This technology would enable communities to produce their own water filters using biomass nanofibers, making clean water more accessible and affordable.
The world’s population is projected to increase by 2-3 billion over the next 40 years. Already, more than three quarters of a billion people lack access to clean drinking water and 85 percent live in the driest areas of the planet. Those statistics are inspiring chemist Ben Hsiao and his team at Stony Brook University. With support from the National Science Foundation (NSF), the team is hard at work designing nanometer-scale water filters that could soon make clean drinking water available and affordable for even the poorest of the poor.
Traditional water filters are made of polymer membranes with tiny pores to filter out bacteria and viruses. Hsiao’s filters are made of fibers that are all tangled up, and the pores are the natural gaps between the strands. The team’s first success at making the new nanofilters uses a technique called electrospinning to produce nanofibers under an electrical field.
Hsiao’s team is also looking to cut costs even further by using “biomass” nanofibers extracted from trees, grasses, shrubs — even old paper. Hsiao says it will be a few years yet before the environmentally friendly biomass filters are ready for widespread use in developing countries, but the filters will eliminate the need to build polymer plants in developing areas. Ultimately, those filters could be produced locally with native biomass or biowaste.
The research in this episode was supported by NSF award #1019370, Breakthrough Concepts on Nanofibrous Membranes with Directed Water Channels for Energy-Saving Water Purification.
This technology would enable communities to produce their own water filters using biomass nanofibers, making clean water more accessible and affordable – Follow the Link below to Watch the Video.
The world’s population is projected to increase by 2-3 billion over the next 40 years. Already, more than three quarters of a billion people lack access to clean drinking water and 85 percent live in the driest areas of the planet.
Those statistics are inspiring chemist Ben Hsiao and his team at Stony Brook University. With support from the National Science Foundation (NSF), the team is hard at work designing nanometer-scale water filters that could soon make clean drinking water available and affordable for even the poorest of the poor.
Traditional water filters are made of polymer membranes with tiny pores to filter out bacteria and viruses. Hsiao’s filters are made of fibers that are all tangled up, and the pores are the natural gaps between the strands. The team’s first success at making the new nanofilters uses a technique called electrospinning to produce nanofibers under an electrical field.
Hsiao’s team is also looking to cut costs even further by using “biomass” nanofibers extracted from trees, grasses, shrubs — even old paper. Hsiao says it will be a few years yet before the environmentally friendly biomass filters are ready for widespread use in developing countries, but the filters will eliminate the need to build polymer plants in developing areas. Ultimately, those filters could be produced locally with native biomass or biowaste.
The research in this episode was supported by NSF award #1019370, Breakthrough Concepts on Nanofibrous Membranes with Directed Water Channels for Energy-Saving Water Purification.
ERCs produce both transformational technology and innovative-minded engineering graduates. Credit and Larger Version
NSF-funded Nanosystems Engineering Research Center to enable deployment of mobile, efficient water treatment and desalination systems
** NEWT is a joint designated collaboration between Rice University, ASU, UTEP and Yale University
Water, water is everywhere, but we need more drops to drink.
The primary mission of the recently founded Nanotechnology Enabled Water Treatment (NEWT) Center, a consortium based at Rice University and led by environmental engineer Pedro Alvarez, is to produce more drinkable drops where they’re needed the most.
According to Alvarez, treated water is too often unavailable in parts of the world that cannot afford large treatment plants or miles of pipes to deliver it. Moreover, large-scale treatment and distribution uses a great deal of energy. “About 25 percent of the energy bill for a typical city is associated with the cost of moving water,” he said.
The center, funded by a five-year, $18.5 million National Science Foundation (NSF) award was founded to transform the economics of water treatment by using nanotechnology to develop compact, mobile, off-grid systems to provide clean water to millions of people around the world. A second goal is to make U.S. energy production more sustainable and cost-effective in regards to its water use.
NEWT is the first NSF Engineering Research Center (ERC) based in Houston. ERCs are interdisciplinary, multi-institutional centers that join academia, industry and government in partnership to produce both transformational technology and innovative-minded engineering graduates primed to lead the global economy. ERCs often become self-sustaining and typically leverage more than $40 million in federal and industry research funding during their first decade.
Water has long been a passion for Alvarez, who studies treatment and reuse, remediation strategies for contaminated aquifers and the water footprints of biofuels. His work also covers the environmental implications of using nanotechnology, and the transport — and eventual fate of — toxic chemicals in the environment. As NEWT director, he partners with researchers at Arizona State University (ASU), Yale University and the University of Texas at El Paso.
The consortium set as its first goal the development of modular water treatment systems that can deploy almost anywhere in the world. But Alvarez said the potential to make a significant impact is already expanding, with opportunities to address wastewater treatment at oil and gas drilling sites, nano-infused desalination in urban environments, and improved water treatment through more efficient filtration at existing plants.
Alvarez paused between classes recently to talk about the center’s plans.
Q. Where do you think NEWT’s greatest impact will be in 10 years?
A. It will be in drinking water, providing cleaner water to millions of people who now lack it. I think it’s going to be in developing small, portable units that will not only provide humanitarian water but also emergency response.
There will be other Flints. There will be other Elk River spills that will impact municipalities and water. I think we will be able to respond to those things.
We will probably have tremendous impact on desalination. Low-energy desalination will be one of our hallmarks, I believe. Of course, we will be very good also at treating some of the oil-and-gas water issues, but that’s a more difficult problem.
I expect we’ll also have high institutional impact because people may be more ready to consider unconventional water sources using portable systems that are easier to deploy. People are going to start considering more and more decentralized water-treatment approaches, especially as new cities and neighborhoods and developments evolve.
Q. What kind of sources will your technology be able to treat?
A. Briny ground water, for example, could be a source of drinking water in areas experiencing drought. Or in coastal areas. I think we will see more of that. We’ll see more harvesting of storm water, certainly, and for some uses, even greywater.
Those are the kinds of things our technologies will enable, but it’s not just about technology. It’s about the philosophy of changing to more sustainable, integratable water management, where we reuse more water, where we tap water that we thought was of too low quality but, as it turns out, is perfectly fine and safe and more economical for a sole intended use.
Q. In what directions are the initial projects headed?
A. I think the first thing we’re going to have out there is an adsorbent filter being developed by [NEWT deputy director] Paul Westerhoff at ASU. It’s a block of carbon with embedded nanoparticles. These particles adsorb — that is, they grab onto and hold — oxyanion contaminants like nitrate, arsenic and chromate, and effectively remove them from the water supply. [Oxyanions are negatively charged ions that contain oxygen.] It will be part of a drinking-water treatment unit.
Q. Would the technology apply to large water treatment plants?
A. Yes. Though we originally intended to carve a niche in the decentralized water treatment market, we do aspire to bigger things as our products, materials and processes gain momentum.
I am sure there will be a lot that can be used by the municipal water treatment community. It’s a more difficult industry to penetrate because it’s very conservative. You have to convince them that a technology is going to save them a lot of money and that they don’t have to change too much of the infrastructure or the configuration of the plant.
We have some very good ideas of things that will fit them. If they’re already using membranes for filtration, for example, our membranes may offer better rejection of contaminants and perhaps less susceptibility to being fouled, so they will last longer without having to be replaced. They won’t clog up as easily. They will not use as much energy.
Q. Why did you pursue hosting this NSF center?
A. I think that we as scientists and as engineers, especially in developed countries, have a social debt toward many poor people who lack access to clean water because they are denied the right to a life consistent with their inalienable dignity.
The lack of clean water is a major hindrance to human capacity. It goes beyond public health: It’s directly tied to the need for economic development.
That is certainly one important factor in my passion to provide water to many. It’s related to the concept of world affirmation, the idea that the world can be a better place and we can do something about it. Providing clean water is one way to do it.
The other big incentive was to try to move towards energy self-sufficiency in the United States in a manner that is more cost-effective and more sustainable with regards to the water footprint.
A major challenge for our energy industry is that they need to operate and extract oil and gas in areas that are relatively dry and semi-arid, where water is scarce. And they need relatively large quantities of water to obtain this energy. To get a barrel of oil in Texas, you need about 10 barrels of water. To frack a well to get shale gas or shale oil, you may need up to 6 million gallons of water, again in areas where water is scarce.
Once it’s used, disposal of that water becomes a major challenge and a potentially serious source of pollution. So the solution to both scarcity and minimizing impact is to reuse this water. That’s one of the things we’re trying to do: develop systems that are small and easily deployed that can enable industrial wastewater reuse in remote areas.
Q. What can you do with nanoparticles that you couldn’t have done before?
A. We need to recognize that at the nanoscale, the properties of matter change. Some elements, such as gold, that are very inert can become hypercatalytic at that scale, and materials that are good insulators like carbon can become superconductors.
When you exploit these extraordinary size-dependent properties, it allows you to introduce multifunctionality at both the reactor and materials level. This combination of multifunctionality — for example, membranes that have self-cleaning and self-healing properties — with the nanotechnology-enabled ability to selectively remove pollutants allows you to have smaller reactors. These can treat even unconventional sources of water, difficult sources, that currently would require huge reactors and very large and complex treatment trains that are impossible to take to remote locations.
Making them smaller, multifunctional and modular brings you tremendous versatility to handle a wide variety of challenges in water purification. Nanotechnology allows us to do that. It’s essential to our vision of decentralized water treatment systems.
Q. You’re an environmental engineer who knows aquatic chemistry, and you rely on other kinds of engineers and scientists for different parts of the water systems.
A. Absolutely. This has to be a multidisciplinary collaborative effort to build this innovation ecosystem. We need people who know how to make materials and people who know how to characterize them, how to immobilize them, how to manipulate them — how to assess their reactivity and bioavailability and mobility, and eventually scale them up.
We want people who are good at designing and building reactors all the way to systems to think about the whole lifecycle, the techno-economic implications of these materials, to make sure they’re feasible and improve on current practices.
They have to do it in a way that’s sustainable and avoids unintended, undesirable consequences as well.
Alvarez is the George R. Brown Professor of Environmental Engineering in the Department of Civil and Environmental Engineering at Rice University.
Investigators
Pedro Alvarez
Menachem Elimelech
Naomi Halas
Qilin Li
Paul Westerhoff
Related Institutions/Organizations William Marsh Rice University
Arizona State University
University of Texas-El Paso
Yale University
By combining designer quantum dot light-emitters with spectrally matched photonic mirrors, a team of scientists with Berkeley Lab and the University of Illinois created solar cells that collect blue photons at 30 times the concentration of conventional solar cells, the highest luminescent concentration factor ever recorded. This breakthrough paves the way for the future development of low-cost solar cells that efficiently utilize the high-energy part of the solar spectrum.
“We’ve achieved a luminescent concentration ratio greater than 30 with an optical efficiency of 82-percent for blue photons,” says Berkeley Lab director Paul Alivisatos, who is also the Samsung Distinguished Professor of Nanoscience and Nanotechnology at the University of California Berkeley, and director of the Kavli Energy Nanoscience Institute (ENSI), was the co-leader of this research. “To the best of our knowledge, this is the highest luminescent concentration factor in literature to date.”
Luminescent solar concentrators featuring quantum dots and photonic mirrors suffer far less parasitic loss of photons than LSCs using molecular dyes as lumophores.
Alivisatos and Ralph Nuzzo of the University of Illinois are the corresponding authors of a paper in ACS Photonics describing this research entitled “Quantum Dot Luminescent Concentrator Cavity Exhibiting 30-fold Concentration”. Noah Bronstein, a member of Alivisatos’s research group, is one of three lead authors along with Yuan Yao and Lu Xu. Other co-authors are Erin O’Brien, Alexander Powers and Vivian Ferry.
The solar energy industry in the United States is soaring with the number of photovoltaic installations having grown from generating 1.2 gigawatts of electricity in 2008 to generating 20-plus gigawatts today, according to the U.S. Department of Energy (DOE). Still, nearly 70-percent of the electricity generated in this country continues to come from fossil fuels. Low-cost alternatives to today’s photovoltaic solar panels are needed for the immense advantages of solar power to be fully realized. One promising alternative has been luminescent solar concentrators (LSCs).
Unlike conventional solar cells that directly absorb sunlight and convert it into electricity, an LSC absorbs the light on a plate embedded with highly efficient light-emitters called “lumophores” that then re-emit the absorbed light at longer wavelengths, a process known as the Stokes shift. This re-emitted light is directed to a micro-solar cell for conversion to electricity. Because the plate is much larger than the micro-solar cell, the solar energy hitting the cell is highly concentrated.
With a sufficient concentration factor, only small amounts of expensive III-V photovoltaic materials are needed to collect light from an inexpensive luminescent waveguide. However, the concentration factor and collection efficiency of the molecular dyes that up until now have been used as lumophores are limited by parasitic losses, including non-unity quantum yields of the lumophores, imperfect light trapping within the waveguide, and reabsorption and scattering of propagating photons.
“We replaced the molecular dyes in previous LSC systems with core/shell nanoparticles composed of cadmium selenide (CdSe) cores and cadmium sulfide (CdS) shells that increase the Stokes shift while reducing photon re-absorption,” says Bronstein.
“The CdSe/CdS nanoparticles enabled us to decouple absorption from emission energy and volume, which in turn allowed us to balance absorption and scattering to obtain the optimum nanoparticle,” he says. “Our use of photonic mirrors that are carefully matched to the narrow bandwidth of our quantum dot lumophores allowed us to achieve waveguide efficiency exceeding the limit imposed by total internal reflection.”
In their ACS Photonics paper, the collaborators express confidence that future LSC devices will achieve even higher concentration ratios through improvements to the luminescence quantum yield, waveguide geometry, and photonic mirror design.
The success of this CdSe/CdS nanoparticle-based LSC system led to a partnership between Berkeley Lab, the University of Illinois, Caltech and the National Renewable Energy Lab (NREL) on a new solar concentrator project. At the recent Clean Energy Summit held in Las Vegas, President Obama and Energy Secretary Ernest Moniz announced this partnership will receive a $3 million grant for the development of a micro-optical tandem LCS under MOSAIC, the newest program from DOE’s ARPA-E. MOSAIC stands for Micro-scale Optimized Solar-cell Arrays with Integrated Concentration.
The LCS work reported in this story was carried out through the U.S. Department of Energy’s Energy Frontier Research Center program and the National Science Foundation.
It’s easier to dissolve a sugar cube in a glass of water by crushing the cube first, because the numerous tiny particles cover more surface area in the water than the cube itself. In a way, the same principle applies to the potential value of materials composed of nanoparticles.
Because nanoparticles are so small, millions of times smaller than the width of a human hair, they have “tremendous surface area,” raising the possibility of using them to design materials with more efficient solar-to-electricity and solar-to-chemical energy pathways, says Ari Chakraborty, an assistant professor of chemistry at Syracuse University.
“They are very promising materials,” he says. “You can optimize the amount of energy you produce from a nanoparticle-based solar cell.”
Ari Chakraborty is an assistant professor of chemistry at Syracuse University. Credit: Ari Chakraborty, Syracuse University >>>
Chakraborty, an expert in physical and theoretical chemistry, quantum mechanics and nanomaterials, is seeking to understand how these nanoparticles interact with light after changing their shape and size, which means, for example, they ultimately could provide enhanced photovoltaic and light-harvesting properties. Changing their shape and size is possible “without changing their chemical composition,” he says. “The same chemical compound in different sizes and shapes will interact differently with light.”
Specifically, the National Science Foundation (NSF)-funded scientist is focusing on quantum dots, which are semiconductor crystals on a nanometer scale. Quantum dots are so tiny that the electrons within them exist only in states with specific energies. As such, quantum dots behave similarly to atoms, and, like atoms, can achieve higher levels of energy when light stimulates them.
Chakraborty works in theoretical and computational chemistry, meaning “we work with computers and computers only,” he says. “The goal of computational chemistry is to use fundamental laws of physics to understand how matter interacts with each other, and, in my research, with light. We want to predict chemical processes before they actually happen in the lab, which tells us which direction to pursue.”
These atoms and molecules follow natural laws of motion, “and we know what they are,” he says. “Unfortunately, they are too complicated to be solved by hand or calculator when applied to chemical systems, which is why we use a computer.”
The “electronically excited” states of the nanoparticles influence their optical properties, he says.
“We investigate these excited states by solving the Schrödinger equation for the nanoparticles,” he says, referring to a partial differential equation that describes how the quantum state of some physical system changes with time. “The Schrödinger equation provides the quantum mechanical description of all the electrons in the nanoparticle.
“However, accurate solution of the Schrödinger equation is challenging because of large number of electrons in system,” he adds. “For example, a 20 nanometer CdSe quantum dot contains over 6 million electrons. Currently, the primary focus of my research group is to develop new quantum chemical methods to address these challenges. The newly developed methods are implemented in open-source computational software, which will be distributed to the general public free of charge.”
Solar voltaics, “requires a substance that captures light, uses it, and transfers that energy into electrical energy,” he says. With solar cell materials made of nanoparticles, “you can use different shapes and sizes, and capture more energy,” he adds. “Also, you can have a large surface area for a small amount of materials, so you don’t need a lot of them.”
Nanoparticles also could be useful in converting solar energy to chemical energy, he says. “How do you store the energy when the sun is not out?” he says. “For example, leaves on a tree take energy and store it as glucose, then later use the glucose for food. One potential application is to develop artificial leaves for artificial photosynthesis. There is a huge area of ongoing research to make compounds that can store energy.”
Medical imaging presents another useful potential application, he says.
“For example, nanoparticles have been coated with binding agents that bind to cancerous cells,” he says. “Under certain chemical and physical conditions, the nanoparticles can be tuned to emit light, which allows us to take pictures of the nanoparticles. You could pinpoint the areas where there are cancerous cells in the body. The regions where the cancerous cells are located show up as bright spots in the photograph.”
Chakraborty is conducting his research under an NSF Faculty Early Career Development (CAREER) award. The award supports junior faculty who exemplify the role of teacher-scholars through outstanding research, excellent education and the integration of education and research within the context of the mission of their organization. NSF is funding his work with $622,123 over five years.
As part of the grant’s educational component, Chakraborty is hosting several students from a local high school–East Syracuse Mineoa High School–in his lab. He also has organized two workshops for high school teachers on how to use computational tools in their classrooms “to make chemistry more interesting and intuitive to high school students,” he says.
“The really good part about it is that the kids can really work with the molecules because they can see them on the screen and manipulate them in 3-D space,” he adds. “They can explore their structure using computers. They can measure distances, angles, and energies associated with the molecules, which is not possible to do with a physical model. They can stretch it, and see it come back to its original structure. It’s a real hands-on experience that the kids can have while learning chemistry.”
New research shows how inkjet-printing technology can be used to mass-produce electronic circuits made of liquid-metal alloys for “soft robots” and flexible electronics.
Elastic technologies could make possible a new class of pliable robots and stretchable garments that people might wear to interact with computers or for therapeutic purposes. However, new manufacturing techniques must be developed before soft machines become commercially feasible, said Rebecca Kramer, an assistant professor of mechanical engineering at Purdue University.
“We want to create stretchable electronics that might be compatible with soft machines, such as robots that need to squeeze through small spaces, or wearable technologies that aren’t restrictive of motion,” she said. “Conductors made from liquid metal can stretch and deform without breaking.”
A new potential manufacturing approach focuses on harnessing inkjet printing to create devices made of liquid alloys.
“This process now allows us to print flexible and stretchable conductors onto anything, including elastic materials and fabrics,” Kramer said.
A research paper about the method will appear on April 18 in the journal Advanced Materials (“Mechanically Sintered Gallium–Indium Nanoparticles”). The paper generally introduces the method, called mechanically sintered gallium-indium nanoparticles, and describes research leading up to the project. It was authored by postdoctoral researcher John William Boley, graduate student Edward L. White and Kramer.
This artistic rendering depicts electronic devices created using a new inkjet-printing technology to produce circuits made of liquid-metal alloys for “soft robots” and flexible electronics. Elastic technologies could make possible a new class of pliable robots and stretchable garments that people might wear to interact with computers or for therapeutic purposes. (Image: Alex Bottiglio/Purdue University)
A printable ink is made by dispersing the liquid metal in a non-metallic solvent using ultrasound, which breaks up the bulk liquid metal into nanoparticles. This nanoparticle-filled ink is compatible with inkjet printing.
“Liquid metal in its native form is not inkjet-able,” Kramer said. “So what we do is create liquid metal nanoparticles that are small enough to pass through an inkjet nozzle. Sonicating liquid metal in a carrier solvent, such as ethanol, both creates the nanoparticles and disperses them in the solvent. Then we can print the ink onto any substrate. The ethanol evaporates away so we are just left with liquid metal nanoparticles on a surface.”
After printing, the nanoparticles must be rejoined by applying light pressure, which renders the material conductive. This step is necessary because the liquid-metal nanoparticles are initially coated with oxidized gallium, which acts as a skin that prevents electrical conductivity.
“But it’s a fragile skin, so when you apply pressure it breaks the skin and everything coalesces into one uniform film,” Kramer said. “We can do this either by stamping or by dragging something across the surface, such as the sharp edge of a silicon tip.”
The approach makes it possible to select which portions to activate depending on particular designs, suggesting that a blank film might be manufactured for a multitude of potential applications.
“We selectively activate what electronics we want to turn on by applying pressure to just those areas,” said Kramer, who this year was awarded an Early Career Development award from the National Science Foundation, which supports research to determine how to best develop the liquid-metal ink.
The process could make it possible to rapidly mass-produce large quantities of the film.
Future research will explore how the interaction between the ink and the surface being printed on might be conducive to the production of specific types of devices.
“For example, how do the nanoparticles orient themselves on hydrophobic versus hydrophilic surfaces? How can we formulate the ink and exploit its interaction with a surface to enable self-assembly of the particles?” she said.
The researchers also will study and model how individual particles rupture when pressure is applied, providing information that could allow the manufacture of ultrathin traces and new types of sensors.
One of nanotechnology’s greatest promises is interacting with the biological world the way our own cells do, but current biosensors must be tailor-made to detect the presence of one type of protein, the identity of which must be known in advance.
University of Pennsylvania engineers have now devised a new kind of graphene-based biosensor that works in three ways at once. Because proteins trigger three different types of signals, the sensor can triangulate this information to produce more sensitive and accurate results. By taking advantage of the unique integration of multiple physical sensing modes on the same chip, this sensor device can extend the protein-concentration sensing range by a thousand-fold.
This extended range could be particularly useful in early diagnosis of certain cancers, where the blood biomarker concentration varies by orders of magnitude from patient to patient. The ability to make multiple detections of the same biomarker on the same chip also has the potential to reduce false positives and negatives in medical diagnostic tests.
Eventually, such a technique could be used in an all-purpose biosensor, which could identify a wide range of proteins through their mass, as well as their optical and electrical properties.
A biosensor that did not have to be fine-tuned to detect only specific proteins would have a host of biomedical applications in diagnostic devices.
“In a typical single mode biosensor you have two proteins that interact strongly. You attach protein A to your sensor and, when protein B binds to it, the sensor transduces that binding into some sort of electrical signal,” Cubukcu said,” But it’s kind of a dumb sensor in that it can only tell you if that kind of binding has occurred.
“But let’s say you have proteins A, B, C and D, all with different physical properties, like charge and mass. If you had a sensor that was sensitive to several of those properties, you could tell the difference between those binding events without starting with corresponding proteins for all of them.”
The more sensing modes operating at once, the better a sensor is at distinguishing between similar proteins. Proteins A and B might have the same mass but different charges, while proteins B and C have the same charges but different optical properties.
A multimodal sensor, pulling in data from multiple categories, could narrow the identity of a protein by comparing those values to a large database. Such an ability could potentially enable it to be applied to samples where the protein’s contents are unknown, a major upgrade on current technology which generally involves custom-building sensors to detect the presence of pre-defined sets of proteins.
The team’s sensors consist of a base of silicon nitride, coated with a layer of graphene, a single-atom-thick lattice of carbon atoms. Being carbon based means that graphene is an attractive bonding surface for proteins, which means that the device doesn’t need to be “functionalized” with proteins that are apt to interact with the ones the sensor aims to detect.
Graphene’s extreme thinness and unique electrical properties also allow for the mechanical, electrical and optical modes to operate simultaneously without interfering with one another.
“In the mechanical mode, the graphene is like the skin of a drum,” said Alexander Zhu, the first author of the study, who was then an undergraduate working in Cubukcu’s lab. “As proteins bind, the total mass changes and the resonance of the drum changes as a function of the total mass.
“In the electrical mode, we can look at how electrons travel across the graphene. The conductance is a function of the total available carriers inside, so, if you have something binding to the graphene, that changes the number of carriers and therefore the conductance properties.
“Finally, in the optical mode, we have a source of visible light and shine it on the sensor and measure the reflection. When nothing is bound, it’s seeing just air, but, as soon as proteins bind, we can measure the change in the refractive index.”
In their study, the researchers tested their sensor with known samples of proteins in order to demonstrate that all three modes can work simultaneously.
“We’ve shown that one sample provides all three shifts,” Yi said, “in the mass, electrical and optical readouts.”
Further work from Cubukcu’s group will investigate the feasibility of using this multimodal sensor to identify proteins from unknown samples.
The research was supported by the National Science Foundation under grants IIP-1312202 and ECCS-1408139.
Cambridge, MA (Scicasts) – Inspired by natural materials such as bone — a matrix of minerals and other substances, including living cells — MIT engineers have coaxed bacterial cells to produce biofilms that can incorporate nonliving materials, such as gold nanoparticles and quantum dots.
These “living materials” combine the advantages of live cells, which respond to their environment, produce complex biological molecules, and span multiple length scales, with the benefits of nonliving materials, which add functions such as conducting electricity or emitting light.
An artist’s rendering of a bacterial cell engineered to produce amyloid nanofibers that incorporate particles such as quantum dots (red and green spheres) or gold nanoparticles. Image: Yan Liang
The new materials represent a simple demonstration of the power of this approach, which could one day be used to design more complex devices such as solar cells, self-healing materials, or diagnostic sensors, says Timothy Lu, an assistant professor of electrical engineering and biological engineering. Lu is the senior author of a paper describing the living functional materials in the March 23 issue of Nature Materials.
“Our idea is to put the living and the nonliving worlds together to make hybrid materials that have living cells in them and are functional,” Lu says. “It’s an interesting way of thinking about materials synthesis, which is very different from what people do now, which is usually a top-down approach.”
The paper’s lead author is Allen Chen, an MIT-Harvard MD-PhD student. Other authors are postdocs Zhengtao Deng, Amanda Billings, Urartu Seker, and Bijan Zakeri; recent MIT graduate Michelle Lu; and graduate student Robert Citorik.
Self-assembling materials
Lu and his colleagues chose to work with the bacterium E. coli because it naturally produces biofilms that contain so-called “curli fibres” — amyloid proteins that help E. coli attach to surfaces. Each curli fibre is made from a repeating chain of identical protein subunits called CsgA, which can be modified by adding protein fragments called peptides. These peptides can capture nonliving materials such as gold nanoparticles, incorporating them into the biofilms.
By programming cells to produce different types of curli fibres under certain conditions, the researchers were able to control the biofilms’ properties and create gold nanowires, conducting biofilms, and films studded with quantum dots, or tiny crystals that exhibit quantum mechanical properties. They also engineered the cells so they could communicate with each other and change the composition of the biofilm over time.
First, the MIT team disabled the bacterial cells’ natural ability to produce CsgA, then replaced it with an engineered genetic circuit that produces CsgA but only under certain conditions — specifically, when a molecule called AHL is present. This puts control of curli fiber production in the hands of the researchers, who can adjust the amount of AHL in the cells’ environment. When AHL is present, the cells secrete CsgA, which forms curli fibers that coalesce into a biofilm, coating the surface where the bacteria are growing.
The researchers then engineered E. coli cells to produce CsgA tagged with peptides composed of clusters of the amino acid histidine, but only when a molecule called aTc is present. The two types of engineered cells can be grown together in a colony, allowing researchers to control the material composition of the biofilm by varying the amounts of AHL and aTc in the environment. If both are present, the film will contain a mix of tagged and untagged fibres. If gold nanoparticles are added to the environment, the histidine tags will grab onto them, creating rows of gold nanowires, and a network that conducts electricity.
‘Cells that talk to each other’
The researchers also demonstrated that the cells can coordinate with each other to control the composition of the biofilm. They designed cells that produce untagged CsgA and also AHL, which then stimulates other cells to start producing histidine-tagged CsgA.
“It’s a really simple system but what happens over time is you get curli that’s increasingly labelled by gold particles. It shows that indeed you can make cells that talk to each other and they can change the composition of the material over time,” Lu says. “Ultimately, we hope to emulate how natural systems, like bone, form. No one tells bone what to do, but it generates a material in response to environmental signals.”
To add quantum dots to the curli fibres, the researchers engineered cells that produce curli fibers along with a different peptide tag, called SpyTag, which binds to quantum dots that are coated with SpyCatcher, a protein that is SpyTag’s partner. These cells can be grown along with the bacteria that produce histidine-tagged fibres, resulting in a material that contains both quantum dots and gold nanoparticles.
These hybrid materials could be worth exploring for use in energy applications such as batteries and solar cells, Lu says. The researchers are also interested in coating the biofilms with enzymes that catalyze the breakdown of cellulose, which could be useful for converting agricultural waste to biofuels. Other potential applications include diagnostic devices and scaffolds for tissue engineering.
“I think this is really fantastic work that represents a great integration of synthetic biology and materials engineering,” says Lingchong You, an associate professor of biomedical engineering at Duke University who was not part of the research team.
The research was funded by the Office of Naval Research, the Army Research Office, the National Science Foundation, the Hertz Foundation, the Department of Defense, the National Institutes of Health, and the Presidential Early Career Award for Scientists and Engineers.
The original article was written by Anne Trafton, MIT News Office.
Publication: Synthesis and patterning of tunable multiscale materials with engineered cells. Allen Y. Chen, Zhengtao Deng, Amanda N. Billings, Urartu O. S. Seker, Michelle Y. Lu, Robert J. Citorik, Bijan Zakeri, Timothy K. Lu. Nature Materials (March 23, 2014):http://www.nature.com/nmat/journal/vaop/ncurrent/full/nmat3912.html
The phase-out of traditional incandescent bulbs in the U.S. and elsewhere, as well as a growing interest in energy efficiency, has given LED lighting a sales boost. However, that trend could be short-lived as key materials known as rare earth elements become more expensive. Scientists have now designed new materials for making household LED bulbs without using these ingredients. They report their development in ACS’ Journal of the American Chemical Society.
LED lighting, which can last years longer than conventional bulbs, is an energy-efficient alternative. Switching lighting to LEDs over the next two decades, reports the U.S. Department of Energy, “could save the country $250 billion in energy costs over that period, reduce the electricity consumption for lighting by nearly one half, and avoid 1,800 million metric tons of carbon emission.” White LED bulbs are already on store shelves, but the light is generally “colder” than the warm glow of traditional bulbs. Plus, most of these lights are made with rare earth elements that are increasingly in-demand for use in almost all other high-tech devices, thus adding to the cost of the technology. Jing Li’s research team set out to solve the issues of material sources and pricing.
A new way to make white and colorful LEDs is more Earth-friendly than existing methods. Image: American Chemical Society
The researchers designed a family of materials that don’t include rare earths but instead are made out of copper iodide, which is an abundant compound. They tuned them to glow a warm white shade or various other colors using a low-cost solution process. “Combining these features, this material class shows significant promise for use in general lighting applications,” the scientists conclude.
The authors acknowledge funding from the National Science Foundation.
You must be logged in to post a comment.