The impact of nanotechnologies on the global divide


carbon-nanotube(Nanowerk News) Nanotechnologies are capable of introducing promising applications that could impact upon our daily lives; it is through the visualisation and control of matter at the scale of a billionth of a metre that allows nanotechnologies to modify and enhance the properties of products across all industry sectors. Even though nanotechnologies have immense potential, they are only in their infancy and have yet to reach full maturity. When considering the changes they could bring, it must be asked: are nanotechnologies going to reduce the rich-poor divide, or will they have the opposite effect?
Closing the Gap: The Impact of Nanotechnologies on the Global Divide

 

In light of debates that make nanotechnologies responsible for a further widening of the aforementioned divide, the Nanotechnology Industries Association (NIA) has published a report analysing this Nano-Gap, or Nano-Divide, by examining the pros and cons of nanotechnologies and their impact global development and the on-going fight against poverty.
Entitled “Closing the Gap: The Impact of Nanotechnologies on the Global Divide” (pdf), this report looks at how nanotechnology-based inventions and their potential applications could be implemented in developing counties, and whether they could benefit the most underprivileged populations. Obstacles and problematic issues that could arise are also scrutinised, with the following more fully addressed:

  • – Will nanotechnologies reach the populations they wish to assist?
  • – What impact could they have on world trade and already weak economies?
  • – What of the unprecedented nature and uncertainties surrounding the risks of nanotechnology?
  • – Will inventors from the developing world have to circumvent challenging intellectual property rules in order to make full use of the technology?
This subsequently leads the report into looking at the possible ways forward for the fair development of nanotechnologies. Finally, the report looks at the possibilities for scientists and entrepreneurs from low- and middle-income countries to scale-up the benefits for their countries with the help of international cooperation and global dialogue.
Source: Nanotechnology Industries Association

Read more: http://www.nanowerk.com/nanotechnology_news/newsid=33539.php#ixzz2nlWmimXv

Advertisements

New process to make nanospheres could enable advances across multiple industries


QDOTS imagesCAKXSY1K 8(Nanowerk News) A patent-pending technology to produce  nanospheres developed by a research team at North Dakota State University,  Fargo, could enable advances across multiple industries, including electronics,  manufacturing, and biomedical sectors.

 

The environmentally-friendly process produces polymer-based  nanospheres (tiny microscopic particles) that are uniform in size and shape,  while being low-cost and easily reproducible. The process developed at NDSU  allows scale-up of operation to high production levels, without requiring  specialized manufacturing equipment.

NANOSPHERES
The environmentally-friendly process oxidizes ozone in water to produce  polymer-based nanospheres, ranging from 70 to 400 nanometers in diameter, that  are uniform in size and shape, stay suspended in solution, and are easily  removed using a centrifuge. The scanning electron microscopy image depicts the  uniform spherical morphology of these nanospheres.

A 3 a.m. Eureka! moment

Dr. Victoria Gelling, associate professor in the Department of  Coatings and Polymeric Materials at NDSU, had a “Eureka!” moment when she woke  early one morning – 3 a.m., to be precise, an hour when most of us are still  sleeping. Dr. Gelling used early morning creativity to imagine a new way to  oxidize monomers, which are relatively small and simple molecules, into  polymers, which are larger, more complex molecules that can be used to create  synthetic materials. Dr. Gelling hypothesized that oxidizing ozone in water  might accomplish this task.

Later that day in the lab, Dr. Gelling and her team tested the  hypothesis. On the first try, they created a suspension of nearly perfectly  rounded, uniformly-sized nanospheres, ranging from 70 to 400 nanometers in  diameter. In addition to their uniform size, the nanospheres stay suspended in  the solution, and are easily removed using a centrifuge.

“The synthesis of the nanospheres is rather simple, with no  other chemicals required other than water, ozone, and the small molecules which  will become the polymers,” said Dr. Gelling. “We also have tight control of the  size, as they are beautiful, perfect marbles.”

Given their uniform size and shape, the nanospheres could have  uses across multiple industries. According to Dr. Gelling, such nanospheres  could be used to:

  • Produce  high-performance electronic devices and energy-efficient digital displays
  • Create  materials with high conductivity and smaller parts for consumer electronics
  • Deliver  medicine directly to diseased cells in the body
  • Provide  antibacterial coating on dressing for wounds
  • Develop  nanosensors to aid in early disease detection
  • Create  coatings that provide increased protection against corrosion and  abrasion

Watch the Video Here: http://youtu.be/ndK-NzULfAk

Read more: http://www.nanowerk.com/news2/newsid=29729.php?utm_source=feedburner&utm_medium=twitter&utm_campaign=Feed%3A+nanowerk%2FagWB+%28Nanowerk+Nanotechnology+News%29#ixzz2OgTkhlAa

 

 

 

 

 

 

 

 

 

 

 

 

Read more: http://www.nanowerk.com/news2/newsid=29729.php?utm_source=feedburner&utm_medium=twitter&utm_campaign=Feed%3A+nanowerk%2FagWB+%28Nanowerk+Nanotechnology+News%29#ixzz2OgSpur00