions to work in collaboration with established raw material suppliers to the electronic display industry or directly with the OEMs, which typically have large distribution networks and marketing prowess.

Clearly, companies that hold IP positions in QD materials are likely to depend heavily on OEMs and other big raw material suppliers to gain market visibility.

However, firms such as QD Vision and Nanosys will have a significant advantage over other players because of their innovative product lines, which are flexible enough to serve different display segments. Moreover, with the commercial success of QD technology, established electronic display manufacturers are likely to select such strong suppliers in order to secure their QD raw material base. OEMs will, in fact, compete with one another to strike exclusive deals with leading QD material suppliers. Although product profiles are likely to expand over time, the competitive pressure will lead to some level of consolidation, with only the financially strong players emerging as successful suppliers of QD materials to the display industry.

While compared to OLEDS, QDs offer the manufacturing advantage of fitting into the existing backlighting units of LCD TVs; QDs must also offer dramatic performance enhancements over OLEDs in order to attract investment. Long product lifetimes and cost-effective large-scale manufacturing are likely the key factors that will make QD technology successful in the display industry in the near future.

Future outlook for the display industry: In the next two-three years, QDs are likely to dominate the LCD backlighting TV segment, while it will take four-five years to witness the commercial entry of large display products based on direct-emissive (pure QD) technologies, such as the QLED technology developed by QD Vision, that can be applied across a wide range of display formats, including ultra-thin products.

Although OLEDs are to some extent comparable to QDs in terms of their versatility, smart customization moves from QD material suppliers, such as those made by Nanosys with its QDEF technology, have the potential to place QDs at the forefront of next-generation large display products that are likely to hit the market in the mid-term. Moreover, the intent of big raw material suppliers, such as Dow Electronic Materials (DEM) and 3M, to serve the display segment with QD products in a big way should be considered a positive move by other OEMs and suppliers.

Other players are likely to follow suit, given the likely commercial launch of QD-based solutions from DEM (in collaboration with Nanoco Group) in the first half of 2014 and 3M (in collaboration with Nanosys) by the end of 2013. NanoMarkets believes that the large display manufacturers, such as Sony and Samsung, will play a significant role in the commercialization of QD products, although they are likely to make smaller investments in the QD space compared to those made in OLED technology.

Even so, NanoMarkets expects that commercialization in the large display segment will progress at a faster rate than that in the small display segment, in which manufacturers are likely to carefully gauge the market potential of QDs and follow policies similar to those adopted by the established players, such as Sony and Samsung.

QD-Based Solid State Lighting on the Verge of Commercialization, but Little Impact in Other Lighting Categories Solid-state lighting (SSL) segment:

In the solid-state lighting (SSL) segment, QLEDs hold significant promise in terms of commercial success, because QLED-based lighting solutions can be applied on flexible surfaces and offer better efficiency, a wider color range, and better color saturation than other competitive products, such as LED phosphors. In addition, the high costs associated with OLED manufacturing have kept this technology out of the reach of residential and commercial consumers, a fact that can actually play in favor of QLEDs in the near future.

Energy-saving cost benefits, low toxicity, and the ability to provide true incandescent light make QD-based SSLs a strong contender for new SSL solutions and potential replacements for existing LED phosphor-based SSLs.

As in the display segment, QD Vision has a significant first-mover advantage in the SSL segment. As early as 2009, the company demonstrated its patented ‘Quantum Light’ QD–based SSL technology in collaboration with Nexxus Lighting Inc., which incorporated the technology in its commercially available ‘Array’ series of lamps. QD Vision’s ‘Quantum Light’ technology, which offers better energy savings and a longer shelf-life than conventional halogen lamps, is ideal for downlight solutions typically used in commercial and residential settings.

While QD Vision heads the pack of QD solution providers, there are others that are likely to make their presence felt in the SSL domain with proprietary QD-based solutions:

Using NN Crystal’s proprietary QShift Coral technology, Renaissance Lighting has commercially launched downlight solutions that can be precisely controlled to emit pure light of a particular color.

Pacific Light Technologies, which is solely focused on developing toxic material-free QDs for the SSL industry, is likely to attract consumer attention once it is commercially launched.

Wisys Technology Foundation, working in collaboration with the University of Wisconsin, has also developed a proprietary QD-based SSL solution that is ready for market testing. These early advances should ideally incentivize other developers of QD-based SSL solutions to push their products from the research lab into consumers’ hands.

An increase in the number of QD-based offerings is critical for the success of the technology in the lighting sector, given that currently there are only a handful of organizations offering commercially available QD-based SSL products. It must be noted, however, that successful commercial launches of QD-based lighting solutions also depend heavily on the extent of the financial support received by the research organizations developing QD-based solutions.

Recognizing this fact, the U.S. government, through the Department of Energy (DOE), is providing financial grants to QD-based projects in order to move laboratory products to the commercial launch stage.

Some grant receivers include:

• The University of Buffalo, which is developing high-efficiency colloidal QD phosphors, and

• The University of California, which is developing QD phosphors for SSL applications.

Other lighting segments:

QD technology also has significant advantages over currently available LCD and OLED technologies in terms of better image performance and power efficiency in applications such as projectors, video walls, and digital signage. Trenton Systems is one firm that sees potential for QDs in such applications. The company is planning for the possible introduction of a QD-based video wall.

However, there are uncertainties with respect to the adoption rate of QD technology in these niche lighting segments, primarily due to the high product costs and the need to change existing manufacturing processes.

 

Key concerns in the lighting industry:

Although some QD material suppliers have achieved a head start in the SSL segment, there are reasons why a majority of the QD-based research activities have shied away from this segment.

The display industry has two key concerns about QD-based solutions:

• The expensive manufacturing processes for commercial products and

• The attractiveness of the business segment.

Commercial manufacturing processes for QD-based solid-state lighting solutions remain expensive and it will be some time before economies of scale can be achieved. This should prompt the development of cost-effective techniques for manufacturing general purpose lighting products.

In addition, the incremental performance benefits that QDs provide compared to conventional lighting solutions, such as CFLs and LEDs, will also be important factors deterring the rate of adoption of QDs by the lighting industry at large.

The competition for research dollars with other segments, particularly the lucrative display industry, is another major factor affecting the development of QD-based lighting solutions.

Hence, a successful foray into SSL and other residential and commercial lighting solutions will depend significantly on several key factors, including the development of cost-effective mass production capabilities and favorable government mandates for the adoption of energy efficient measures, such as the U.S. government’s emphasis on replacing 100 watt and 75 watt incandescent bulbs with 60 watt and 40 watt bulbs.

 

Future outlook for the lighting industry:

NanoMarkets believes that, in the lighting segment, SSL is likely to provide the maximum number of innovative opportunities for start-ups such as QD Vision and other QD materials producers.

It will be necessary, however, for major lighting industry OEMs to make such products commercially available. NanoMarkets is also of the opinion that some of the U.S. government-assisted QD-based SSL research projects are likely to gain commercial significance in the near to mid-term; however, other lighting segments are likely to wait and watch for radical innovations that will offer potential manufacturers a viable route to break into commercial markets.

At the same time, NanoMarkets thinks that QD materials firms should also look beyond traditional business segments and target niche lighting categories, such as projectors, video walls, and digital signage – business segments in which QD solutions can address the significant issue of high energy consumption.

QD Material Suppliers Likely to Benefit in the Mid-Term QD materials form the fundamental building blocks of any QD device.

These materials primarily consist of either heavy metal (HM)-based semiconductor materials or non-heavy metal (NHM)-based semiconductor materials. Typically, NHM-based QDs find use in biomedical applications, while HM-based QDs have been traditionally used in all other applications. However, growing concerns over the use of cadmium have led researchers to shift their focus on NHM-based QDs.

HM-based QD materials: QDs have been traditionally based on HM semiconductor materials, such as cadmium telluride, zinc sulfide, lead selenide, and zinc cadmium selenide. The supplier base remains fragmented, with OEMs having the option to choose from several patented QD materials.

The success of material suppliers is likely to be determined by their ability to mass produce QDs of consistently high quality.

Therefore, traditional suppliers, such as American Elements and M K Impex Corporation, will need to not only continue to differentiate themselves on the basis of their product variety, but also look to acquire mass production capabilities.

NanoMarkets believes that companies such as Nanoco Group and Quantum Materials Corporation, which hold IP positions related to QD materials and novel large-scale QD manufacturing techniques, are likely to have an edge over others because they will be in a position to strike bulk HM-based QD manufacturing deals with OEMs in the near to mid-term.

 NHM-based QD materials: Addressing growing environmental concerns over the use of certain heavy metals, such as cadmium and lead, has led to the emergence of NHM-based QDs. NHM-based products have begun to emerge only recently, however, and the supplier base with large-scale production capabilities is limited at this time. Some of the companies with patented mass production manufacturing techniques include:

U.K.-based Nanoco Corporation, which has modified its existing HM-based QD manufacturing techniques in order to produce NHM-based QDs with optical properties identical to the well-accepted properties of HM-based QDs. Nanoco has patented this mass production technique in order to cater to the growing demands of the electronic display industry.

• U.S.-based Quantum Materials Corporation, which by the end of 2013 will be mass producing an entire range of HM-based and NHM-based quantum dots using its patented continuous flow process. The company’s range of QD materials is likely to find applicability in various industries including display and lighting, but the firm’s focus has been on developing QD materials suited for the biomedical and solar energy segments. NanoMarkets believes that QD material providers in this highly specialized material segment are likely to ensure business viability through continuous IP-related research activities, which will enable these manufacturers to receive a steady stream of licensing revenues from OEMs in the mid-term.

However, NanoMarkets expects significant development efforts will also be directed towards the implementation of cost-effective large-scale manufacturing techniques, which will be the key to the commercialization of cost-effective and high-performance QDs.

Technology Gaps in Current-Generation QD Materials It must be noted that despite their proven potential, QDs have yet to become the material of choice for the display and lighting industries.

Although this trend can be partly explained by the fact that OEMs are hesitant to dramatically shift towards a new technology such as QDs before recouping their investments in other similar and promising technologies (OLEDs), there are also several technological barriers that QDs must overcome in order to prove their superiority over other rival technologies.

Some of the current material-related issues faced by QDs include:

• The suitability of current fabrication techniques to facilitate cost-effective mass production;

• The ease of manufacturing blue QDs; and

• Blinking issues with QDs.

Despite the emergence of several fabrication techniques for the effective manufacture of QDs, the majority of currently available fabrication techniques do not provide significant room for cost reduction in large-scale production.

Research efforts to develop new fabrication techniques or modify existing techniques are highly desired. Until a cost-effective fabrication technique is developed, QDs may not be able to make the leap to commercial success.

With respect to display solutions, the majority of current-generation QDs is likely to find initial applicability in the LED backlighting space. However, the difficulty in producing blue QDs on a consistent basis is a major cause of concern for LED and LCD TV manufacturers.

In addition, because blue QDs are likely to be smaller than red QDs, blue and green variants of blue QDs require manufacturing techniques that make them visible to the human eye. Thus, QD materials manufacturers must develop an optimal manufacturing process for blue QDs – an effort that is likely to require strong collaborations between the materials suppliers and OEMs.

Furthermore, QD manufacturers have in general been struggling to simultaneously ensure uniform size and narrow emission peaks in order to prevent the QDs from blinking on and off.

Although a potential solution to this problem has been achieved by MIT researchers, the suitability of the new technique at commercial scale has yet to be verified.

Additional advances in technology are likely to solve some of the other existing problems with QDs in the coming years, leading to increased applicability of the technology.

In the immediate future, the QD industry is likely to focus primarily on the large display market, in which QDs are expected to be extensively incorporated in the backlighting units of LCD and LED-based TVs.

Moreover, NanoMarkets believes that the development of cost-effective mass production techniques will surely attract established OEMs that would like to harness the benefits of QDs in a variety of other applications ranging from direct-emissive QD TVs and smartphones to solid-state lighting.

However, NanoMarkets also expects that the potential for QD technology to replace OLEDs (in the large display segment) and LEDs and CFLs (in the lighting segment) will largely depend on demonstration of the long-term performance enhancements offered by QDs compared to these rival technologies, particularly in terms of their reduced manufacturing cost, enhanced power efficiency and color production, longer lifetimes, and flexibility.

*** End of Report: NanoMarkets: “Key Quantum Dot Markets

Note to Readers: To read more about a recent ‘Frost and Sullivan Award Winner’ in the advanced quantum dot (“QD”) manufacturing market, Frost & Sullivan recognizes Quantum Materials Corporation (“QMC”) with the 2012 North American Frost & Sullivan Award for Enabling Technology.

Read the Full Release online here:

http://www.frost.com/prod/servlet/press-release.pag?docid=271152906

 

MOUNTAIN VIEW, Calif. – Thursday, December 20, 2012 – Based on its recent analysis of the advanced quantum dot (“QD”) manufacturing market, Frost & Sullivan recognizes Quantum Materials Corporation (“QMC”) with the 2012 North American Frost & Sullivan Award for Enabling Technology.

QMC’s technology, employing an innovative tetrapod quantum dot continuous-flow chemistry process addresses the major challenges—low  production and corresponding high manufacturing cost—that have held back the wide-spread adoption of QD technology by major industries.

QMC’s process enables bulk manufacturing (95 percent to 97 percent full tetrapod yield) of highly efficient tetrapod-shaped QDs that have 4 arms on the QD core to enable better electrical conductivity compared to current QD technology.

The structure and size of the resulting Tetrapod QDs are highly uniform, which enables the narrow bandwidth light extraction accuracy of QMC’s quantum dots to be significantly higher than QDs manufactured through batch colloidal synthesis.

“Characteristics such as high quantum yield, smaller size and high band gap tunability make QDs an ideal platform technology for many emerging applications, such as solar energy, sensors, solid state lighting, quantum computers, and QD lasers,” said Frost & Sullivan Research Analyst Shyam Krishnan. “However, manufacturing inefficiencies of complicated, expensive synthesis processes have limited their adoption.”

(excerpt)

” …. In short, QMC’s technology has eliminated most of the industrial challenges facing large-scale adoption of QD technology. Moreover, the company’s unique synthesis eliminates conventionally used solvents, replacing them with cheaper and less toxic solvents that reduce the cost and improve the effectiveness of the process.

A major advantage of QMC’s Tetrapod QD manufacturing technique is its flexibility; it can fabricate Tetrapod QDs from 12 different elements, which allows for RoHS compliance,” observed Krishnan. “The process also allows for the width and length of the Tetrapod QD’s arms to be fine-tuned for any desired application. For example, short QD arms for biotech applications, and longer QD arms to improve electron transport in solar cells.”

 *** End of ‘Frost and Sullivan Release

 

 

 

 

Global Quantum Dots (QD) Market worth of $7480.25 Million by 2022


Montreal, Canada | Posted on May 21st, 2012

QDOTS imagesCAKXSY1K 8ELECTRONICS.CA PUBLICATIONS, the electronics industry market research and knowledge network, announces the release of a comprehensive global report on Quantum Dots market.

 

 

According to the report titled, “Quantum Dots (QD) Market – Global Forecast & Analysis 2012 – 2022”  the total market for Quantum dots is expected to reach $7480.25 million ($7.48 Billion) by 2022, at a CAGR of 55.2% from 2012 to 2022.
Quantum Dots (QD) is the most advanced area of “semiconductor nanoparticles”, which is undergoing massive research. QDs are semiconductor nanoparticles, and, as the name suggests, have size from 2 nm to 10 nm. Due to their miniature property; they are highly versatile and flexible. The uniqueness of QD material lays in the fact that its power intensity depends on the input source and size of QD.

There are several ways to confine excitons in semiconductors, resulting in different methods to produce quantum dots. In general, quantum wires, wells, and dots are grown by advanced epitaxial techniques in nanocrystals produced by chemical methods or by ion implantation, or in nanodevices made by state-of-the-art lithographic techniques.
In the present scenario of QD technology market, Healthcare is the only industry, which has gained significant market share. Healthcare needs high precision in tissue labeling, cancer therapy, tumor detection, etc. and QD-based devices work for the same.
Lighting industry is huge; and after the introduction of efficient lighting like LED, this industry has taken a huge leap. LED lighting and fixtures market is growing by leaps and bounds since the last few years and expected to expand further. Now companies are looking for the alternate technology for LED lighting. QD lighting will fulfill the need; it is highly efficient and cost-effective. QD Vision has collaborated with Nexxus Lighting to launch its first QD LED light, and soon it will capture the market. Likewise, the company is also working on QD display.
QD technology will play a crucial role in solar energy-oriented industry as well. Researchers have developed QD-based solar cell, which is 50% as efficient as conventional solar cell. University of Toronto has achieved an efficiency of 4.2% conversion with solar cell based on colloidal QDs (CQD). Researchers are also working on QD-based paint that can be applied to panels or walls to capture solar energy.
Global Quantum Dots Market for technology-products and applications is expected to reach $7480.25 million by 2022, at an estimated CAGR of 55.2% from 2012 to 2022. Americas are holding a leadership position in QD technology market on the whole; followed by Europe and APAC. In the market of ROW, Middle East and Africa are the largest contributors.
Details of the new report, table of contents and ordering information can be found on Electronics.ca Publications’ web site.  View the report:

http://www.electroiq.com/articles/sst/2012/05/quantum-dots-see-55-cagr-on-led-display-other-applications.html

 

Global Quantum Dots Market to Grow by 54.29% CAGR


QDOTS imagesCAKXSY1K 8TechNavio’s analysts forecast the Global Quantum Dots market to grow at a CAGR of 54.29 percent over the period 2012-2016. One of the key factors contributing to this market growth is the increasing number of quantum dots-based products.

The Global Quantum Dots market has also been witnessing the increasing adoption of quantum dots by life sciences and biomedical communities. However, the high cost of quantum dots could pose a challenge to the growth of this market.

TechNavio’s report, the Global Quantum Dots Market 2012-2016, has been prepared based on an in-depth market analysis with inputs from industry experts. The report covers the Americas, and the EMEA and APAC regions; it also covers the Global Quantum Dots market landscape and its growth prospects in the coming years. The report also includes a discussion of the key vendors operating in this market.

The key vendors dominating this market space are Life Technologies corp., eBioscience Inc., Ocean Nanotech LLC., and QD Vision Inc.

The other vendors mentioned in the report are Nanoco Technologies Ltd., Nanosys Inc., Selah Technologies Inc., Samsung Electronics Co. Ltd., Altair Nanotechnologies Inc., Evident Technologies Inc., InVisage Technologies Inc., LG Display Co. Ltd., Microvision Inc., Microoled, Nano Axis LLC, NN-labs Inc., Nexxus Lighting Inc., QD Laser Inc., Quantum Material Corp., Sigma-Aldrich Co. LLC, Solexant Corp., and Voxtel Inc.

Why quantum dots can join every aspect of everyday life


QDOTS imagesCAKXSY1K 8Nanotechnology is often confined to niche products, but quantum dots are so versatile they could be used in everything from light bulbs to laptops.

 

 

 

 

Sheet of semiconductor crystals

Tiny bits of semiconductor crystals – so-called quantum dots – have such remarkable properties that scientists think they will soon be used in everything from light bulbs to the design of ultra-efficient solar cells. Photograph: Science Photo Library

The properties of a material were once thought to be defined only by its chemical composition. But size matters too, especially for semiconductors. Make crystals of silicon small enough – less than 10 nanometres – and their tiny dimensions can start to dictate how the atoms behave and react in the presence of other things.

These tiny bits of semiconductor crystals – so-called quantum dots – have such remarkable, novel properties that scientists think they will soon be used in everything from light bulbs to imaging of cancer cells or in the design of ultra-efficient solar cells.

Semiconductors such as silicon or indium arsenide are chosen to build electronic circuits because of the discrete energy levels at which they can give off electrons or photons. This makes them useful in building switches, transistors and other devices. It was once thought these energy levels – known as band gaps – were fixed. But shrinking the physical size of the semiconductor material to quantum-dot level seems able to change the band gaps, altering the wavelengths of light the material can emit or changing the energy it takes to change a material from an insulator to a conductor.

Instead of looking for brand new materials to build different devices, then, quantum dots make it possible to use a single type of semiconductor to produce a range of different characteristics. Researchers could tune dots made from silicon to emit a range of different colours in different situations, for example, instead of having to use a range of materials with different chemical compositions.

“The main application for quantum dots at the moment is biological tagging of cells,” says Paul O’Brien, a professor of inorganic materials at the University of Manchester and co-founder of Nanoco Technologies a quantum dot manufacturer also based in Manchester. They are used in the same way as fluorescent dyes, to label agents, he says, but with the advantage that a single laser source can be used to illuminate many different tags each with a specific wavelength.

By attaching different types of quantum dots to proteins that target and attach to specific cell types in the body, these bits of semiconductor can be used by doctors to monitor different kinds of cells. When a laser is then directed on to tagged cells, doctors can see what colour they glow.

The ability to shine also makes quantum dots well suited to produce white light. Existing white bulbs based on low energy light emitting diode (LED) technology tend to produce a garish and bluish form of light that notoriously feels cold, says O’Brien. This is because these LEDs use a phosphor that produces an artificial white light that contains less red wavelengths than natural white light. By embedding quantum dots into a film that is placed over a bulb containing blue LEDs, it is possible to get a much warmer colour of white light. The blue light  from the LED stimulates the quantum dots which, in turn, emit light in a range of colours. Provided you have chosen your dots carefully, these will combine to form white light.

The first of these quantum dot lights hit the market in 2010, a partnership between QD Vision, an MIT spinout in Lexington, Massachusetts, and Nexxus Lighting of Charlotte, North Carolina.

Backlights for laptops, tablets and mobile devices are next in line, and they should appear in products before the end of 2012 says VJ Sahi, head of corporate development at materials design company Nanosys of Palo Alto, California. Besides the colour advantages, quantum-dot-based backlights can be three times more efficient than traditional backlights.

Eventually, says Sahi, quantum dots will do more than just light up displays. The long-term aim is use them to create each red, green and blue sub-pixel that makes up a coloured display. This should produce much brighter colours and consume less power than LCD or even the latest state-of-the-art organic LED (OLED) displays. They should also have no problems with viewing angles, he adds.

The interesting properties of quantum dots come from the fact that they behave like tuning forks for photons, a result of a phenomenon called confinement. At less than 10 nanometres in size – about 50 atoms – they fall within the dimensions of a critical quantum characteristic of the material known as the exciton Bohr radius. The energy levels of electrons within the material’s atoms are constrained and, when a photon or electron hits an atom and excites it, the atom re-emits the energy as a photon of a very specific energy level.

Quantum dots also have another trick up their sleeve. Besides converting photons of one energy into photons of another, they can also be used to release electrons and create electrical currents: in other words they can be used to make solar cells. Arthur Nozik at the National Renewable Energy Laboratory in Boulder, Colorado, says that quantum-dot solar cells would be much more efficient at converting the energy from photons and therefore boost the amount of power they can produce.

Why quantum dots can join every aspect of everyday life


nanomanufacturing-2Nanotechnology is often confined to niche products, but quantum dots are so versatile they could be used in everything from light bulbs to laptops.

 

The properties of a material were once thought to be defined only by its chemical composition. But size matters too, especially for semiconductors. Make crystals of silicon small enough – less than 10 nanometres – and their tiny dimensions can start to dictate how the atoms behave and react in the presence of other things.

These tiny bits of semiconductor crystals – so-called quantum dots – have such remarkable, novel properties that scientists think they will soon be used in everything from light bulbs to imaging of cancer cells or in the design of ultra-efficient solar cells.

Semiconductors such as silicon or indium arsenide are chosen to build electronic circuits because of the discrete energy levels at which they can give off electrons or photons. This makes them useful in building switches, transistors and other devices. It was once thought these energy levels – known as band gaps – were fixed. But shrinking the physical size of the semiconductor material to quantum-dot level seems able to change the band gaps, altering the wavelengths of light the material can emit or changing the energy it takes to change a material from an insulator to a conductor.

Instead of looking for brand new materials to build different devices, then, quantum dots make it possible to use a single type of semiconductor to produce a range of different characteristics. Researchers could tune dots made from silicon to emit a range of different colours in different situations, for example, instead of having to use a range of materials with different chemical compositions.

Sheet of semiconductor crystals

Tiny bits of semiconductor crystals – so-called quantum dots – have such remarkable properties that scientists think they will soon be used in everything from light bulbs to the design of ultra-efficient solar cells. Photograph: Science Photo Library

“The main application for quantum dots at the moment is biological tagging of cells,” says Paul O’Brien, a professor of inorganic materials at the University of Manchester and co-founder of Nanoco Technologies a quantum dot manufacturer also based in Manchester. They are used in the same way as fluorescent dyes, to label agents, he says, but with the advantage that a single laser source can be used to illuminate many different tags each with a specific wavelength.

By attaching different types of quantum dots to proteins that target and attach to specific cell types in the body, these bits of semiconductor can be used by doctors to monitor different kinds of cells. When a laser is then directed on to tagged cells, doctors can see what colour they glow.

The ability to shine also makes quantum dots well suited to produce white light. Existing white bulbs based on low energy light emitting diode (LED) technology tend to produce a garish and bluish form of light that notoriously feels cold, says O’Brien. This is because these LEDs use a phosphor that produces an artificial white light that contains less red wavelengths than natural white light. By embedding quantum dots into a film that is placed over a bulb containing blue LEDs, it is possible to get a much warmer colour of white light. The blue light  from the LED stimulates the quantum dots which, in turn, emit light in a range of colours. Provided you have chosen your dots carefully, these will combine to form white light.

The first of these quantum dot lights hit the market in 2010, a partnership between QD Vision, an MIT spinout in Lexington, Massachusetts, and Nexxus Lighting of Charlotte, North Carolina.

Backlights for laptops, tablets and mobile devices are next in line, and they should appear in products before the end of 2012 says VJ Sahi, head of corporate development at materials design company Nanosys of Palo Alto, California. Besides the colour advantages, quantum-dot-based backlights can be three times more efficient than traditional backlights.

Eventually, says Sahi, quantum dots will do more than just light up displays. The long-term aim is use them to create each red, green and blue sub-pixel that makes up a coloured display. This should produce much brighter colours and consume less power than LCD or even the latest state-of-the-art organic LED (OLED) displays. They should also have no problems with viewing angles, he adds.

The interesting properties of quantum dots come from the fact that they behave like tuning forks for photons, a result of a phenomenon called confinement. At less than 10 nanometres in size – about 50 atoms – they fall within the dimensions of a critical quantum characteristic of the material known as the exciton Bohr radius. The energy levels of electrons within the material’s atoms are constrained and, when a photon or electron hits an atom and excites it, the atom re-emits the energy as a photon of a very specific energy level.

Quantum dots also have another trick up their sleeve. Besides converting photons of one energy into photons of another, they can also be used to release electrons and create electrical currents: in other words they can be used to make solar cells. Arthur Nozik at the National Renewable Energy Laboratory in Boulder, Colorado, says that quantum-dot solar cells would be much more efficient at converting the energy from photons and therefore boost the amount of power they can produce.

Such applications are many years from becoming commercial reality. But they serve to demonstrate that no material technology stands still; sometimes all you have to do is cut it down to size.

 For More on How “Nanotechnology” and “Quantum Dots” Will Impact the Future, Go To:

10 Ways Nano-Manufacturing Will Alter Industry

https://genesisnanotech.wordpress.com/2013/03/30/10-ways-nanomanufacturing-will-alter-industry/