The Two Directions of Nanomedicine in the Treatment of Cancer


direction of cancer download

The cancer nanomedicine field is heading in two directions — debating whether the clinical translation of nanomaterials should be accelerated or whether some of the long-standing drug delivery paradigms have to be challenged first.

At the International Conference on Nanomedicine and Nanobiotechnology that was held in Munich, 16–18 October, the most striking talk was not given by a scientist, nor a clinician, but by Lora Kelly — a six-year pancreatic cancer survivor.

By telling her story of how it actually feels to receive chemotherapy, immunotherapy and radiation, she reminded everyone about the urgent need to improve cancer treatment regimes. The main goal remains to kill the cancer; however, it has become more evident how equally important it is to improve the quality of life of patients during treatment, that is, to reduce the often devastating side effects.

This is where nanomedicine comes in. Nanomaterials have the potential to direct drugs to specific tissues and to improve drug activity, as well as its transport in blood. Indeed, nanoparticles could ensure that therapeutic treatments act locally and not systemically, and thus improve anti-cancer efficacy while reducing damage to healthy tissues.

However, recent setbacks, including the bankruptcy of a prominent nanomedicine company1 and the less than 1% delivery efficiency claim2 (quoted at every cancer nanomedicine conference on at least one slide) have stirred discussions about the usefulness of nanomedicines for cancer treatment.

Some argue that the field is stuck in preclinical animal models owing to a lack of insight into the basics of nanomaterial–tissue interactions in the human body, from traversing biological barriers to clearance.

 

While less than 1% delivery efficiency might not be much, pharmacological parameters, such as peak drug concentration, clearance rate and elimination half-life, are often not as bad3, and these should be considered with equal importance.

Moreover, there are also clinical success stories of nanomedicines. Onpattro, a lipid nanoparticle-based short interfering RNA (siRNA) drug for the treatment of polyneuropathies, was approved by the US Food and Drug Administration in 2018, marking the first approved nanoparticle for nucleic acid delivery.

In a Comment in this issue, Akinc et al. report the endeavour of developing this nanomedicine, from the idea to preclinical and clinical testing4, to the final approval. There are further many opportunities for nanomaterials complementary to drug delivery, including bioimaging, modulation of the immune system and the tumour microenvironment, and, of course, local administration.

 

From an Editorial perspective, the ongoing discussion is reflected in the many manuscripts we receive, which often include both basic investigations and claims of clinical application. Naturally, this can lead to mixed peer-review reports echoing the disconnection between clinical vision and fundamental science.

Reviewers with a background in materials science or biomedical engineering often point out the gaps in the basic understanding of how a nanomaterial interacts with the biological environment, and clinicians would like to see more preclinical animal work. Indeed, a thorough fundamental study does not always need the claim of a specific application, as it might be exactly such overstatements that have precluded the field to deliver on the promise of revolutionizing drug delivery.

Along the same line, studies of nanoparticle transport through specific cells or nanomaterial–cell interactions at a molecular scale, do not necessarily require complex in vivo models; by contrast, applied studies claiming a therapeutic benefit need a robust in vivo validation in a relevant animal model — preferably with an intact immune system.

 

Going back to the goal of improving a patient’s life, possible side effects and impact on tissues other than tumours should also be reported. However, this data is often found, at best, somewhere in the supplementary information.

Regardless of the mouse model, the discussion rarely goes beyond the weight loss and the histology of organs. If the idea is to improve therapies, side effects need to be thoroughly investigated — even at an early preclinical stage. Similarly, we will make sure that studies claiming superiority of a therapeutic treatment compared to state-of-the-art treatment regimes are reviewed by clinical experts to ensure that clinical translation is — at least — possible and feasible.

Also, keeping regulatory requirements in mind, the more complex the new nanoparticle or nanoscale delivery agent, the more difficult it will be to get approval; and this is a valid criticism.

 

At Nature Nanotechnology, we consider both clinically relevant manuscripts and fundamental studies investigating the various barriers nanoparticles face on their journey through the body. We endeavour to assess the manuscripts we receive as fairly and consistently as possible, with the ongoing discussion in mind. We look forward to learning about possible alternative mechanisms and the heterogeneity of the enhanced permeability and retention (EPR) effect, nanoparticle interactions in the liver, spleen and kidneys during clearance, migration of nanomaterials through the tumour microenvironment, and nanoparticle uptake, lysosomal escape (or not) and transport in different cell types.

Such studies will shine a light on nanomaterial–tissue interactions, and also greatly contribute to the development of improved nanomedicines. Equally important, detailed investigations of nanoparticles in preclinical animal models as well as relevant organoid cultures will allow the optimization of treatment strategies and the reduction of side effects. Regardless of the aim, we urge authors to calibrate their claims in accordance with their data and scope of the investigation to preserve trust in cancer nanomedicine as a whole.

Tiny Nanoparticles Could Help Repair Damaged Brain And Nerve Cells


brain-quantum-1-download (1)

When our brains develop problems, such as degenerative diseases or epilepsy, some of the trouble can be electrical. As nerve signals involve electrically charged particles moving around, medics often try to treat associated problems using implanted electrodes. But this is a clumsy and difficult approach. A much better idea could be to implant tiny structures deep in the brain to act almost as miniature electricians. It may sound like science fiction, but it is moving fast towards reality.

Attilio Marino and colleagues at the Smart Bio-Interfaces group at the Italian Institute of Technology in Pontedera are striving to bring the idea to the clinic. They summarise progress in the field in a news and opinions article in Nano Today.brain_header

Nanomaterials are showing great potential in biomedicine since they can interact precisely with living systems down to the level of cells, subcellular structures and even individual molecules,” says Marino.

Marino is most interested in ‘piezoelectric‘ materials, which can convert mechanical stimulation into electrical energy, or vice-versa. He is exploring using ultrasound to mechanically stimulate nanoparticles into creating electrical signals that may fix problems with brain cells.

He points out that ultrasound offers a way to get a signal deep into brain tissue without using invasive electrodes, which can cause other problems including inflammation. Some researchers try to get round these difficulties using stimulation with light, but light cannot penetrate very deeply so ultrasound is a better option.

The field is still in its early days. Researchers are mainly studying the effects of piezoelectric nanoparticles on cultured cells rather than in animals or people, but the results are promising. Marino’s team, for example, shows that using ultrasound to stimulate nanoparticles embedded in nerve cells can increase the sprouting of new cell-signalling appendages called axons. This is exactly the kind of effect that may one day repair degenerative brain disease.

“We used barium titanate nanoparticles and confirmed the effect was specifically due to the piezoelectricity of our materials,” says Marino.

Other researchers are working with the ‘stem cells‘ that can develop into a wide range of mature types of cell needed by the body. Some are finding that piezoelectric nanomaterials can stimulate stem cells to begin their transformation into a variety of functional cell types.

A long road of safety studies, animal tests and eventual clinical trials lies ahead. But Marino is optimistic, he concludes: “The preliminary successes strongly encourage us that our research is a realistic approach for use in clinical practice in the near future.”


You can read the article for free for a limited time:

Marino, A., et al.: “Piezoelectric nanotransducers: The future of neural stimulation,” Nano Today (2017)

Dotz Nano makes stunning ASX debut: Commercializing Graphene Quantum Dots: Rice U Developed Technology


maxresdefault

Perth tech company Dotz Nano has made a stunning ASX debut with its shares reaching more than double their issue price on the company’s first day of trade.

The company, a backdoor listing through the shell of former explorer Northern Iron, focuses on the development, manufacture and commercialisation of Graphene Quantum Dots (GQDs).

The company raised $6 million at 20 cents a share. Its shares hit an intraday high of 49 cents before retracing to close up more than 75 per cent at 36.5 cents.

GQDs are nanoparticles which have applications in LED displays, pigments, dyes and detergents as well as energy, electrical and medical applications.

Non-graphene derived quantum dots are already widely used in products such as high-definition TVs, medical imaging and lighting products. However they have limited applications because of their toxicity and production costs.

Dotz Nano said it had exclusive capabilities to extract GQDs from coal rather than graphite, allowing it to produce inexpensive, non-toxic GQDs at ten times the production yield of conventional GQDs.

qds-from-coal-1006_gqd-2-rn-310x302Quantum Dots from Coal + Graphene Could Dramatically Cut the Cost of Energy from Fuel Cells

The company said its patented technology was developed by Professor James Tour of the William Marsh Rice University in Houston, Texas. It also has a strong partnership with the Ben-Gurion University in Israel.

Watch A Video On Graphene-Quantum Dots

Dotz Nano said it was not aware of any other party commercialising GQDs and that it holds five patents covering all major jurisdictions.

Chief executive Moti Gross said the company had first mover advantage in its field.

“We have had extremely encouraging discussions with potential customers, sub-licensees and distributors, as with the Mainami Group in Japan, and there will be no shortage of activity from our potential deal pipeline,” he said.

“We take the opportunity to welcome our new shareholders on board and we look forward to updating the market as we continue to scale our business.”

The company also announced today a memorandum of understanding to establish a $S 20 million research centre at the Nanyang Technological University in Singapore.

Are Better batteries (than lithium-ion) for Our Gadgets and Electric Vehicles in the Cards?


Battery New LI 061015 id40374Many of us would be hard-pressed to spend a day without using a lithium-ion battery, the technology that powers our portable electronics. And with electric vehicles (EVs) and energy storage for the power grid around the corner, their future appears pretty bright.

So bright that the iconic California-based upstart Tesla Motors stated that their newly announced residential Powerwall battery is sold out until mid-2016 and that the strong market demand could meet the capacity of their upcoming battery “gigafactory” of 35 gigawatt-hours per year – the daily electrical energy needs of 1.2 million US households.

When released by Sony in the early 1990s, many considered lithium-ion batteries to be a breakthrough in rechargeable batteries: with their high operating voltage and their large energy density, they outclassed the then state-of-the-art nickel metal hydride batteries (NiMH). The adoption of the lithium-ion technology fueled the portable electronic revolution: without lithium-ion, the battery in the latest Samsung Galaxy smartphones would weigh close to four ounces, as opposed to 1.5 ounces, and occupy twice as much volume.
Yet, in recent years lithium-ion batteries have gathered bad press. They offer disappointing battery life for modern portable devices and limited driving range of electric cars, compared to gasoline-powered vehicles. Lithium-ion batteries also have safety concerns, notably the danger of fire.
This situation raises legitimate questions: What is coming next? Will there be breakthroughs that will solve these problems?
Better lithium chemistries
Before we attempt to answer these questions, let’s briefly discuss the inner mechanics of a battery. A battery cell consists of two distinct electrodes separated by an insulating layer, conveniently called a separator, which is soaked in an electrolyte. The two electrodes must have different potentials, or a different electromotive force, and the resulting potential difference defines the cell’s voltage. The electrode with the largest potential is referred to as the positive electrode, the one with the lowest potential as the negative electrode.
Lund
Next-generation batteries could improve on energy density, allowing for longer run-time on electronics and driving range on EVs. (Image: Author and Wikipedia, Author provided)
During discharge, electrons flow through an external wire from the negative electrode to the positive electrode, while charged atoms, or ions, flow internally to maintain a neutral electrical charge. With rechargeable batteries, the process is reversed during charging.
Lithium-ion batteries’ energy density, or the amount of energy stored per weight, has increased steadily by about 5% every year, from 90 watt-hours/kilogram (Wh/kg) to 240 Wh/kg over 20 years, and this trend is forecast to continue. It’s due to incremental refinements in electrodes and electrolyte compositions and architectures, as well as increases in the maximum charge voltage, from 4.2 volts conventionally to 4.4 volts in the latest portable devices.
Picking up the pace of energy density improvements would require breakthroughs on both the electrodes’ materials and the electrolyte fronts. The biggest awaited leap would be to introduce elemental sulfur or air as a positive electrode and use metallic lithium as a negative electrode.
In the labs
Lithium-sulfur batteries could potentially bring a twofold improvement over the energy density of current lithium-ion batteries to about 400 Wh/kg. Lithium-air batteries could bring a tenfold improvement to approximately 3,000 Wh/kg, mainly because using air as an off-board reactant – that is, oxygen in the air rather than an element on a battery electrode – would greatly reduce weight.
Lund
A lithium air battery uses oxygen from the air to drive an electrochemical reaction – if it would work outside the lab. (Image: Na9234/wikimedia, CC BY)
Both systems are intensively studied by the research community, but commercial availability has been elusive as labs struggle to develop viable prototypes. During the discharge of the sulfur electrodes, the sulfur can be dissolved in the electrolyte, disconnecting it from the electronic circuit. This reduces the amount of lithium that could be removed from the sulfur during the charge and hurts the overall reversibility of the system.
To make this technology viable, critical milestones must be reached: improve the positive electrode architecture to better retain the active material or develop new electrolytes in which the active material is not soluble.
The lithium-air battery, too, suffers from this difficulty of being repeatedly recharged as a result of problems caused by reactions between the electrolyte and air. Also, with both technologies, protection of the lithium electrode is an issue that needs to be solved.
Savior in sodium?
For all of the aforementioned batteries, lithium is an essential component of the battery. Lithium is a fairly abundant element around the world but unfortunately only at trace levels, which prevents its worldwide commercial extraction. Although it is found in harvestable conditions in a few ores that could be mined, most of the production of lithium comes from brines of high-altitude salt lakes, mostly in the Andes in South America.
Despite this relatively difficult extraction, lithium carbonate can be found at around US$6 per kilogram, and since an electric vehicle battery pack requires only about three kilograms of lithium carbonate, its cost is not a major concern to date.
The concern here is more about geopolitics: every country seeks energy independence, and replacing oil with lithium batteries as a transportation fuel simply shifts the dependence from the Middle East to South America.
One possible solution would be to replace lithium with the element sodium, which is 2,000 times more abundant.
Electrochemically speaking, sodium is almost comparable to lithium, which makes it an extremely good candidate for batteries. Sodium-ion batteries research has exploded in recent years, and their performance, once commercialized, could be on par with their lithium-ion counterparts.
While sodium-ion batteries might not bring any significant cost or performance advantage over lithium-ion technology, it could offer a path for every country to manufacture their own batteries with readily available resources.
No cure-all
No matter what, all of these emerging technologies are likely to suffer from the same safety concerns as the current lithium-ion cells. The threat comes from the flammable solvent-based electrolyte which makes it possible to operate at voltages above two volts.
Indeed, because water splits into oxygen and hydrogen above two volts, it cannot be used in three volt-class lithium or sodium batteries and has been replaced by expensive flammable carbonate solvents. Alternatives such as solvent-free electrolytes do not provide a good enough conductivity for ions at room temperature to handle high-power applications, such as powering a car, and are therefore not used in commercial cells.
Fortunately, with the current lithium-ion technology, it has been estimated that only one in 40 million cells undergoes dramatic failure, of a fire. Although the risk cannot be fully suppressed, engineering controls and conservative designs can keep it in check.
In sum, the current lithium-ion batteries offer fairly good performances. Emerging chemistries such as lithium-sulfur or lithium-air have the potential to revolutionize portable energy storage applications, but they are still at the lab research stage with no guarantee of becoming a viable product.
For stationary energy storage applications such as storing wind and solar energy, other types of batteries, including high-temperature sodium-sulfur batteries or the redox flow batteries, might prove more sustainable and cost-effective candidates than lithium-ion batteries, but that could be a story for another article.
Source: By Matthieu Dubarry, Assistant Researcher in Electrochemistry and Solid State Science at University of Hawaii, and Arnaud Devie, Postdoctoral Research Fellow at University of Hawaii, via The Conversation

3-D Printing Technology May Soon Change – Revolutionize Our Lives


1-LCD 3D getimage3D printing, or additive manufacturing, is the process of turning a 2D digital image into a 3D object through printing successive layers of materials until an entire item is created. Initial images are created in design software programs before being realized through 3D printing. The advent of consumer 3D printing has the potential to revolutionize its use as a technology, but also opens up a whole host of intellectual property (IP) debates.

Dr Dinusha Mendis’ research into the intellectual property issues around 3D printing stemmed from a personal interest in the latest technological advances. As Dr Mendis says: “While 3D printing was first developed more than 30 years ago, its expansion into consumer printing is revolutionary. Moving into the consumer market means it is developing rapidly as a technology, which opens up all sorts of questions around intellectual property rights and copyright.”

The IP laws in the UK were created long before 3D printing, or any of its associated technologies came about, which means that legislation often lags behind the issues being faced by UK consumers and businesses. It leads to a number of grey areas, many of which Dr Mendis has tackled in her recent research for the UK Intellectual Property Office (“A legal and empirical study into the intellectual property implications of 3D printing”), in collaboration with Econolyst, the leading 3D printing and additive manufacturing company in the UK.

As a technology, 3D printing has the potential to impact on a vast number of markets, ranging from toys and games for consumers, to personalized health equipment such as hearing aids, through to highly specialized parts to be used in aircraft. Its variety of uses also means that the potential impact on existing intellectual property laws is difficult to predict.

For example, what would be the copyright implications be if an individual modified an existing design file or scanned an existing object to create a new design file? Can computer-aided design (CAD) files be protected under copyright law? What are the implications of modifying someone else’s CAD file? For businesses, copyright issues could arise when replacement parts are produced, perhaps through a third-party supplier.
“Our research showed that for consumers, the key issue is providing better guidance about the copyright status of CAD files,” explains Dr. Mendis. “While online platforms for sharing 3D printing design files are still quite niche, interest in them and activity is increasing year-on-year. For businesses, the implications are unlikely to be felt immediately because the cost of printing replica parts is still relatively high. However, as the technology grows and becomes more widely used – particularly in the automotive industry – its effects need to be monitored and measured.”
As 3D printing becomes more popular and more accessible to the average consumer, the key issue for businesses will be ensuring that their products are readily available through legal channels. While it will be some time before 3D printing becomes as widely available, precedents from music and film sharing platforms suggest that the more accessible content is made for consumers, the less likely they are to resort to illegal downloads. By being conscious of these trends and building business models which take into account past precedents, the development of 3D printing as a consumer technology could avoid potential difficulties in the area of intellectual property rights law.
Source: Bournemouth University

Brown University: Researchers Make New Silicon-Based Nanomaterials: Electronics Applications


Semiconductor IIIIChemists from Brown University have found a way to make new 2D, graphene-like semiconducting nanomaterials using an old standby of the semiconductor world: silicon.

In a paper published in the journal Nanoletters, the researchers describe methods for making nanoribbons and nanoplates from a compound called silicon telluride. The materials are pure, p-type semiconductors (positive charge carriers) that could be used in a variety of electronic and optical devices. Their layered structure can take up lithium and magnesium, meaning it could also be used to make electrodes in those types of batteries.

“Silicon-based compounds are the backbone of modern electronics processing,” said Kristie Koski, assistant professor of chemistry at Brown, who led the work.

“Silicon telluride is in that family of compounds, and we’ve shown a totally new method for using it to make layered, two-dimensional nanomaterials.”

Koski and her team synthesised the new materials through vapour deposition in a tube furnace. When heated in the tube, silicon and tellurium vaporise and react to make a precursor compound that is deposited on a substrate by an argon carrier gas. The silicon telluride then grows from the precursor compound.

Different structures can be made by varying the furnace temperature and using different treatments of the substrate. By tweaking the process, the researchers made nanoribbons that are about 50 to 1000 nm in width and about 10 microns long. They also made nanoplates flat on the substrate and standing upright.

“We see the standing plates a lot,” Koski said. “They’re half hexagons sitting upright on the substrate. They look a little like a graveyard.”

Each of the different shapes has a different orientation of the material’s crystalline structure. As a result, they all have different properties and could be used in different applications. The researchers also showed that the material can be ‘doped’ through the use of different substrates. Doping is a process through which tiny impurities are introduced to change a material’s electrical properties. In this case, the researchers showed that silicon telluride can be doped with aluminium when grown on a sapphire substrate. That process could be used, for example, to change the material from a p-type semiconductor (one with positive charge carriers) to an n-type (one with negative charge carriers).

The materials are not particularly stable out in the environment, Koski said, but that’s easily remedied. “What we can do is oxidise the silicon telluride and then bake off the tellurium, leaving a coating of silicon oxide,” she said. “That coating protects it and it stays pretty stable.”

From here, Koski and her team plan to continue testing the material’s electronic and optical properties. They’re encouraged by what they’ve seen so far. “We think this is a good candidate for bringing the properties of 2D materials into the realm of electronics,” Koski said.

Koski’s co-authors on the paper were postdoctoral researcher Sean Keuleyan, graduate student Mengjing Wang and undergraduates Frank Chung and Jeffrey Commons.

Nanotech Security Corp. Upsizes Financing to $4.2 Million


piezoelectric-graphene

As a result of further investor interest, Nanotech has upsized the Unit Placement to $4.2million

Vancouver, British Columbia, August 23rd, 2013: Nanotech Security Corp. (the “Company”) (TSX-V: NTS), developer of next-generation security and authentication features using patented nano-optics announces that further to its news release of August 22nd, 2013, the Company will be seeking regulatory approval to upsize the Subscription Receipts financing from $3.9 million announced August 22nd,2013 to up to $4.2 million. The hold period will expire 4 months from final tranche closing date. The final tranche remains subject to TSX acceptance.

More information about the Company can be found at the Company’s website http://www.nanosecurity.ca

Nanotech “Scaling Up” Technologies Progress


NanotechScaling Up” Technologies  Progress
QDOTS imagesCAKXSY1K 8

 

 

 

A year ago I asked: why Nanotech was not yet the projected world changing technology?   I answered: ‘there are deficiencies in the scale up technology and business models so far employed.”  Interestingly this year we seem to be making progress in that key deficiency … reliably scaling up nanotech to useful sizes. What do we know now that we didn’t understand 14 years ago when the first NNI was passed or even last year?

After 14 years of $1 Billion+/year in US Government investment and over twice as much by the private sector, we do not … I repeat… we do not have a “killer” product (like a killer app) based on Nanotechnology or incorporating significant nanotech that couldn’t have been achieved in a more conventional way.  No uniquely nanotechnology company business model has been created on which to build economic wealth.  After more than a decade, one should be apparent.

The promise of nanotech was always to create or assemble what nature didn’t supply us for the benefit of civilization.  That process… new stuff for the benefit of mankind … has barely occurred… despite billions of dollars already spent. 

That seems to be changing.  At the risk of hubric punditry, the next few years will see such technological products, economic changes and a business model with which investors will feel confident.   Maybe these “next few years” nanotech developments finally will be life revolutionizing – maybe even incredibly lucrative for perceptive founders and investors.  It seems that the dream of riches from nanotech … the payoff for all this extraordinary investment, is still alive… only delayed.

It is a maxim of those of us who teach technological applications, change and innovation to grad students and seasoned executives that it takes more than a decade (maybe two) for fundamental breakthroughs in core technology to appear in revolutionary and practical ways within the mass of the developed world economy. Nanotech seems to be following that pattern.

Over the last decade… and accelerating lately … worldwide we’ve developed amazing nanoscience.  We’ve put together in the lab and in the university unique compounds that are reduced in size or created from nanotechnology building blocks to perform functions with incremental characteristics, sensitivities and accuracies before unavailable.  We’ve uncovered ways to protect or change coatings on macro sized manufactured things to improve performances.  Using nanoscience techniques, we’ve begun to re orient medicine toward diagnostics and preventive medicine as opposed to the symptoms treating medicine of the past century.  Nanotech has made ‘green’ possible.  Nanotech has made 3 D printing of materials possible. New nanosize geometries and Nano containing liquids are changing the ways in which energy is stored with huge increases in energy storage densities at ever reducing costs/kw.  Materials have been modified at the Nano level to produce amazingly useful electronic and physical product improvements.  All this is good but not sufficient.

One of the difficulties encountered has been to find a way to scale up wondrous single developments to useful macro size.  Nanotech just doesn’t scale well, making the scaling up of breakthroughs in nanoscience to macro (usable) sizes almost as difficult and expensive as the cost of the original nanoscience or nanotech development breakthroughs.  Nano-pros have failed to find ways to reproduce nanoscience breakthroughs reliably with repeated high technological performance and continuous integrity to macro size manufacturing specs.  Truthfully, there hasn’t been enough investment money devoted to this part of the nanotech development story.  Moreover, it’s not sufficient just to scale the Nano part of a development.  Economically, the entire system containing the nanotech breakthrough has to be scaled…  and technically, systems scaling is very difficult.  It’s been an expensive and hard lesson to learn.

The mass of much lionized nanotubes, both single and multiple wall, form in a spaghetti-like mixed breed mess.  This “mess’ is useless product wise.  The nanotubes have to be separated by type, separated from each other, and then oriented for use in a higher-level system. Not only is this process difficult to accomplish reliably but it also is expensive changing some of the economic promise of nanotube applications. Nanotubes are projected as the ‘next connectors’ in semiconductors.  IBM literally has to cut grooves in substrates to orient their nanotube connectors properly for testing and for prototype use.  It admits the grooves are not a solution and are searching for other ways to build nanotube-connected chips for use in its semiconductor applications.

Another area of promise in trouble is the multifunctional-targeted nanoparticle for use in anti cancer and anti human health condition solutions.  Others and I have touted these developments as opening new thresholds in medical treatment with reduced collateral damage.  In animal models and in vitro, the particles are amazingly effective … targeting and eliminating the bad stuff while inducing little ‘collateral’ damage.

However, what occurs when such ‘breakthroughs’ are introduced in the human body to improve our health as programmed is not identical.   In vivo, multifunctional particles tend to clump, not be evenly distributed and tend not to target only the sick cells… and far more than in the models… attach to normal cells with adverse consequences.  These are some of the reasons you don’t find the FDA approving many of the numerous approaches to multifunctional medical particles for trials in human use.  They don’t work as programmed and those who have invested in the promise of the original tests have taken large financial baths … sometime losing their entire investment as the company goes bankrupt.  It is far too long after the original articles in 2005 for there not to be an entire slew of these particles as products making us feel better.
Now, a more difficult issue: The economics of nanotechnology.  I have written about this subject here repeatedly.  Nanotech occurs at the lowest level of the value chain.  There is no economic margin inherent in the development of a nanotech breakthrough.  All nanotech breakthroughs have to be incorporated in a product or system upstream in the value chain or no economic reason for further development will manifest. 

Sometimes, companies have to find ‘cost avoidance’ reasons for developing a nanotech-using product.  A specific example is a company called Genomic Research… which developed a product that isolated a family of genes in a certain group of post operation breast cancer patients who could avoid expensive radiotherapy because the data showed that the radiotherapy was ineffective in preventing recurrence of the cancer.  The savings in insurance costs were successfully used to justify the economics of the Genomic Research DNA tests so that Genomic Research has current sales in excess of $400,000,000.  A true success story.  The lesson here is that with a nanotech-based product, the economic justification can come from outside the nanotech industry … few and far between.

What seems to be changing?  The original promise of nanotech called for self reproducing compounds that would automatically scale up and because they were self cloning insure that quality remained constant during the scale up and ultimate manufacture.  Recently, researchers of scale up processes have shown that combining a new compound with certain forms of DNA allow not only for movement of the compound, but also for self reproduction… so the process of Nano self reproduction is very close to realization.

The other issue… separation of similar Nano forms, that too seems to be on the verge of solution. The solution seems to be to separate the compounds in solution.  Placing the mix of nanoparticles into a properly ionized or PH’d or constructed solution for that compound has recently shown promise to purify and separate the mess that comes out of Nano manufacture.

A last example is what is happening with modified bacteria.  Making Nano stuff in bacterial soup with zillions of mini factories seems an ideal scale up solution.  Until recently, organic only reproduced organic.  But Langer’s lab at MIT spun off a company that genetically modified bacteria to produce inorganic stuff in large quantities in soups containing raw elements.  I’ll cover this company in a later article.

In conclusion there are now production system semi breakthroughs that hold promise to solve the scale up dilemma.  I’ll detail those next month.

Alan B. Shalleck
NanoClarity LLC
http://www.nanoclarity.com

//
alan@nanooclarity.com