‘Artificial leaf’ concept inspires research into solar-powered fuel production: Rice University


A schematic and electron microscope cross-section show the structure of an integrated, solar-powered catalyst to split water into hydrogen fuel and oxygen. The module developed at Rice University can be immersed into water directly to produce fuel when exposed to sunlight. Credit: Jia Liang/Rice University

Rice University researchers have created an efficient, low-cost device that splits water to produce hydrogen fuel.

The platform developed by the Brown School of Engineering lab of Rice materials scientist Jun Lou integrates catalytic electrodes and  that, when triggered by sunlight, produce electricity. The current flows to the catalysts that turn water into hydrogen and oxygen, with a sunlight-to-hydrogen efficiency as high as 6.7%.

This sort of catalysis isn’t new, but the lab packaged a  layer and the electrodes into a single module that, when dropped into water and placed in sunlight, produces hydrogen with no further input.

The  introduced by Lou, lead author and Rice postdoctoral fellow Jia Liang and their colleagues in the American Chemical Society journal ACS Nano is a self-sustaining producer of  that, they say, should be simple to produce in bulk.

“The concept is broadly similar to an artificial leaf,” Lou said. “What we have is an integrated module that turns sunlight into electricity that drives an electrochemical reaction. It utilizes water and sunlight to get chemical fuels.”

Perovskites are crystals with cubelike lattices that are known to harvest light. The most efficient perovskite  produced so far achieve an efficiency above 25%, but the materials are expensive and tend to be stressed by light, humidity and heat.

“Jia has replaced the more expensive components, like platinum, in perovskite solar cells with alternatives like carbon,” Lou said. “That lowers the entry barrier for commercial adoption. Integrated devices like this are promising because they create a system that is sustainable. This does not require any external power to keep the module running.”

Liang said the key component may not be the perovskite but the polymer that encapsulates it, protecting the module and allowing to be immersed for long periods.

“Others have developed catalytic systems that connect the solar cell outside the water to immersed electrodes with a wire,” he said. “We simplify the system by encapsulating the perovskite layer with a Surlyn (polymer) film.”

The patterned film allows sunlight to reach the solar cell while protecting it and serves as an insulator between the cells and the electrodes, Liang said.

“With a clever system design, you can potentially make a self-sustaining loop,” Lou said. “Even when there’s no sunlight, you can use stored energy in the form of chemical fuel. You can put the hydrogen and oxygen products in separate tanks and incorporate another module like a fuel cell to turn those fuels back into electricity.”

The researchers said they will continue to improve the encapsulation technique as well as the solar themselves to raise the efficiency of the modules.

More information: Jia Liang et al, A Low-Cost and High-Efficiency Integrated Device toward Solar-Driven Water Splitting, ACS Nano (2020). DOI: 10.1021/acsnano.9b09053

Journal information: ACS Nano

Provided by Rice University

Super Secret Perovskite Solar Cell Company Bursts Out Of Stealth Mode


HPT has collaborated with NREL on perovskite ink for solar cells, like this one developed by NREL researcher David Moore (Photo by Dennis Schroeder, NREL).

For the past six years, a major US oil and gas holding company has been collaborating with the National Renewable Energy Lab on new breakthrough perovskite solar cell research. What a twist!

The effort has been conducted through a relatively new division of the firm and it hasn’t attracted much attention, except that earlier this month they finally let something slip on the newswires and now the cat’s out of the bag.

Oil Company Hearts Perovskite Solar Cells

The holding company in question is Hunt Consolidated, Inc., parent of the 80-year-old privately held global oil and gas leader Hunt Oil and of a somewhat lesser known entity called Hunt Perovskite Technologies.

So, why has a major fossil fuel company been collaborating with NREL on cutting edge research leading to the next generation of low cost solar cells?

After all, other global oil and gas stakeholders are venturing into renewable energy. However, they are mainly focused on market-proven technologies that don’t disrupt their fossil fuel business, at least not for the time being.

Hunt’s new perovskite research is a whole ‘nother kettle of fish. It could have a profound, widespread impact on the energy marketplace and accelerate the transition from fossil fuels to renewables.

That’s because perovskite technology can push down solar costs far below today’s costs. Perovskite solar cells are also lighter and more flexible, which means they have a greater range of application.

For a bonus, perovskite solar cells can be “printed” with a relatively conventional high-volume manufacturing process.

Perovskite solar cells are only just beginning to edge out of the laboratory, now that researchers have finally worked out the kinks. Once they hit the shelves, they will kick the global solar market into a whole new level of activity.

As for why Hunt, last week Forbestook a crack at the mystery and noted that the current head of the family business, Hunter L. Hunt, spent the past 10 years creating and then spinning off a new high voltage power line company.

That venture, along with the company’s investment arm Hunt Energy Enterprises, indicates that Hunt Oil is looking more holistically at new high tech opportunities in the energy market aside from just digging up stuff out of the ground.

More & Better Perovskite Solar Cells

The main challenge with perovskite as a solar cell material is durability, and researchers have been trying various formulas to improve durability without sacrificing too much solar conversion efficiency.

Hunt Perovskite Technologies launched in 2013 with a focus on the perovskite durability problem, as a corporate partner of NREL.

The work came to fruit late last year, when Hunt was able to demonstrate an ink-based manufacturing process for its new solar cell, to the satisfaction of the International Electrotechnical Commission. According to Hunt, the new solar cell exceeds IEC standards for temperature, humidity, white light and ultraviolet stress while achieving a fairly impressive solar conversion efficiency of 18%.

Legacy companies like Hunt are not going to shed their fossil fuel interests willy-nilly, but in a press statement Hunter Hunt indicated that his family business is prepping for change.

“We strategically chose to develop perovskite solar several years ago; we envisioned its strategic importance as an innovative new energy technology in addressing the world’s energy needs for the future, as well playing a part in combating climate change,” he said.  “As part of the global energy transition that is occurring, our solar team is hoping to make a meaningful contribution.”

MIT – Researchers develop a roadmap for growth of new solar cells – Could become Competitive with Silicon


MIT-Scaling-Perovskite_0Perovskites, a family of materials defined by a particular kind of molecular structure as illustrated here, have great potential for new kinds of solar cells. A new study from MIT shows how these materials could gain a foothold in the solar marketplace. Image: Christine Daniloff, MIT

Starting with higher-value niche markets and then expanding could help perovskite-based solar panels become competitive with silicon

Materials called perovskites show strong potential for a new generation of solar cells, but they’ve had trouble gaining traction in a market dominated by silicon-based solar cells. Now, a study by researchers at MIT and elsewhere outlines a roadmap for how this promising technology could move from the laboratory to a significant place in the global solar market.

The “technoeconomic” analysis shows that by starting with higher-value niche markets and gradually expanding, solar panel manufacturers could avoid the very steep initial capital costs that would be required to make perovskite-based panels directly competitive with silicon for large utility-scale installations at the outset. Rather than making a prohibitively expensive initial investment, of hundreds of millions or even billions of dollars, to build a plant for utility-scale production, the team found that starting with more specialized applications could be accomplished for more realistic initial capital investment on the order of $40 million.

The results are described in a paper in the journal Joule by MIT postdoc Ian Mathews, research scientist Marius Peters, professor of mechanical engineering Tonio Buonassisi, and five others at MIT, Wellesley College, and Swift Solar Inc.

Solar cells based on perovskites — a broad category of compounds characterized by a certain arrangement of their molecular structure — could provide dramatic improvements in solar installations. Their constituent materials are inexpensive, and they could be manufactured in a roll-to-roll process like printing a newspaper, and printed onto lightweight and flexible backing material. This could greatly reduce costs associated with transportation and installation, although they still require further work to improve their durability. Other promising new solar cell materials are also under development in labs around the world, but none has yet made inroads in the marketplace.

“There have been a lot of new solar cell materials and companies launched over the years,” says Mathews, “and yet, despite that, silicon remains the dominant material in the industry and has been for decades.”

Why is that the case? “People have always said that one of the things that holds new technologies back is that the expense of constructing large factories to actually produce these systems at scale is just too much,” he says. “It’s difficult for a startup to cross what’s called ‘the valley of death,’ to raise the tens of millions of dollars required to get to the scale where this technology might be profitable in the wider solar energy industry.”

But there are a variety of more specialized solar cell applications where the special qualities of perovskite-based solar cells, such as their light weight, flexibility, and potential for transparency, would provide a significant advantage, Mathews says. By focusing on these markets initially, a startup solar company could build up to scale gradually, leveraging the profits from the premium products to expand its production capabilities over time.

Describing the literature on perovskite-based solar cells being developed in various labs, he says, “They’re claiming very low costs. But they’re claiming it once your factory reaches a certain scale. And I thought, we’ve seen this before — people claim a new photovoltaic material is going to be cheaper than all the rest and better than all the rest. That’s great, except we need to have a plan as to how we actually get the material and the technology to scale.”

As a starting point, he says, “We took the approach that I haven’t really seen anyone else take: Let’s actually model the cost to manufacture these modules as a function of scale. So if you just have 10 people in a small factory, how much do you need to sell your solar panels at in order to be profitable? And once you reach scale, how cheap will your product become?”

The analysis confirmed that trying to leap directly into the marketplace for rooftop solar or utility-scale solar installations would require very large upfront capital investment, he says. But “we looked at the prices people might get in the internet of things, or the market in building-integrated photovoltaics. People usually pay a higher price in these markets because they’re more of a specialized product. They’ll pay a little more if your product is flexible or if the module fits into a building envelope.” Other potential niche markets include self-powered microelectronics devices.

Such applications would make the entry into the market feasible without needing massive capital investments. “If you do that, the amount you need to invest in your company is much, much less, on the order of a few million dollars instead of tens or hundreds of millions of dollars, and that allows you to more quickly develop a profitable company,” he says.

“It’s a way for them to prove their technology, both technically and by actually building and selling a product and making sure it survives in the field,” Mathews says, “and also, just to prove that you can manufacture at a certain price point.”

Already, there are a handful of startup companies working to try to bring perovskite solar cells to market, he points out, although none of them yet has an actual product for sale. The companies have taken different approaches, and some seem to be embarking on the kind of step-by-step growth approach outlined by this research, he says. “Probably the company that’s raised the most money is a company called Oxford PV, and they’re looking at tandem cells,” which incorporate both silicon and perovskite cells to improve overall efficiency. Another company is one started by Joel Jean PhD ’17 (who is also a co-author of this paper) and others, called Swift Solar, which is working on flexible perovskites. And there’s a company called Saule Technologies, working on printable perovskites.

Mathews says the kind of technoeconomic analysis the team used in its study could be applied to a wide variety of other new energy-related technologies, including rechargeable batteries and other storage systems, or other types of new solar cell materials.

“There are many scientific papers and academic studies that look at how much it will cost to manufacture a technology once it’s at scale,” he says. “But very few people actually look at how much does it cost at very small scale, and what are the factors affecting economies of scale? And I think that can be done for many technologies, and it would help us accelerate how we get innovations from lab to market.”

The research team also included MIT alumni Sarah Sofia PhD ’19 and Sin Cheng Siah PhD ’15, Wellesley College student Erica Ma, and former MIT postdoc Hannu Laine. The work was supported by the European Union’s Horizon 2020 research and innovation program, the Martin Family Society for Fellows of Sustainability, the U.S. Department of Energy, Shell, through the MIT Energy Initiative, and the Singapore-MIT Alliance for Research and Technology.

‘Self-healing’ polymer brings perovskite solar tech closer to market


selfhealingp
This perovskite solar module is better able to contain the lead within its structure when a layer of epoxy resin is added to its surface. This approach to tackling a long-standing environmental concern helps bring the technology closer to commercialization. Credit: OIST

A protective layer of epoxy resin helps prevent the leakage of pollutants from perovskite solar cells (PSCs), according to scientists from the Okinawa Institute of Science and Technology Graduate University (OIST). Adding a “self-healing” polymer to the top of a PSC can radically reduce how much lead it discharges into the environment. This gives a strong boost to prospects for commercializing the technology.

With atmospheric carbon dioxide levels reaching their highest recorded levels in history, and  continuing to rise in number, the world is moving away from legacy energy systems relying on fossil fuels towards renewables such as solar. Perovskite solar technology is promising, but one key challenge to commercialization is that it may release pollutants such as  into the environment—especially under .

“Although PSCs are efficient at converting sunlight into electricity at an affordable cost, the fact that they contain lead raises considerable environmental concern,” explains Professor Yabing Qi, head of the Energy Materials and Surface Sciences Unit, who led the study, published in Nature Energy.

“While so-called ‘lead-free’ technology is worth exploring, it has not yet achieved efficiency and stability comparable to lead-based approaches. Finding ways of using lead in PSCs while keeping it from leaking into the environment, therefore, is a crucial step for commercialization.”

Testing to destruction

Qi’s team, supported by the OIST Technology Development and Innovation Center’s Proof-of-Concept Program, first explored encapsulation methods for adding protective layers to PSCs to understand which materials might best prevent the leakage of lead. They exposed cells encapsulated with different materials to many conditions designed to simulate the sorts of weather to which the cells would be exposed in reality.

They wanted to test the solar cells in a worst-case weather scenario, to understand the maximum lead leakage that could occur. First, they smashed the  using a large ball, mimicking extreme hail that could break down their structure and allow lead to be leaked. Next, they doused the cells with acidic water, to simulate the rainwater that would transport leaked lead into the environment.

Using mass spectroscopy, the team analyzed the acidic rain to determine how much lead leaked from the cells. They found that an epoxy  layer allowed only minimal lead leakage—orders of magnitude lower than the other materials.
'Self-healing' polymer brings perovskite solar tech closer to market
Researchers exposed the solar cells to brutal conditions to simulate worst-case weather scenarios. Adding a self-healing epoxy resin polymer to the cell minimized the leakage of lead from the cell. Credit: OIST

Enabling commercial viability

Epoxy resin also performed best under a number of weather conditions in which sunlight, rainwater and temperature were altered to simulate the environments in which PSCs must operate. In all scenarios, including extreme rain, epoxy resin outperformed rival encapsulation materials.

Epoxy resin works so well due to its “self-healing” properties. After its structure is damaged by hail, for example, the polymer partially reforms its original shape when heated by sunlight. This limits the amount of lead that leaks from inside the cell. This self-healing property could make  the encapsulation layer of choice for future photovoltaic products.

“Epoxy resin is certainly a strong candidate, yet other  polymers may be even better,” explains Qi. “At this stage, we are pleased to be promoting photovoltaic industry standards, and bringing the safety of this technology into the discussion. Next, we can build on these data to confirm which is truly the best polymer.”

Beyond lead leakage, another challenge will be to scale up  into perovskite solar panels. While  are just a few centimeters long, panels can span a few meters, and will be more relevant to potential consumers. The team will also direct their attention to the long-standing challenge of renewable energy storage.


Explore further

The potential of non-toxic materials to replace lead in perovskite solar cells


More information: Reduction of lead leakage from damaged lead halide perovskite solar modules using self-healing polymer-based encapsulation, Nature Energy (2019). DOI: 10.1038/s41560-019-0406-2, https://www.nature.com/articles/s41560-019-0406-2

Journal information: Nature Energy

A Path to Cheaper Flexible Solar Cells -Researchers at Georgia IT and MIT are Developing the Potential Perovskite-Based Solar Cells


Perovskite GT 190207142218_1_540x360
A researcher at Georgia Tech holds a perovskite-based solar cell, which is flexible and lighter than silicon-based versions. Credit: Rob Felt, Georgia Tech

There’s a lot to like about perovskite-based solar cells. They are simple and cheap to produce, offer flexibility that could unlock a wide new range of installation methods and places, and in recent years have reached energy efficiencies approaching those of traditional silicon-based cells.

But figuring out how to produce perovskite-based energy devices that last longer than a couple of months has been a challenge.

Now researchers from Georgia Institute of Technology, University of California San Diego and Massachusetts Institute of Technology have reported new findings about perovskite solar cells that could lead the way to devices that perform better.

“Perovskite solar cells offer a lot of potential advantages because they are extremely lightweight and can be made with flexible plastic substrates,” said Juan-Pablo Correa-Baena, an assistant professor in the Georgia Tech School of Materials Science and Engineering. “To be able to compete in the marketplace with silicon-based solar cells, however, they need to be more efficient.”

In a study that was published February 8 in the journal Science and was sponsored by the U.S Department Energy and the National Science Foundation, the researchers described in greater detail the mechanisms of how adding alkali metal to the traditional perovskites leads to better performance. Perov SCs 091_main

“Perovskites could really change the game in solar,” said David Fenning, a professor of nanoengineering at the University of California San Diego. “They have the potential to reduce costs without giving up performance. But there’s still a lot to learn fundamentally about these materials.”

To understand perovskite crystals, it’s helpful to think of its crystalline structure as a triad. One part of the triad is typically formed from the element lead. The second is typically made up of an organic component such as methylammonium, and the third is often comprised of other halides such as bromine and iodine.

In recent years, researchers have focused on testing different recipes to achieve better efficiencies, such as adding iodine and bromine to the lead component of the structure. Later, they tried substituting cesium and rubidium to the part of the perovskite typically occupied by organic molecules.

“We knew from earlier work that adding cesium and rubidium to a mixed bromine and iodine lead perovskite leads to better stability and higher performance,” Correa-Baena said.

But little was known about why adding those alkali metals improved performance of the perovskites.

To understand exactly why that seemed to work, the researchers used high-intensity X-ray mapping to examine the perovskites at the nanoscale.

Structure-of-perovskite-solar-cells-a-Device-architecture-and-b-energy-band-diagram

“By looking at the composition within the perovskite material, we can see how each individual element plays a role in improving the performance of the device,” said Yanqi (Grace) Luo, a nanoengineering PhD student at UC San Diego.

They discovered that when the cesium and rubidium were added to the mixed bromine and iodine lead perovskite, it caused the bromine and iodine to mix together more homogeneously, resulting in up to 2 percent higher conversion efficiency than the materials without these additives.

“We found that uniformity in the chemistry and structure is what helps a perovskite solar cell operate at its fullest potential,” Fenning said. “Any heterogeneity in that backbone is like a weak link in the chain.”

Even so, the researchers also observed that while adding rubidium or cesium caused the bromine and iodine to become more homogenous, the halide metals themselves within their own cation remained fairly clustered, creating inactive “dead zones” in the solar cell that produce no current.

“This was surprising,” Fenning said. “Having these dead zones would typically kill a solar cell. In other materials, they act like black holes that suck in electrons from other regions and never let them go, so you lose current and voltage.

“But in these perovskites, we saw that the dead zones around rubidium and cesium weren’t too detrimental to solar cell performance, though there was some current loss,” Fenning said. “This shows how robust these materials are but also that there’s even more opportunity for improvement.”

The findings add to the understanding of how the perovskite-based devices work at the nanoscale and could lay the groundwork for future improvements.

“These materials promise to be very cost effective and high performing, which is pretty much what we need to make sure photovoltaic panels are deployed widely,” Correa-Baena said. “We want to try to offset issues of climate change, so the idea is to have photovoltaic cells that are as cheap as possible.”

Story Source:

Materials provided by Georgia Institute of TechnologyNote: Content may be edited for style and length.

MIT: Unleashing perovskites’ potential for solar cells


Solar cells made of perovskite have great promise, in part because they can easily be made on flexible substrates, like this experimental cell. Image: Ken Richardson

New results show how varying the recipe could bring these materials closer to commercialization.

Perovskites — a broad category of compounds that share a certain crystal structure — have attracted a great deal of attention as potential new solar-cell materials because of their low cost, flexibility, and relatively easy manufacturing process.

But much remains unknown about the details of their structure and the effects of substituting different metals or other elements within the material.

Conventional solar cells made of silicon must be processed at temperatures above 1,400 degrees Celsius, using expensive equipment that limits their potential for production scaleup.

In contrast, perovskites can be processed in a liquid solution at temperatures as low as 100 degrees, using inexpensive equipment. What’s more, perovskites can be deposited on a variety of substrates, including flexible plastics, enabling a variety of new uses that would be impossible with thicker, stiffer silicon wafers.

Now, researchers have been able to decipher a key aspect of the behavior of perovskites made with different formulations:

With certain additives there is a kind of “sweet spot” where greater amounts will enhance performance and beyond which further amounts begin to degrade it.

The findings are detailed this week in the journal Science, in a paper by former MIT postdoc Juan-Pablo Correa-Baena, MIT professors Tonio Buonassisi and Moungi Bawendi, and 18 others at MIT, the University of California at San Diego, and other institutions.

Perovskite solar cells are thought to have great potential, and new understanding of how changes in composition affect their behavior could help to make them practical. Image: Ken Richardson

Perovskites are a family of compounds that share a three-part crystal structure. Each part can be made from any of a number of different elements or compounds — leading to a very broad range of possible formulations. Buonassisi compares designing a new perovskite to ordering from a menu, picking one (or more) from each of column A, column B, and (by convention) column X.

“You can mix and match,” he says, but until now all the variations could only be studied by trial and error, since researchers had no basic understanding of what was going on in the material.

In previous research by a team from the Swiss École Polytechnique Fédérale de Lausanne, in which Correa-Baena participated, had found that adding certain alkali metals to the perovskite mix could improve the material’s efficiency at converting solar energy to electricity, from about 19 percent to about 22 percent.

But at the time there was no explanation for this improvement, and no understanding of exactly what these metals were doing inside the compound. “Very little was known about how the microstructure affects the performance,” Buonassisi says.

Now, detailed mapping using high-resolution synchrotron nano-X-ray fluorescence measurements, which can probe the material with a beam just one-thousandth the width of a hair, has revealed the details of the process, with potential clues for how to improve the material’s performance even further.

It turns out that adding these alkali metals, such as cesium or rubidium, to the perovskite compound helps some of the other constituents to mix together more smoothly. As the team describes it, these additives help to “homogenize” the mixture, making it conduct electricity more easily and thus improving its efficiency as a solar cell.

But, they found, that only works up to a certain point. Beyond a certain concentration, these added metals clump together, forming regions that interfere with the material’s conductivity and partly counteract the initial advantage. In between, for any given formulation of these complex compounds, is the sweet spot that provides the best performance, they found.

“It’s a big finding,” says Correa-Baena, who in January became an assistant professor of materials science and engineering at Georgia Tech.

What the researchers found, after about three years of work at MIT and with collaborators at UCSD, was “what happens when you add those alkali metals, and why the performance improves.” They were able to directly observe the changes in the composition of the material, and reveal, among other things, these countervailing effects of homogenizing and clumping.

“The idea is that, based on these findings, we now know we should be looking into similar systems, in terms of adding alkali metals or other metals,” or varying other parts of the recipe, Correa-Baena says.

While perovskites can have major benefits over conventional silicon solar cells, especially in terms of the low cost of setting up factories to produce them, they still require further work to boost their overall efficiency and improve their longevity, which lags significantly behind that of silicon cells.

Although the researchers have clarified the structural changes that take place in the perovskite material when adding different metals, and the resulting changes in performance, “we still don’t understand the chemistry behind this,” Correa-Baena says. That’s the subject of ongoing research by the team. The theoretical maximum efficiency of these perovskite solar cells is about 31 percent, according to Correa-Baena, and the best performance to date is around 23 percent, so there remains a significant margin for potential improvement.

Although it may take years for perovskites to realize their full potential, at least two companies are already in the process of setting up production lines, and they expect to begin selling their first modules within the next year or so. Some of these are small, transparent and colorful solar cells designed to be integrated into a building’s façade. “It’s already happening,” Correa-Baena says, “but there’s still work to do in making these more durable.”

Once issues of large-scale manufacturability, efficiency, and durability are addressed, Buonassisi says, perovskites could become a major player in the renewable energy industry. “If they succeed in making sustainable, high-efficiency modules while preserving the low cost of the manufacturing, that could be game-changing,” he says. “It could allow expansion of solar power much faster than we’ve seen.”

Perovskite solar cells “are now primary candidates for commercialization. Thus, providing deeper insights, as done in this work, contributes to future development,” says Michael Saliba, a senior researcher on the physics of soft matter at the University of Fribourg, Switzerland, who was not involved in this research.

Saliba adds, “This is great work that is shedding light on some of the most investigated materials. The use of synchrotron-based, novel techniques in combination with novel material engineering is of the highest quality, and is deserving of appearing in such a high-ranking journal.” He adds that work in this field “is rapidly progressing. Thus, having more detailed knowledge will be important for addressing future engineering challenges.”

The study, which included researchers at Purdue University and Argonne National Laboratory, in addition to those at MIT and UCSD, was supported by the U.S. Department of Energy, the National Science Foundation, the Skolkovo Institute of Science and Technology, and the California Energy Commission.

New Material For Splitting Water: Halide double Perovskites – “All the Right Properties” for creating Fuel Cells


Water Splitting 173343_web

New Nanomaterial helps Store Solar Energy (as Hydrogen) Efficiently and Inexpensively


Perovskite New Solar Material pic3

Efficient storage technologies are necessary if solar and wind energy is to help satisfy increased energy demands.

One important approach is storage in the form of hydrogen extracted from water using solar or wind energy. This process takes place in a so-called electrolyser. Thanks to a new material developed by researchers at the Paul Scherrer Institute PSI and Empa, these devices are likely to become cheaper and more efficient in the future. The material in question works as a catalyst accelerating the splitting of water molecules: the first step in the production of hydrogen. Researchers also showed that this new material can be reliably produced in large quantities and demonstrated its performance capability within a technical electrolysis cell – the main component of an electrolyser. The results of their research have been published in the current edition of the scientific journal Nature Materials.

Perovskite New Material Researchers pic1

The scientists Emiliana Fabbri and Thomas Schmidt in a lab at PSI where they conducted experiments to study the performance of the newly developed catalyst for electrolysers. (Photo: Paul Scherrer Institute/Mahir Dzambegovic.)

Since solar and wind energy is not always available, it will only contribute significantly to meeting energy demands once a reliable storage method has been developed. One promising approach to this problem is storage in the form of hydrogen. This process requires an electrolyser, which uses electricity generated by solar or wind energy to split water into hydrogen and oxygen. Hydrogen serves as an energy carrier. It can be stored in tanks and later transformed back into electrical energy with the help of fuel cells. This process can be carried out locally, in places where energy is needed such as domestic residences or fuel cell vehicles, enabling mobility without the emission of CO2.

Inexpensive and efficient

Researchers at the Paul Scherrer Institute PSI have now developed a new material that functions as a catalyst within an electrolyser and thus accelerates the splitting of water molecules: the first step in the production of hydrogen. “There are currently two types of electrolysers on the market: one is efficient but expensive because its catalysts contain noble metals such as iridium. The others are cheaper but less efficient”, explains Emiliana Fabbri, researcher at the Paul Scherrer Institute. “We wanted to develop an efficient but less expensive catalyst that worked without using noble metals.”

Exploring this procedure, researchers were able to use a material that had already been developed: an intricate compound of the elements barium, strontium, cobalt, iron and oxygen – a so-called perovskite. But they were the first to develop a technique enabling its production in the form of miniscule nanoparticles. This is the form required for it to function efficiently since a catalyst requires a large surface area on which many reactive centres are able to accelerate the electrochemical reaction. Once individual catalyst particles have been made as small as possible, their respective surfaces combine to create a much larger overall surface area.

Researchers used a so-called flame-spray device to produce this nanopowder: a device operated by Empa that sends the material’s constituent parts through a flame where they merge and quickly solidify into small particles once they leave the flame. “We had to find a way of operating the device that reliably guaranteed the solidifying of the atoms of the various elements in the right structure,” emphasizes Fabbri. “We were also able to vary the oxygen content where necessary, enabling the production of different material variants.”

Successful Field Tests

Researchers were able to show that these procedures work not only in the laboratory but also in practice. The production method delivers large quantities of the catalyst powder and can be made readily available for industrial use. “We were eager to test the catalyst in field conditions. Of course, we have test facilities at PSI capable of examining the material but its value ultimately depends upon its suitability for industrial electrolysis cells that are used in commercial electrolysers,” says Fabbri. Researchers tested the catalyst in cooperation with an electrolyser manufacturer in the US and were able to show that the device worked more reliably with the new PSI-produced perovskite than with a conventional iridium-oxide catalyst.

Examining in Milliseconds

Researchers were also able to carry out precise experiments that provided accurate information on what happens in the new material when it is active. This involved studying the material with X-rays at PSI’s Swiss Light Source SLS. This facility provides researchers with a unique measuring station capable of analysing the condition of a material over successive timespans of just 200 milliseconds. “This enables us to monitor changes in the catalyst during the catalytic reaction: we can observe changes in the electronic properties or the arrangement of atoms,” says Fabbri. At other facilities, each individual measurement takes about 15 minutes, providing only an averaged image at best.” These measurements also showed how the structures of particle surfaces change when active – parts of the material become amorphous which means that the atoms in individual areas are no longer uniformly arranged. Unexpectedly, this makes the material a better catalyst.

Use in the ESI Platform

Working on the development of technological solutions for Switzerland’s energy future is an essential aspect of the research carried out at PSI. To this end, PSI makes its ESI (Energy System Integration) experimental platform available to research and industry, enabling promising solutions to be tested in a variety of complex contexts. The new catalyst provides an important base for the development of a new generation of water electrolysers.

Los Alamos National Laboratory Studies Perovskites for Efficient Optoelectronics: Video


Los Alamos III 13785853973_eee18af4fc_b

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are gaining an extra degree of freedom in designing and fabricating efficient optoelectronic devices based on 2D layered hybrid perovskites. Industrial applications could include low cost solar cells, LEDs, laser diodes, detectors, and other nano-optoelectronic devices.

Los Alamos Lab lanl-logo-footerThe 2D, near-single-crystalline “Ruddlesden-Popper” thin films have an out-of-plane orientation so that uninhibited charge transport occurs through the perovskite layers in planar devices. The new research finds the existence of “layer-edge-states” at the edges of the perovskite layers which are key to both high efficiency of solar cells (greater than 12 percent) and high fluorescence efficiency (a few tens of percent) for LEDs. The spontaneous conversion of excitons (bound electron-hole pairs) to free carriers via these layer-edge states appears to be the key to the improvement of the photovoltaic and light-emitting thin film layered materials.

Watch the Video

See the news release here:
http://www.lanl.gov/discover/news-rel…

And the research paper in Science:
http://science.sciencemag.org/content…

Perovskite Nanocrystals: Bright – Cheap – Stable: Discovery Illuminates Path to Highly Efficient Perovskite based Quantum Dots Photovoltaics


Perovskite Nanocrystals id46560

Digital picture of colloidal solution in toluene taken under UV-light (λ = 365 nm) and crystal structure of Formamidinium lead-halide perovskite. (Image: Friedrich-Alexander-Universität Erlangen-Nürnberg)

The team reports facile and rapid room temperature synthesis of cubic and platelet-like colloidal nanocrystals (NCs) of Formamidinium Lead Halide Perovskite FAPbX3 (X=Cl, Br, I, or mixed Cl/Br and Br/I) by ligand-assisted re-precipitation method (LARP).
The obtained NCs are 15-25 nm in size and exhibit a remarkably high photoluminescence quantum yield of up to 85% as well as colloidal and chemical stability.
The cubic and platelet-like NCs with their emission in the range of 415-740 nm, full width at half maximum of 20-44 nm and radiative lifetimes of 5-166 ns, allow precise band gap tuning by halide composition as well as by tailoring their dimensions.
Notably, for the first time they have demonstrate thermodynamically stable FAPbI3 NCs in the black cubic α-phase without transition to the yellow hexagonal δ-phase even after 150 days of storage. This is in strong contrast to polycrystalline films and single crystals which convert within hours.
This fact paves the way to highly efficient perovskite based quantum dots photovoltaics, which is underpinned by demonstrating FAPbI3 NCs based photodetector.
To highlight the potential of FAPbX3 NCs as a promising candidate for optoelectronic and luminescent applications, the scientists modified the surface with polyhedral oligomeric silsesquioxane. This modification protects the brightly luminescent FAPbX3 NCs from decomposition even after storage in water for more than 2 months.
Source: Friedrich-Alexander-Universität Erlangen-Nürnberg