Researchers succeed in producing OLED electrodes from graphene


Orange luminous OLED on a graphene electrode. The two-euro coin serves as a comparison of sizes. (Image: Fraunhofer FEP)

Researchers succeed in producing OLED electrodes from graphene

The Fraunhofer Institute for Organic Electronics, Electron Beam and Plasma Technology FEP from Dresden, together with partners, has succeeded for the first time in producing OLED electrodes from graphene. The electrodes have an area of 2 × 1 square centimeters.

“This was a real breakthrough in research and integration of extremely demanding materials,” says FEP’s project leader Dr. Beatrice Beyer. The process was developed and optimized in the EU-funded project “Gladiator” (Graphene Layers: Production, Characterization and Integration) together with partners from industry and research.


Orange luminous OLED on a graphene electrode. The two-euro coin serves as a comparison of sizes. (Image: Fraunhofer FEP)

Graphene is considered a new miracle material. The advantages of the carbon compound are impressive: graphene is light, transparent and extremely hard and has more tensile strength than steel.

Moreover, it is flexible and extremely conductive for heat or electricity. Graphene consists of a single layer of carbon atoms which are assembled in a kind of honeycomb pattern. It is only 0.3 nanometers thick, which is about one hundred thousandth of a human hair. Graphene has a variety of applications – for example, as a touchscreen in smartphones.

Chemical reaction of copper, methane and hydrogen

The production of the OLED electrodes takes place in a vacuum. In a steel chamber, a wafer plate of high-purity copper is heated to about 800 degrees. The research team then supplies a mixture of methane and hydrogen and initiates a chemical reaction. The methane dissolves in the copper and forms carbon atoms, which spread on the surface. This process only takes a few minutes. After a cooling phase, a carrier polymer is placed on the graphene and the copper plate is etched away.

Gladiator project was launched in November 2013. The Fraunhofer team is working on the next steps until the conclusion in April 2017. During the remainder of the project, impurities and defects which occur during the transfer of the wafer-thin graphene to another carrier material are to be minimized.

The project is supported by the EU Commission with a total of 12.4 million euros. The Fraunhofer Institute’s important industrial partners are the Spanish company Graphenea S.A., which is responsible for the production of the graphene electrodes, as well as the British Aixtron Ltd., which is responsible for the construction of the production CVD reactors.

Applications from photovoltaics to medicine

“The first products could already be launched in two to three years”, says Beyer with confidence.

Due to their flexibility, the graphene electrodes are ideal for touch screens. They do not break when the device drops to the ground. Instead of glass, one would use a transparent polymer film. 
Many other applications are also conceivable: in windows, the transparent graphene could regulate the light transmission or serve as an electrode in polarization filters.

Graphene can also be used in photovoltaics, high-tech textiles and even in medicine.

Source: Fraunhofer Institute for Electron Beam and Plasma Technology FEP

Harvard University and MIT Team Up: New blue-light emitting molecules for amazing displays resolution


Harvard Blue OLED 081116 23c4a3_f5b47ea7e4734fc7b95cb27331a1576e-mv2

Harvard University researchers have designed more than 1,000 new blue-light emitting molecules for organic light-emitting diodes (OLEDs) that could dramatically improve displays for televisions, phones, tablets and more.

OLED screens use organic molecules that emit light when an electric current is applied. Unlike ubiquitous liquid crystal displays (LCDs), OLED screens don’t require a backlight, meaning the display can be as thin and flexible as a sheet of plastic. Individual pixels can be switched on or entirely off, dramatically improving the screen’s color contrast and energy consumption.

OLEDs are already replacing LCDs in high-end consumer devices but a lack of stable and efficient blue materials has made them less competitive in large displays such as televisions.

The interdisciplinary team of Harvard researchers, in collaboration with MIT and Samsung, developed a large-scale, computer-driven screening process, called the Molecular Space Shuttle, that incorporates theoretical and experimental chemistry, machine learning and cheminformatics to quickly identify new OLED molecules that perform as well as, or better than, industry standards.

“People once believed that this family of organic light-emitting molecules was restricted to a small region of molecular space,” said Alán Aspuru-Guzik, Professor of Chemistry and Chemical Biology, who led the research. “But by developing a sophisticated molecular builder, using state-of-the art machine learning, and drawing on the expertise of experimentalists, we discovered a large set of high-performing blue OLED materials.”

The research is described in the current issue of Nature Materials. The biggest challenge in manufacturing affordable OLEDs is emission of the color blue. Like LCDs, OLEDs rely on green, red and blue subpixels to produce every color on screen.  

But it has been difficult to find organic molecules that efficiently emit blue light. To improve efficiency, OLED producers have created organometallic molecules with expensive transition metals like iridium to enhance the molecule through phosphorescence. This solution is expensive and it has yet to achieve a stable blue color.

 Aspuru-Guzik and his team sought to replace these organometallic systems with entirely organic molecules.

 The team began by building libraries of more than 1.6 million candidate molecules. Then, to narrow the field, a team of researchers from the Harvard John A. Paulson School of Engineering and Applied Sciences (SEAS), led by Ryan Adams, Assistant Professor of Computer Science, developed new machine learning algorithms to predict which molecules were likely to have good outcomes, and prioritize those to be virtually tested. This effectively reduced the computational cost of the search by at least a factor of ten.

“This was a natural collaboration between chemistry and machine learning,” said David Duvenaud, a postdoctoral fellow in the Adams lab and coauthor of the paper. “Since the early stages of our chemical design process starts with millions of possible candidates, there’s no way for a human to evaluate and prioritize all of them. So, we used neural networks to quickly prioritize the candidates based on all the molecules already evaluated.”

“Machine learning tools are really coming of age and starting to see applications in a lot of scientific domains,” said Adams.  “This collaboration was a wonderful opportunity to push the state of the art in computer science, while also developing completely new materials with many practical applications. It was incredibly rewarding to see these designs go from machine learning predictions to devices that you can hold in your hand.”

“We were able to model these molecules in a way that was really predictive,” said Rafael Gómez-Bombarelli, a postdoctoral fellow in the Aspuru-Guzik lab and first author of the paper.  “We could predict the color and the brightness of the molecules from a simple quantum chemical calculation and about 12 hours of computing per molecule. We were charting chemical space and finding the frontier of what a molecule can do by running virtual experiments.”

“Molecules are like athletes,” Aspuru-Guzik said. “It’s easy to find a runner, it’s easy to find a swimmer, it’s easy to find a cyclist but it’s hard to find all three. Our molecules have to be triathletes. They have to be blue, stable and bright.”

But finding these super molecules takes more than computing power — it takes human intuition, said Tim Hirzel, a senior software engineer in the Department of Chemistry and Chemical Biology and coauthor of the paper.

To help bridge the gap between theoretical modeling and experimental practice, Hirzel and the team built a web application for collaborators to explore the results of more than half a million quantum chemistry simulations.

Every month, Gómez-Bombarelli and coauthor Jorge Aguilera-Iparraguirre, also a postdoctoral fellow in the Aspuru-Guzik lab, selected the most promising molecules and used their software to create “baseball cards,” profiles containing important information about each molecule. This process identified 2500 molecules worth a closer look.  The team’s experimental collaborators at Samsung and MIT then voted on which molecules were most promising for application. The team nicknamed the voting tool “molecular Tinder” after the popular online dating app.

 “We facilitated the social aspect of the science in a very deliberate way,” said Hirzel. “The computer models do a lot but the spark of genius is still coming from people,” said Gómez-Bombarelli. “The success of this effort stems from its multidisciplinary nature,” said Aspuru-Guzik. “Our collaborators at MIT and Samsung provided critical feedback regarding the requirements for the molecular structures.”

“The high throughput screening technique pioneered by the Harvard team significantly reduced the need for synthesis, experimental characterization, and optimization,” said Marc Baldo, Professor of Electrical Engineering and Computer Science at MIT and coauthor of the paper. “It shows the industry how to advance OLED technology faster and more efficiently.”

After this accelerated design cycle, the team was left with hundreds of molecules that perform as well as, if not better than, state-of-the-art metal-free OLEDs. Applications of this type of molecular screening also extend far beyond OLEDs.

“This research is an intermediate stop in a trajectory towards more and more advanced organic molecules that could be used in flow batteries, solar cells, organic lasers, and more,” said Aspuru-Guzik. “The future of accelerated molecular design is really, really exciting.”

In addition to the authors mentioned, the manuscript was coauthored by Dougal Maclaurin, Martin A. Blood-Forsythe, Hyun Sik Chae, Markus Einzinger, Dong-Gwang Ha, Tony Wu, Georgios Markopoulos, Soonok Jeon, Hosuk Kang, Hiroshi Miyazaki, Masaki Numata, Sunghan Kim, Wenliang Huang and Seong Ik Hong.

Reference:

Design of efficient molecular organic light-emitting diodes by a high-throughput virtual screening and experimental approach

Nature Material, Published Online: 8 August 2016, DOI: 10.1038/NMAT4717

Graphene-based transparent electrodes for highly efficient flexible OLEDS


OLED 060316 1-graphenebaseOLED with the composite structure of TiO2/graphene/conducting polymer electrode in operation. The OLED exhibits 40.8% of ultrahigh external quantum efficiency (EQE) and 160.3 lm/W of power efficiency. The device prepared on a plastic …more

The arrival of a thin and lightweight computer that even rolls up like a piece of paper will not be in the far distant future. Flexible organic light-emitting diodes (OLEDs), built upon a plastic substrate, have received greater attention lately for their use in next-generation displays that can be bent or rolled while still operating.

A Korean research team led by Professor Seunghyup Yoo from the School of Electrical Engineering, KAIST and Professor Tae-Woo Lee from the Department of Materials Science and Engineering, Pohang University of Science and Technology (POSTECH) has developed highly flexible OLEDs with excellent efficiency by using graphene as a (TE) which is placed in between titanium dioxide (TiO2) and conducting polymer layers. The research results were published online on June 2, 2016 in Nature Communications.

OLEDs are stacked in several ultra-thin layers on glass, foil, or plastic substrates, in which multi-layers of organic compounds are sandwiched between two electrodes (cathode and anode). When voltage is applied across the electrodes, electrons from the cathode and holes (positive charges) from the anode draw toward each other and meet in the emissive layer. OLEDs emit light as an electron recombines with a positive hole, releasing energy in the form of a photon. One of the electrodes in OLEDs is usually transparent, and depending on which electrode is transparent, OLEDs can either emit from the top or bottom.

In conventional bottom-emission OLEDs, an anode is transparent in order for the emitted photons to exit the device through its substrate. Indium-tin-oxide (ITO) is commonly used as a transparent anode because of its high transparency, low sheet resistance, and well-established manufacturing process. However, ITO can potentially be expensive, and moreover, is brittle, being susceptible to bending-induced formation of cracks.

Graphene-based transparent electrodes for highly efficient flexible OLEDS
The new architecture to develop highly flexible OLEDs with excellent efficiency by using graphene as a transparent electrode (TE). Credit: KAIST

Graphene, a two-dimensional thin layer of carbon atoms tightly bonded together in a hexagonal honeycomb lattice, has recently emerged as an alternative to ITO. With outstanding electrical, physical, and chemical properties, its atomic thinness leading to a high degree of flexibility and transparency makes it an ideal candidate for TEs. Nonetheless, the efficiency of graphene-based OLEDs reported to date has been, at best, about the same level of ITO-based OLEDs.

As a solution, the Korean research team, which further includes Professors Sung-Yool Choi (Electrical Engineering) and Taek-Soo Kim (Mechanical Engineering) of KAIST and their students, proposed a new device architecture that can maximize the efficiency of graphene-based OLEDs. They fabricated a transparent anode in a composite structure in which a TiO2 layer with a high refractive index (high-n) and a hole-injection layer (HIL) of conducting polymers with a low refractive index (low-n) sandwich graphene electrodes. This is an optical design that induces a synergistic collaboration between the high-n and low-n layers to increase the effective reflectance of TEs. As a result, the enhancement of the optical cavity resonance is maximized. The optical cavity resonance is related to the improvement of efficiency and color gamut in OLEDs. At the same time, the loss from surface plasmon polariton (SPP), a major cause for weak photon emissions in OLEDs, is also reduced due to the presence of the low-n conducting polymers.

Under this approach, graphene-based OLEDs exhibit 40.8% of ultrahigh external quantum efficiency (EQE) and 160.3 lm/W of power efficiency, which is unprecedented in those using graphene as a TE. Furthermore, these devices remain intact and operate well even after 1,000 bending cycles at a radius of curvature as small as 2.3 mm. This is a remarkable result for OLEDs containing oxide layers such as TiO2 because oxides are typically brittle and prone to bending-induced fractures even at a relatively low strain. The research team discovered that TiO2 has a crack-deflection toughening mechanism that tends to prevent bending-induced cracks from being formed easily.

Professor Yoo said, “What’s unique and advanced about this technology, compared with previous graphene-based OLEDs, is the synergistic collaboration of high- and low-index layers that enables optical management of both resonance effect and SPP loss, leading to significant enhancement in efficiency, all with little compromise in flexibility.” He added, “Our work was the achievement of collaborative research, transcending the boundaries of different fields, through which we have often found meaningful breakthroughs.”

Professor Lee said, “We expect that our technology will pave the way to develop an OLED light source for highly flexible and wearable displays, or flexible sensors that can be attached to the human body for health monitoring, for instance.”

Explore further: Nanometer Graphene Makes Novel OLEDs Display

More information: Jaeho Lee et al, Synergetic electrode architecture for efficient graphene-based flexible organic light-emitting diodes, Nature Communications (2016). DOI: 10.1038/NCOMMS11791

 

Quantum Dots are ‘Ready for Prime Time’ says Analysts, Yole Development


Yole Développement says revenues “will exceed phosphors by 2020” as adoption into LCD TVs rivals OLED quality.

QD Prime Time YoleQDotsM

Quantum dots’ virtual adoption cycle, according to Yole Développement

Yole Développement (Yole), the Lyon, France-based market research and strategic

consulting company, has published its new LED down converters technology and market

report, entitled Phosphors & Quantum Dots 2015: LED Down Converters for Lighting & Displays.

It presents a detailed review of the industry, especially the impact of the development of

quantum dots on the display and conventional phosphors industry. Yole asks, are quantum dots

now a serious competitor to OLED-based technologies – and its conclusion is: quantum dots

are finally ready for prime time and will exceed traditional phosphor revenue by 2020 by

allowing LCD to compete with OLED in the race for the next generation of displays.”

After the lukewarm reception of 3D and 4K screens, Yole comments that the display

industry needs a “new and disruptive experience improvement” to bring consumers back

to the stores: “image quality perception increases significantly when color gamut and

dynamic contrast ratio are improved.” Yole also notes that “Leading movie studios,

content providers, distributors and display makers have together formed the UHD Alliance

to promote those features.”

Dr Eric Virey, Senior Analyst, LEDs at Yole, commented, “OLED was believed to be

the technology of choice for this next generation of displays. But production challenges

have delayed the availability of affordable OLED TVs. LCD TVs with LED backlights

based on quantum dot down-converters can deliver performance close to, or even

better than OLED in some respects, and at a lower cost.”

 

QD-LCD ‘could pull ahead’ of OLED display

Until OLEDs are ready, says Yole, “QD-LCD technology will have a unique window of

opportunity to try to close enough of the performance gap such that the majority of

consumers will not be able to perceive the difference between the two technologies

so price would become the driving factor in the purchasing decision.” Under this scenario,

the analyst believes that QD-LCD could establish itself as the dominant technology while

struggling OLEDs “would be cornered into the high end of the market.”

Yole acknowledges that OLED-based displays potentially offer more opportunities for

differentiation but the analyst notes, “OLED proponents need to invest massively and

still have to resolve manufacturing yield issues. For tier-2 LCD panel makers who

cannot invest in OLED, Quantum Dots offer an opportunity to boost LCD performance

without imposing additional CAPEX on their fabs.” At this year’s Consumer Electronics

show, as optics.org reported, no fewer than seven leading TV OEMs including

Samsung and LG demonstrated QD-LCD TVs.

 

With tunable and narrowband emissions, QDs offer design flexibility to developers

of new displays. But more is needed to enable massive adoption, including the d

evelopment of cadmium-free formulations. Cole cautions that “traditional phosphors

still have to say their last word”. If PFS could further improve in term of stability and decay

time and a narrow-band green composition was to emerge, traditional phosphors could

also be part of the battle against OLED, Yole concludes.

Yole’s analysis Phosphors & Quantum Dots 2015: LED Down-converters for Lighting & Displays

presents an overview of the quantum dot LED market for display and lighting applications

including quantum dot manufacturing, benefits and drawbacks, quantum dots LCD versus

OLED and detailed market forecast. For more information about this report and other

LED technology & market analysis from Yole, visit i-micronews in its LED Reports section.

 QDmulicolorsM

Roll-Up Your TV Screen and Store It Away! How is that Possible?!


Roll Up TV ScreenTel%20Aviv%20UniversityFrom smartphones and tablets to computer monitors and interactive TV screens, electronic displays are everywhere. As the demand for instant, constant communication grows, so too does the urgency for more convenient portable devices — especially devices, like computer displays, that can be easily rolled up and put away, rather than requiring a flat surface for storage and transportation.

A new Tel Aviv University study, published in Nature Nanotechnology, suggests that a novel DNA-peptide structure can be used to produce thin, transparent, and flexible screens. The research, conducted by Prof. Ehud Gazit and doctoral student Or Berger of the Department of Molecular Microbiology and Biotechnology at TAU’s George S. Wise Faculty of Life Sciences, in collaboration with Dr. Yuval Ebenstein and Prof. Fernando Patolsky of the School of Chemistry at TAU’s Faculty of Exact Sciences, harnesses bionanotechnology to emit a full range of colors in one pliable pixel layer — as opposed to the several rigid layers that constitute today’s screens.

“Our material is light, organic, and environmentally friendly,” says Prof. Gazit. “It is flexible, and a single layer emits the same range of light that requires several layers today. By using only one layer, you can minimize production costs dramatically, which will lead to lower prices for consumers as well.”

For the purpose of the study, a part of Berger’s Ph.D. thesis, the researchers tested different combinations of peptides: short protein fragments, embedded with DNA elements which facilitate the self-assembly of a unique molecular architecture.

Peptides and DNA are two of the most basic building blocks of life. Each cell of every life form is composed of such building blocks. In the field of bionanotechnology, scientists utilize these building blocks to develop novel technologies with properties not available for inorganic materials such as plastic and metal.

“Our lab has been working on peptide nanotechnology for over a decade, but DNA nanotechnology is a distinct and fascinating field as well. When I started my doctoral studies, I wanted to try and converge the two approaches,” says Berger. “In this study, we focused on PNA — peptide nucleic acid, a synthetic hybrid molecule of peptides and DNA. We designed and synthesized different PNA sequences, and tried to build nano-metric architectures with them.”

Using methods such as electron microscopy and X-ray crystallography, the researchers discovered that three of the molecules they synthesized could self-assemble, in a few minutes, into ordered structures. The structures resembled the natural double-helix form of DNA, but also exhibited peptide characteristics. This resulted in a very unique molecular arrangement that reflects the duality of the new material.

“Once we discovered the DNA-like organization, we tested the ability of the structures to bind to DNA-specific fluorescent dyes,” says Berger. “To our surprise, the control sample, with no added dye, emitted the same fluorescence as the variable. This proved that the organic structure is itself naturally fluorescent.”

The structures were found to emit light in every color, as opposed to other fluorescent materials that shine only in one specific color. Moreover, light emission was observed also in response to electric voltage — which make it a perfect candidate for opto-electronic devices like display screens.

The study was funded by the Momentum Fund of Ramot, TAU’s technology transfer company, which also patented the new technology. The researchers are currently building a prototype of the screen and are in talks with major consumer electronics companies regarding the technology.

Release Date: March 31, 2015
Source: Tel Aviv University

Quantum Dots Poised to Make IMPACT on LED Back-Lit LCD’s


What technology is in YOUR TV (Display) Screen?!

qdot-images-3.jpg

Ken Marrin, LED Magazine

Quantum dot (QD) technology has promised to enhance LED usage, making LCD TV images more vivid and improving efficacy in warm-CCT, high-CRI solid-state lighting (SSL). Thus far, however, cost, reliability, and lifetime issues have prevented broad commercial deployment. But the technology has progressed to the point that the TV application, with relatively shorter usage hours compared to general lighting, can adopt the technology.

Due to their high resolution, low cost, and thin form-factors, LED-backlit LCDs have become the standard for mobile devices and TVs, although color performance has lagged. (For more details on how LCDs and backlights work, see sidebar at end.) Displays on popular backlit LCD tablets can only express about 20% of the color a human eye can see, while LCD HDTVs can express only about 35%. To achieve more vivid, realistic color, display manufacturers have developed a variety of new technologies such as discrete RGB LED backlights, yttrium aluminum garnet (YAG) enhanced with red phosphor, and organic LEDs (OLEDs). All are beset with cost, scalability, and durability issues that have hampered widespread deployment.

FIG. 1. For TV applications, QD Vision supplies quantum dots enclosed in an optic element that is coupled to the backlight unit.
FIG. 1.

One of the most promising new color enhancement technologies for backlit LCDs is QDs, a nanocrystal material that can be tuned to emit an optimized narrow spectrum of light. The unique semiconductor and optical properties of quantum dots make them attractive for a broad range of applications, from SSL, silicon photovoltaic cells, and quantum computing to cellular imaging and organic dye replacement. Due to the high production volumes and ease of integration with existing manufacturing processes, LCD suppliers seem to have taken a particular interest in QDs. By augmenting their backlight units (BLUs) with QDs, LCD manufacturers are able to create vivid displays that can exceed 55% of the spectrum a human eye can detect.

Why quantum dots?

Where vivid color and high efficiency are the objectives, the ideal white light is one that can be tuned to generate lots of visible energy narrowly focused on the primary red, green, and blue wavelengths used by the subpixel filters while producing very little light between. QDs do just that. The tiny nanocrystals, smaller than a virus, emit narrowband light when excited by a photon source.

Unlike conventional phosphor technologies like YAG, which emit with a fixed spectrum, QDs can be fabricated to convert light to nearly any color in the visible spectrum by simply varying the size of the dots. Size and bandgap energy are inversely related, so as the size of the QD decreases, emission frequencies increase, resulting in a color shift from red (low energy) to blue (high energy) in the light emitted. Lifetime fluorescence is also determined by the size of the QD, with larger dots showing a longer lifetime.

By carefully controlling the size of the crystals as they are synthesized, the spectral peak output can be set to within 2 nm of nearly any visible wavelength. Such control enables QDs to be tuned so the backlight spectrum matches the color filters, thereby facilitating displays that are brighter and more efficient, and produce truly vibrant colors.

Integrating QDs with the BLU

Quantum dot approaches are similar to phosphor technologies in the way they attempt to engineer the white light spectrum. As with YAG, a blue GaN LED provides the source light. QDs then downconvert a portion of the blue light into narrowband red and green spectrum, thereby achieving a white light that is rich in red, green, and blue and matched to the subpixel filters. QDs can be tuned (by varying the size) to emit at any wavelength longer than the source wavelength with very high efficiency (over 90% quantum yield under ideal conditions) and with very narrow spectral distribution — just 30–40 nm full width at half maximum (FWHM). This high spectral efficiency in turn reduces display power consumption by 20% compared to other high-gamut color-enhancement techniques — a key factor in meeting Energy Star requirements in TVs or extending battery life in portable devices where displays often consume 40% of the power.

As with YAG, QD backlight technology is easy to integrate with existing LCD manufacturing processes. QD upgrades require no line retooling or process changes. So manufacturers who have invested billions in LCD plants and equipment can quickly deploy QD-enhanced LCD panels that offer the color and efficiency of the best OLEDs at a fraction of the cost.

FIG. 2. Pacific Light Technologies plans to offers white LEDs with the red quantum dots deposited directly on the LED along with the other phosphors.
FIG. 2.

3M, for example, is now using QDs supplied by Nanosys, Inc. to offer a quantum-dot enhancement film (QDEF) a thin, optically-clear sheet with red and green dots that replaces the existing diffuser film in the reflective cavity of an LCD backlight. This packaging, explains 3M marketing development manager Art Lathrop, “not only simplifies integration and protects the dots against flux but boosts efficiency by recycling light emitted in the wrong direction.”

3M has initially focused on mobile displays where the industry has put more emphasis on premium quality and displays sell for a relatively high price per square meter. Larger displays are not only more price sensitive, Lathrop added, but also heavier users of QDs in the film implementation. When an application grows linearly (long strips of displays, for example), the QD film and the number of dots used in the film grows linearly as well, so cost is not a problem. However, when the application grows more by area than length — as in a TV display — then the number of QDs required for the film grows exponentially with display size, and the cost of QDs becomes a significant factor. Lathrop expects this issue to abate as the raw QD materials get cheaper and packaging/manufacturing (inexpensive film vs. glass, for instance) becomes the driver of overall QD cost. Until then, 3M will focus on smaller displays with lower raw material costs such as consumer mobile devices.

Drop-in QD technology

QD Vision also provides a drop-in technology called Color IQ, though instead of packaging the QDs as a film, QD Vision employs a glass tube that mounts on the edge of the display (Fig. 1). Unlike the 3M film, which scales geometrically, the rail solution scales linearly, making it more effective for larger displays. “With an edge solution like Color IQ,” said QD Vision CTO Seth Coe-Sullivan, “we utilize about one-hundredth of the QD materials relative to a film solution of the same screen area. This is why you see 3M launching in the Kindle with a screen area of one-sixtieth of a square meter, while we are in big-screen Sony TVs.”

Nanosys CEO Jason Hartlove concedes that the film solution is a heavier dot user but puts the differential at about 5x. The shorter optical path in the edge solution, he argues, requires a much higher dot density (less opportunity for recycling) and is also susceptible to aggregation and quenching, which reduces the dot’s light output and requires additional LEDs to get the same brightness.

FIG. 3. Pacific Light Technologies says that its technology using red quantum dots in place of phosphor delivers 30% more lumen output.
FIG. 3.

Pacific Light Technologies got its start in nanotechnology developing QDs for the solar industry, where the dots are used to convert solar energy into a low-energy format that can be utilized more efficiently by solar panels. From there, the company branched off into SSL, using QDs to create warmer lighting solutions. More recently, the company has attracted interest from display makers. Their key differentiator, according to vice president of marketing Julian Osinski, is the ability to fabricate dots directly onto blue LEDs, eliminating the need for a separate QD subassembly (Fig. 2). “A display requiring coverage over the full surface can be on the order of 10,000x the surface area of the LED chips used to illuminate the display,” said Osinski, “and since the amount of QDs required scales with surface area, that means 10,000 times less QD material is required for on-chip use compared to off-chip.”

Pacific Light uses the same process for adding dots to LEDs that manufacturers use to add phosphor. The QDs are synthesized in a reactor vessel, separated out, mixed into a silicone, and then applied to the chip. “One nice advantage,” noted Osinski, “is that unlike phosphors, there is no settling of QD particles, resulting in more stable color points during manufacturing.” Pacific Light Technologies is currently shipping red dots, with plans for green dots in the future.

Quantum dot reliability

The useful life of the QDs is a complex issue heavily dependent on the application and the operating conditions. Fundamentally, what kills dots the fastest is oxidation. Beyond that, assuming that the dots are very well protected from oxygen, they also deteriorate from being used (like most emitters), and that deterioration accelerates with elevated heat and flux, particularly flux. Temperature at the film is about 40°C vs. 90°C at the edge, and 140°C at the LED, said Hartlove of Nanosys. Flux is 25 MW/cm at the film, 1–10W/cm at the edge, and from tens to hundreds of watts per centimeter at the LED — five orders of magnitude from the film to the LED.

3M’s testing, said Lathrop, shows that in most consumer applications QDEFs last for 20,000 to 30,000 hours of operation before luminance drops by 15%. A larger drop will start to result in a noticeable color shift (blue is not impacted). 3M’s next-generation product is targeting twice that lifetime, not because display makers are looking for 60,000+ hours but because they want to use them in hotter displays (all-in-one PCs or specialty displays, for example).

QD Vision’s edge solution, which encapsulates the dots in a glass tube, provides an excellent barrier to oxygen, as well as other advantages such as lower volume utilization, low-tech barrier materials, and excellent color uniformity (no blue light leakage). “Our edge implementation also presents unique challenges,” explained Coe-Sullivan. Color IQ sits closer to the LED backlight than a film, so the dots must withstand higher heat (100°C) and flux (100x that of a film). Nonetheless, Coe-Sullivan claims to have overcome those challenges and rates the Color IQ lifetime at between 30,000–50,000 hours, essentially the same as present-day LEDs.

FIG. 4. Sony's Ultra HD TVs use quantum-dot technology from QD Vision to create more vivid colors, which Sony brands
FIG. 4.

Pacific Light Technologies’ approach to mounting dots directly on the LED may offer the most significant potential cost and performance advantages of all (Fig. 3) but also the greatest challenges with regard to reliability. In addition to higher temperatures, flux in particular can be 50x that of an edge solution. “In general,” noted Osinski, “white-light LED lifetimes are limited by the silicon-phosphor combination on the chip more than the chip itself, and that remains the same with QDs, where silicone yellowing also contributes to aging blue LEDs.” Reliabilities are still being established because they require very long test times, but Pacific Light claims to have already demonstrated operation over thousands of hours.

OLED

One of the chief competitive technologies to QDs where color quality is of primary importance is OLED, which emits light directly and requires no backlight or LCD filter. In addition to excellent color gamut comparable to QDs, OLED displays feature faster response times and refresh rates, improved brightness, a greater contrast ratio (both dynamic range and static, measured in purely dark conditions), a wider viewing angle than LCD implementations (with or without QD augmentation), and the ability to display true blacks.

Perhaps the biggest technical problem for OLEDs is the limited lifetime of the organic materials, primarily for the blue OLEDs. Blue OLEDs historically have had a lifetime of around 14,000 hours to half original brightness (five years at 8 hours a day) when used for flat-panel displays. Red and green OLEDs offer 2–3x that lifetime. The faster degradation of blue OLEDs relative to red and green creates color balance challenges, requiring either additional control circuitry, or optimization of the red, green, and blue subpixel sizes in order to equalize color balance at full luminance over the lifetime of the display. A blue subpixel, for example, may need to be 100% larger than the green subpixel, whereas the red subpixel may need to be 10% smaller than the green.

High cost has also hampered the widespread use of OLEDs in larger mass-market displays. Eliminating the backlight and LCD filter provides significant cost savings and allows for a thinner display, but the fabrication of the OLED substrate is presently more costly than that of a thin-film transistor LCD. Down the road, the ability to fabricate OLEDs on flexible plastic substrates and the utilization of processes like roll-to-roll vapor-deposition and transfer printing will offer potential cost advantages. For now, though, large-screen applications require low-temperature polysilicon backplanes that cannot currently be used on large-area glass substrates. As a result, large OLED displays are limited to relatively high-end applications, with OLED TVs from LG and Samsung selling in the $10,000 range. On the other hand, Sony uses QD Vision’s technology, branding it Triluminos, in its 4000-pixel Ultra HD LCD TVs that start at about $3500 (Fig. 4). But Sony has also included Triluminos technology in some higher-end standard HDTV sets such as a 55-in. model that sells for around $2000.

Electroluminescent QDs

Even as OLED strives for economies of scale and process improvements that will bring costs down, QD makers like QD Vision are already working on the next generation of technology — electroluminescent QDs that will combine the customizable, saturated, stable color and low-voltage performance of inorganic LEDs with the solution processability of polymers. The new technology, Coe-Sullivan explains, will provide a reliable, energy-efficient, highly tunable color solution for displays and lighting that is less costly to manufacture and that can employ ultrathin, transparent, or flexible substrates.

Quantum-dot light-emitting diodes (QLEDs) are electroluminescent colloidal quantum dots that generate light when excited electrically. Like OLEDs, QLEDs require no backlight or LCD filter. QD Vision claims that its printable thin-film QLEDs match or exceed NSTC color standards for displays without the need for color filters. The excellent color performance of QLEDs ultimately translates into a 30–40% luminance efficiency advantage over OLEDs (at the same color point), which require lossy color filtering to achieve a similar color performance. QLEDs also feature a lower operating voltage, exhibiting turn-on voltages at the bandgap voltage of the material. This gives QLEDs the potential to be more than twice as power efficient as OLEDs at the same color purity.

To reduce cost for QLED-based, full-color, active-matrix displays and lighting devices, QD Vision is developing large-area quantum-dot printing techniques that utilize ultrathin flexible substrates. Today’s LCDs and LED chips are fabricated on glass and crystalline substrates, making them inherently expensive and fragile for mobile and large-area applications. QLEDs, by contrast, are only a couple hundred nanometers thick, making them virtually transparent and flexible, and highly suitable for integration onto plastic or metal foil substrates as well as other surfaces.

QLEDs are still in the early development stages, yielding only 10,000 hours at low brightness, but in theory are a more stable light-emitting material than organic dyes. Meanwhile, the company is already offering high-quality electroluminescent-grade QD materials suitable for certain products that require precise color solutions in an ultraslim form factor. Among these are monochrome visible and infrared displays, and lighting devices for machine and night vision applications.

Nanosys’ Hartlove agreed that the QLEDs are the way of the future. “When emissive pixels will overtake LCDs we cannot say. LCDs get better every day.” Within ten years, however, he expects the manufacturing and production advantages of QLEDs (solution chemistry and roll-printed emitters) to overtake GaN substrates and wafer-based processing — and not just for displays but also general lighting. Right now, the focus is on the ability of QDs to outperform phosphors in the color arena, but eventually the properties of the raw materials will fade in significance, and it will come down to manufacturing, where the ability to print narrowband emissive pixels on thin films in high volume will produce high-quality color inexpensively — without the need for color management.

++++

Backlight enhancement

Liquid-crystal displays (LCDs) combine a light source (the backlight unit, or BLU) with a liquid-crystal module (LCM). The BLU provides a uniform white sheet of light behind the LCM. The LCM contains millions of pixels, each of which is split into red, green, and blue subpixels. By controlling the amount of time each subpixel filter is open (allowing light to pass through it) and making use of the human eye’s persistence of vision, the LCD can display any color that can be rendered from a combination of red, green, and blue at each pixel location. The color filter on each subpixel separates its component color from the white light of the BLU. For example, the red color filter on the red subpixels blocks the green and blue light.

The fidelity of each color is a function of the quality of light in the BLU and the color filters. The narrower the filters, the narrower the backlight color spectrum (for the desired peak red, blue, and green colors), and the closer the color spectrum is matched to the filters, the higher the color quality. Because making perfect color filters is impractical from a cost and brightness perspective (narrow filters attenuate out-of-band photons and reduce brightness), display makers have instead focused their efforts on improving the BLU.

The problem with standard BLUs is that the LEDs used to create the backlight produce a broad spectrum of light that cannot be used efficiently by the LCD. Most white LEDs are created by coating blue LEDs made of indium gallium nitride (InGaN) with an yttrium aluminum garnet (YAG) phosphor. These two-color YAG white LEDs produce a spectrum rich in blue wavelengths with a broad yellow component, but the greens vary from cyan through lime, and the reds vary from orange to deep red. Because the filters can’t stop these in-between colors, the result is poor color saturation.

Red-emitting phosphor can be added to boost color performance, but red phosphors suffer from poor conversion efficiency, wasting much of their power-generating spectrum like infrared that is not visible to the human eye. Like the yellow phosphors, red phosphors have a relatively wide full width at half maximum (FWHM) — a characterization of the width of the spectrum at which emitted radiometric power has dropped by half — so they cannot be precisely tuned to match either existing color filters or the manufacturers’ peak color specifications. So the resulting white light, while offering a richer spectrum, still incurs substantial light and efficiency losses

Quantum Dots Enter Mainstream Mobile Device Market


Last month, Amazon released Kindle Fire HDX 7 — the first ever mobile device to feature a quantum-dot-enhanced display.

The 7″ display includes a Quantum Dot Enhancement Film (QDEF) produced by 3M in collaboration with Nanosys, Inc. Compared to the traditional LED-LCD display, the QDEF essentially replaces the YAG phosphor of the white LED backlight and functions as a high-efficiency photoluminescent emitter. The ODEF includes quantum dots of different sizes, which would emit different colors when excited due to quantum confinement effect. More detail of the QDEF can be found via the link below.

http://www.nanosysinc.com/what-we-do/display-backlighting/qdef-how-does-it-work/

It is noted that the quantum-dot-enhanced display of Kindle Fire HDX 7 does not utilize the electroluminescent property of quantum dots, and thus is not actually a quantum dot light emitting diode (QLED). Nevertheless, it could signal the beginning of the mass commercialization of quantum dots technology in consumer markets.

And the very “best” of todays technologies? According to Displaymate, quote:

“The very best of today’s display technologies? The Quantum Dots displays used in the Kindle Fire HDX 7 according to the report.

Quantum Dots are almost magical because they use Quantum Physics to produce highly saturated primary colors for LCDs that are similar to those produced by OLED displays. They not only significantly increase the size of the Color Gamut by 40-50 percent but also improve the power efficiency by an additional 15-20 percent. Instead of using White LEDs (which have yellow phosphors) that produce a broad light spectrum that makes it hard to efficiently produce saturated colors, Quantum Dots directly convert the light from Blue LEDs into highly saturated primary colors for LCDs. You can see the remarkable difference in their light spectra in Figure 4. Quantum Dots are going to revolutionize LCDs for the next 5+ years.”

The content of this article is intended to provide a general guide to the subject matter. Specialist advice should be sought about your specific circumstances.

How does QDEF work?

Nanosys QDEF™ enables deep color and high efficiency by providing displays with an ideal light source. How does it do that?

Each sheet of QDEF contains trillions of tiny (by tiny we mean: a bit bigger than a water molecule but smaller than a virus in size) nanoscrystal phosphors, called “Quantum Dots .” Not found naturally occurring anywhere on Earth, these “dots” can be tuned, by changing their size, to emit light at just the right wavelengths for our displays and do so very efficiently.

Unlike conventional phosphor technologies such as YAG that emit with a fixed spectrum, quantum dots can actually convert light to nearly any color in the visible spectrum. Pumped with a blue source, such as the GaN LED, they can be made to emit at any wavelength beyond the pump source wavelength with very high efficiency (over 90% quantum yield) and with very narrow spectral distribution (only 30 – 40nm FWHM.) The real magic of quantum dots is in the ability to tune the color output of the dots, by carefully controlling the size of the crystals as they are synthesized so that their spectral peak output can be controlled within 2 nanometers to nearly any visible wavelength.

For the first time, display designers will have the ability to tune and match the backlight spectrum to the color filters. This means displays that are brighter, more efficient, and produce truly vibrant colors.

How does it all come together?

Engineering the quantum dots to precise display industry specifications isn’t enough to revolutionize the way LCDs are experienced on its own. The dots need to be easily integrated into current manufacturing operations with minimal impact on display system design if they are to be widely adopted. To do this, Nanosys spent a lot of time working with major display manufacturers to get the packaging just right so that it would be a simple, drop-in product that did not require any line retooling or process changes. The end result is called Quantum Dot Enhancement Film or QDEF.

Designed as a replacement for the an existing film in LCD backlights called the diffuser, QDEF combines red and green emitting quantum dots in a thin, optically clear sheet that emits white light when stimulated by blue (some of that blue is allowed to pass through to make the B in RGB at the LCM of course). So manufacturers who’ve invested billions in plant and equipment for LCD production can simply slip this sheet into their process, change their ‘white’ LEDs to blue (the same LEDs but without the phosphor) and start producing LCD panels with the colors and efficiencies of the best OLEDs, at a fraction of the cost and current industrial scale.

Nanosys is currently shipping production samples to display manufacturers and is on track to begin producing at commercial volumes fall of 2013.

Inkjet Print Process Devised for Quantum Dot Organic LEDs


mix-id328072.jpg

 

 

  *** Original Post by Alan Kotok from “Science and Enterprise. ***

Engineers at University of Louisville in Kentucky developed a process for making organic light-emitting diodes (OLEDs) with quantum dots and applied with inkjet printing, a common manufacturing technology. The findings of the research team led by Louisville engineering professor Delaina Amos will be presented next week at the Optical Society’s Conference on Lasers and Electro-Optics in San Jose, California.

OLEDs are solid-state devices made with thin films of organic molecules that generate light when an electric current passes through. Displays made with OLEDs can be made much thinner and flexible, and use less power than LED or liquid-crystal displays found in conventional flat-screen televisions or computer monitors. However, widespread manufacturing of OLEDs has been held back because of the cost of materials and their expensive production processes.

The Louisville team aims to create an OLED manufacturing technique with inkjet printing, an established manufacturing process widely used in commercial settings. Their methods use quantum dots made of cadmium selenide, an inorganic material, forming a hybrid type of OLED. Quantum dots are nanoscale semiconductor crystals, which have among other properties photoelectric effects.

These synthesized quantum-dot OLEDs, says Amos, are more efficient than earlier OLEDs and can present a wider spectrum of colors. She adds that they are also less expensive to produce and more environmentally friendly, using low-toxicity materials.

Amos and colleagues demonstrated their technology using cadmium selenide quantum dots in a solution applied with an inkjet printer. The OLEDs are applied in layers, with interfaces between the layers designed to improve the efficiency with which electrons are transferred through the device.

The demonstrations so far created small-scale (1-inch by 1-inch square) OLED devices, but Amos says they can be scaled up to 6 by 6 inches or larger within the next few months. “Ultimately,” notes Amos, “we want to have low cost, low toxicity, and the ability to make flexible devices.”

Read more:

Nanotechnology Solar Cell Applications – Graphene-Based Materials


By Michael Berger. Copyright © Nanowerk

longpredicte(Nanowerk Spotlight) Graphene-based nanomaterials have  many promising applications in energy-related areas. In particular, there are  four major energy-related areas where graphene will have an impact: solar cells,  supercapacitors, lithium-ion batteries, and catalysis for fuel cells (read more:  “Graphene-based  nanotechnology in energy applications”).

 

 

The extremely high electron mobility of graphene – under ideal  conditions electrons move through it with roughly 100 times the mobility they  have in silicon – combined with its superior strength and the fact that it is  nearly transparent (2.3 % of light is absorbed; 97.7 % transmitted), make it an  ideal candidate for photovoltaic applications. It could be a promising  replacement material for indium tin oxide (ITO), the current standard material  for transparent electrodes used for electrodes in LCD displays, solar cells,  iPad and smart-phone touch screens, and organic light-emitting diode (OLED)  displays for televisions and computer monitors.

Just yesterday, for instance, there was a report (“Nanotechnology  researchers make major leap towards graphene for solar cells”) that shows  that graphene retains its impressive set of properties when it is coated with a  thin silicon film. These findings pave the way for entirely new possibilities to  use in thin-film photovoltaics.

A new review in Advanced Energy Materials (“Graphene-Based Materials for Solar Cell  Applications”) by a team of scientists from Nanyang Technological  University, led by Prof. Hua Zhang, provides an overview of the recent  research on graphene and its derivatives, with a particular focus on synthesis,  properties, and applications in solar cells.

organic solar cell fabricated with graphene as anodic electrode

 

Schematic representation of the energy level alignment (top) and the  construction of heterojunction organic solar cell fabricated with graphene as  anodic electrode: graphene/PEDOT/CuPc/C60/BCP/Al.  (©Wiley-VCH Verlag)  

With the unique properties, i.e., highly optical transparence,  highly electrical conduction, and mechanical flexibility, graphene and its  derivatives have been investigated extensively in the field of solar cells. The review looks in detail at some of the impressive results  that have been reported where graphene was used as the electrodes, i.e.:

  • –transparent  anodes
  • –non-transparent  anodes
  • –transparent  cathodes
  • –catalytic  counter electrodes

as well as where graphene was used as the active layer, i.e.:

  • –light  harvesting material
  • –Schottky  junction
  • –electron  transport layer
  • –hole  transport layer
  • –both  hole and electron transport layer
  • –and  interfacial layer in the tandem configuration.

Summing up their review, the authors conclude that it is  promising that graphene, as the transparent electrode material, has exhibited  superiority in that it is highly flexible, an abundant carbon source, and has  high thermal/chemical stability, compared to the traditional ITO. In particular,  the flexible transparent electrodes show applications not only in solar cells,  but also in flexible touch screens, displays, printable electronics, flexible  transistors, memories, etc.

transfer process of CVD-graphene onto transparent substrate

Schematic illustration of the transfer process of CVD-graphene onto  transparent substrate. (©Wiley-VCH Verlag)  

 

“In addition to working as transparent electrodes, graphene,  graphene oxide (GO), and their derivatives show many other important  applications that include being electron/hole transporters and serving as  interfacial layers and Schottky junction layers in photovoltaics devices,” write  the authors. “Two-dimensional (2D) graphene oxide is capable of π-π stacking and  hydrogen bonding. This makes it possible to use such a 2D scaffold as the  template to self-assemble GO-based novel inorganic, organic, and  inorganic-organic hybrids with multifunctionalities for applications in  photovoltaics.”

“On the other hand, to enrich the application of graphene,  processes on bandgap opening have always attracted the attention of scientists.  To date, many methods have been investigated to engineer the band structure of  graphene, including inducing a quantum confinement effect by reduction of  graphene lateral size to form nanoribbons or nanomesh introducing foreign  elements, and employing a strain effect from the substrate.

 

We believe that  graphene will play more and more important roles in solar cells and other  fields, such as energy storage, optoelectronics, electrics and sensing, in the  near future.”
Read more: http://www.nanowerk.com/spotlight/spotid=32691.php#ixzz2i7UENfhw

LG Display Ready to Mass Produce Flexible OLED Panels for Smartphones, to Introduce Products Next Year


lg flexible display oled

 

*** Note to “Great Things from Small Things” Readers: Tangent to this story readers should also read our blog on “QLED Technology” (Quantum Dot Enabled) (See Below) coming into this marketplace in the future. The tech has the potential of not only accommodating the ‘flexible (component) of the display screen markets’ but also of enhancing performance (lower cost, less heat, requiring less energy, higher quality image, as examples) … ergo … a better “User Experience”.  – GNT Team

Read the Article Here:

https://genesisnanotech.wordpress.com/category/printed-electronics/

Nanosys Quantum Dot Concentrate (enables) a new generation of consumer devices with brighter, more colorful displays this fall.

“QDEF is enabling LCD makers to really challenge the newest OLED technology,” said Jason Hartlove, President and CEO of Nanosys. “We are working with display makers to create a new, perfect color display experience that is more cost effective, efficient and reliable than anything else currently on the market. This is fundamentally changing the economics of high performance displays back in favor of LCD technology, and demand for QDEF has grown to the point that we’ve significantly expanded our manufacturing to keep up.”

A drop-in optical component for LCDs, QDEF creates a richer, more lifelike color experience while consuming significantly less power. Based on a new generation of quantum dots from Nanosys, the 55-inch set on display in Korea achieves about 40% higher color gamut than commercially available white-LED based 4k televisions while reducing power consumption by more than 35%.

As always, we at ‘Team GNT’ welcome your comments and feedback. – GNT Team

 

LG Display Ready to Mass Produce Flexible OLED Panels for Smartphones

Flexible displays are all the rage these days for smartphones, with Samsung and LG battling to get theirs to market first and then onto devices. LG, as of late last night, is claiming that their flexible OLED is the first to be ready for mass production. In a press release, LG says that they already have a 6-inch flexible OLED that weighs just 7.2g and is only 0.44mm thick.

Typically when LG announces a new panel or technology that is made for smartphones or tablets, we tend to see an announcement of a product that uses the tech within a couple of weeks, sometimes days. With that said, LG did specifically mention that they expect flexible OLED displays to show up in automotive displays, and on tablets and wearable devices in the very near future. Their goal is to take an early lead in this market by introducing new products and enhanced performance and differentiated designs “next year.” That sounds to me like a flexible product isn’t coming until 2014.

 

LG Display Mass-Produce World’s First Flexible OLED Panel for Smartphones

LG Display brings innovation to the smartphone market with cutting-edge panel

Seoul, Korea (Oct. 7, 2013) – LG Display [NYSE: LPL, KRX: 034220], the world’s leading innovator of display technologies, today announced that it will start mass-production of the world’s first flexible OLED panel for smartphones. This state-of-the-art panel represents another milestone following the company’s commercial rollout of the world’s first 55-inch OLED TV display earlier this year.

“LG Display is launching a new era of flexible displays for smartphones with its industry-leading technology,” said Dr. Sang Deog Yeo, Executive Vice President and Chief Technology Officer of LG Display. “

The flexible display market is expected to grow quickly as this technology is expected to expand further into diverse applications including automotive displays, tablets and wearable devices. Our goal is to take an early lead in the flexible display market by introducing new products with enhanced performance and differentiated designs next year.”

LG Display’s flexible OLED panel is built on plastic substrates instead of glass. By applying film-type encapsulation technology and attaching the protection film to the back of the panel, LG Display made the panel bendable and unbreakable.

The new display is vertically concave from top to bottom with a radius of 700mm, opening up a world of design innovations in the smartphone market. And only 0.44mm thin, LG Display’s flexible OLED panel is the world’s slimmest among existing mobile device panels. What’s more, it is also the world’s lightest, weighing a mere 7.2g even with a 6-inch screen, the largest among current smartphone OLED displays.

In March 2012 LG Display developed the world’s first 6-inch Electronic Paper Display (EPD) based on e-ink which utilizes a plastic backplane. Having previously showcased the world’s first curved 55-inch OLED TV panel at CES 2013, today’s announcement highlights the company’s leading position in advanced flexible display technologies.

According to research firm IHS Display Bank, the global flexible display industry will see dramatic growth and become a USD 1.5 billion market by 2016, exceeding USD 10 billion by 2019. LG Display plans to advance flexible display technologies and bring innovation to consumers’ daily lives with the introduction of rollable and foldable displays in various sizes.

###

 About LG Display

LG Display Co., Ltd. [NYSE: LPL, KRX: 034220] is a leading manufacturer and supplier of thin-film transistor liquid crystal display (TFT-LCD) panels, OLEDs and flexible displays. The company provides TFT-LCD panels in a wide range of sizes and specifications for use in TVs, monitors, notebook PCs, mobile products and other various applications. LG Display currently operates nine fabrication facilities and seven back-end assembly facilities in Korea, China, Poland, and Mexico. The company has a total of 56,000 employees operating worldwide. For more news and information about LG Display, please visit www.lgdnewsroom.com.