Atoms in a nanocrystal cooperate, much like in biomolecules

Nanocrystals of cadmium selenide, known for their brilliant luminescence, display intriguing chemical behavior resulting from positive cooperation between atoms, a behavior akin to that found in biomolecules. Credit: Prashant Jain        

( —Researchers have long thought that biological molecules and synthetic nanocrystals were similar only in size. Now, University of Illinois at Urbana-Champaign chemists have found that they can add reactivity to the list of shared traits. Atoms in a nanocrystal can cooperate with each other to facilitate binding or switching, a phenomenon widely found in biological molecules.

The finding could catalyze manufacturing of for smart sensors, solar cells, tiny transistors for optical computers, and medical imaging. Led by chemistry professor Prashant Jain, the team published its findings in the journal Nature Communications.

“In geological, industrial and domestic environments, the nanoscale grains of any material undergo chemical transitions when they are put under reactive conditions,” Jain said. “Iron rusting over time and diamond forming from carbon are examples of two commonly occurring transitions. Understanding how these transitions occur on the scale of the tiniest grains of the material is a major motivation of our work.”

Scientists can exploit such transitions to make nanocrystals that conform to a particular structure. They can make a nanocrystal of one material and transform it into another material, essentially using the original nanocrystal framework as a template for creating a nanocrystal of the new material with the same size and shape. This lets researchers create nanocrystals of new materials in shapes and structures they may not be able to otherwise.

In the new study, the researchers transformed tiny crystals of the material cadmium selenide to crystals of copper selenide. Copper selenide nanocrystals have a number of interesting properties that can be used for solar energy harvesting, optical computing and laser surgery. Transformation from cadmium selenide creates nanocrystals with a purity difficult to attain from other methods.

The researchers, including graduate student Sarah White, used advanced microscopy and spectroscopy techniques to determine the dynamics of the atoms within the crystals during the transformation and found that the transformation occurs not as a slow diffusion process, but as a rapid switching thanks to co-operativity.

The researchers saw that once the cadmium-selenide nanocrystal has taken up a few initial copper “seed” impurities, atoms in the rest of the lattice can cooperate to rapidly swap out the rest of the cadmium for copper. Jain compares the crystals to hemoglobin, the molecule in red blood cells that carries oxygen. Once one oxygen molecule has bound to hemoglobin, other binding sites within hemoglobin slightly change conformation to more easily pick up more oxygen. He posits that similarly, copper impurities might cause a structural change in the nanocrystal, making it easier for more copper ions to infiltrate the nanocrystal in a rapid cascade.

The researchers reproduced the experiment with silver, in addition to copper, and saw similar, though slightly less speedy, cooperative behavior.

Now, Jain’s team is using its advanced imaging to watch transitions happen in single nanocrystals, in real time.

“We have a sophisticated optical microscope in our lab, which has now allowed us to catch a single nanocrystal in the act of making a transition,” Jain said. “This is allowing us to learn hidden details about how the transition actually proceeds. We are also learning how one nanocrystal behaves differently from another.”

Next, the researchers plan to explore biomolecule-like cooperative phenomena in other solid-state materials and processes. For example, co-operativity in catalytic processes could have major implications for or manufacturing of expensive specialty chemicals.

“In the long term, we are interested in exploiting the co-operative behavior to design artificial smart materials that respond in a switch-like manner like hemoglobin in our body does,” Jain said.

Explore further:     Researchers extend galvanic replacement reactions to metal oxide nanocrystals

More information: “Co-operativity in a nanocrystalline solid-state transition.” Sarah L. White, Jeremy G. Smith, Mayank Behl, Prashant K. Jain. Nature Communications 4, Article number: 2933 DOI: 10.1038/ncomms3933

Read more at:

Read more at:


Silicon QDs Could be Safe for Deep-Tissue Imaging


201306047919620BUFFALO, N.Y., Aug. 8, 2013 — Monkeys injected with large doses of silicon nanocrystals displayed no adverse health effects three months later, a promising step forward in the potential development of human biomedical imaging applications.
The University at Buffalo (UB) study with nonhuman primates suggests that the silicon nanocrystals, or quantum dots, may be a safe tool for diagnostic imaging in humans. The nanocrystals absorb and emit light in the near-IR, making them preferable over traditional fluorescence-based techniques for seeing deeper into tissue.

Bright-light emission from silicon quantum dots in a cuvette. The image is from a camera that captures the near-IR light that the quantum dots emit. The light emission shown is a pseudo color, as near-IR light does not fall in the visible spectrum. Courtesy of Folarin Erogbogbo. 

Quantum dots, or nanocrystals, are very, very promising for biomedical imaging applications, but everyone’s worried about the toxicity and what will happen to them if they degrade,” said research assistant professor Folarin Erogbogbo, co-lead author of the study. “Silicon nanocrystals can be the solution to that because they don’t contain materials like cadmium that are found in other quantum dots, and are generally considered to be nontoxic.”


The researchers tested the silicon quantum dots in rhesus macaques and mice, injecting each animal with 200 mg of the particles per kilogram of the animal’s weight. Blood tests taken for three months afterward showed no signs of toxicity in either animal, although the mice experienced inflammation and the spotty death of liver cells as a result of the silicon crystals gathering and remaining in their livers and spleens; the monkeys’ organs, however, remained normal.


Researchers capped the surface of the quantum dots with organic molecules to keep the crystals from degrading too fast, which could help explain the lack of toxicity found in the animals’ blood.


The study, a collaboration between UB, Chinese People’s Liberation Army General Hospital in China, San Jose State University, Nanyang Technological University in Singapore, and Korea University in South Korea, is part of a larger body of research investigating the effect of various nanoparticles in animal models.
The study was published in ACS Nano (doi: 10.1021/nn4029234).
For more information, visit:

Polymer Structures Serve as ‘Nanoreactors’ for Nanocrystals

QDOTS imagesCAKXSY1K 8Using star-shaped block co-polymer structures as tiny reaction vessels, researchers have developed an improved technique for producing nanocrystals with consistent sizes, compositions and architectures – including metallic, ferroelectric, magnetic, semiconductor and luminescent nanocrystals. The technique relies on the length of polymer molecules and the ratio of two solvents to control the size and uniformity of colloidal nanocrystals.


The technique could facilitate the use of nanoparticles for optical, electrical, optoelectronic, magnetic, catalysis and other applications in which tight control over size and structure is essential to obtaining desirable properties. The technique produces plain, core-shell and hollow nanoparticles that can be made soluble either in water or in organic solvents.

“We have developed a general strategy for making a large variety of nanoparticles in different size ranges, compositions and architectures,” said Zhiqun Lin, an associate professor in the School of Materials Science and Engineering at the Georgia Institute of Technology. “This very robust technique allows us to craft a wide range of nanoparticles that cannot be easily produced with any other approaches.”

The technique was described in the June issue of the journal Nature Nanotechnology. The research was supported by the Air Force Office of Scientific Research.

Georgia Tech professor Zhiqun Lin examines a gold nanoparticle toluene solution. The work is part of research on using star-shaped block co-polymers to create nanocrystals of uniform size and shape.

(Photo Credit:  Georgia Tech Photo: Gary Meek)

The star-shaped block co-polymer structures consist of a central beta-cyclodextrin core to which multiple “arms” – as many as 21 linear block co-polymers – are covalently bonded. The star-shaped block co-polymers form the unimolecular micelles that serve as a reaction vessel and template for the formation of the nanocrystals.

The inner blocks of unimolecular micelles are poly(acrylic) acid (PAA), which is hydrophilic, which allows metal ions to enter them. Once inside the tiny reaction vessels made of PAA, the ions react with the PAA to form nanocrystals, which range in size from a few nanometers up to a few tens of nanometers. The size of the nanoparticles is determined by the length of the PAA chain.

The block co-polymer structures can be made with hydrophilic inner blocks and hydrophobic outer blocks – amphiphilic block co-polymers, with which the resulting nanoparticles can be dissolved in organic solvents. However, if both inner and outer blocks are hydrophilic – all hydrophilic block co-polymers – the resulting nanoparticles will be water-soluble, making them suitable for biomedical applications.

Lin and collaborators Xinchang Pang, Lei Zhao, Wei Han and Xukai Xin found that they could control the uniformity of the nanoparticles by varying the volume ratio of two solvents – dimethlformamide and benzyl alcohol – in which the nanoparticles are formed. For ferroelectric lead titanate (PbTiO3) nanoparticles, for instance, a 9-to-1 solvent ratio produces the most uniform nanoparticles.

The researchers have also made iron oxide, zinc oxide, titanium oxide, cuprous oxide, cadmium selenide, barium titanate, gold, platinum and silver nanocrystals. The technique could be applicable to nearly all transition or main-group metal ions and organometallic ions, Lin said.

“The crystallinity of the nanoparticles we are able to create is the key to a lot of applications,” he added. “We need to make them with good crystalline structures so they will exhibit good physical properties.”

Earlier techniques for producing polymeric micelles with linear block co-polymers have been limited by the stability of the structures and by the consistency of the nanocrystals they produce, Lin said. Current fabrication techniques include organic solution-phase synthesis, thermolysis of organometallic precursors, sol-gel processes, hydrothermal reactions and biomimetic or dendrimer templating. These existing techniques often require stringent conditions, are difficult to generalize, include a complex series of steps, and can’t withstand changes in the environment around them.

Georgia Tech professor Zhiqun Lin (standing) watches research scientist Xinchang Pang tuning the experimental condition in the nanocrystal synthesis.

(Photo Credit:  Georgia Tech Photo: Gary Meek)

By contrast, nanoparticle production technique developed by the Georgia Tech researchers is general and robust. The nanoparticles remain stable and homogeneous for long periods of time – as much as two years so far – with no precipitation. Such flexibility and stability could allow a range of practical applications, Lin said.

“Our star-like block co-polymers can overcome the thermodynamic instabilities of conventional linear block co-polymers,” he said. “The chain length of the inner PAA blocks dictates the size of the nanoparticles, and the uniformity of the nanoparticles is influenced by the solvents used in the system.”

The researchers have used a variety of star-like di-block and tri-block co-polymers as nanoreactors. Among them are poly(acrylic acid)-block-polystyrene (PAA-b-PS) and poly(acrylic acid)-blockpoly(ethylene oxide) (PAA-b-PEO) diblock co-polymers, and poly(4-vinylpyridine)-block-poly(tert-butyl acrylate)-block-polystyrene (P4VP-b-PtBA-b-PS), poly(4-vinylpyridine)-block-poly (tert-butyl acrylate)-block-poly(ethylene oxide) (P4VP-b-PtBA-b-PEO), polystyrene-block-poly(acrylic acid)-block-polystyrene (PS-b-PAA-b-PS) and polystyrene-block-poly(acrylic acid)-block-poly(ethylene oxide) (PS-b-PAA-b-PEO) tri-block co-polymers.

For the future, Lin envisions more complex nanocrystals with multifunctional shells and additional shapes, including nanorods and so-called “Janus” nanoparticles that are composed of biphasic geometry of two dissimilar materials.

Georgia Tech professor Zhiqun Lin (standing) and research scientist Xinchang Pang compare two cadmium selenide (CdSe) nanocrystals made by Pang. The researchers are examining the absorption spectra of the nanocrystals in front of the computer.

(Photo Credit:  Georgia Tech Photo: Gary Meek)

Light-Based Hydrogen Production

Nanocrystals and Nickel Catalyst Substantially Improve

Light-Based Hydrogen Production

November 8, 2012

Hydrogen is an attractive fuel source because it can easily be converted into electric energy and gives off no greenhouse emissions. A group of chemists at the University of Rochester is adding to its appeal by increasing the output and lowering the cost of current light-driven hydrogen-production systems.

The work was done by graduate students Zhiji Han and Fen Qiu, as part of a collaboration between chemistry professors Richard Eisenberg, Todd Krauss, and Patrick Holland, which is funded by the U.S. Department of Energy. Their paper will be published later this month (Nov. 23) in the journal Science.

The chemists say their work advances what is sometimes considered the “holy grail” of energy science—efficiently using sunlight to provide clean, carbon-free energy for vehicles and anything that requires electricity.

One disadvantage of current methods of hydrogen production has been the lack of durability in the light-absorbing material, but the Rochester scientists were able to overcome that problem by incorporating nanocrystals. “Organic molecules are typically used to capture light in photocatalytic systems,” said Krauss, who has been working in the field of nanocrystals for over 20 years. “The problem is they only last hours, or, if you’re lucky, a day. These nanocrystals performed without any sign of deterioration for at least two weeks.”

Richard Eisenberg, the Tracy H. Harris Professor of Chemistry, has spent two decades working on solar energy systems. During that time, his systems have typically generated 10,000 instances—called turnovers—of hydrogen atoms being formed without having to replace any components. With the nanocrystals, Eisenberg and his colleagues witnessed turnovers in excess of 600,000.

The researchers managed to overcome other disadvantages of traditional photocatalytic systems. “People have typically used catalysts made from platinum and other expensive metals,” Holland said. “It would be much more sustainable if we used metals that were more easily found on the Earth, more affordable, and lower in toxicity. That would include metals, such as nickel.”

Holland said their work is still in the “basic research stage,” making it impossible to provide cost comparisons with other energy production systems. But he points out that nickel currently sells for about $8 per pound, while the cost of platinum is $24,000 per pound.

While all three researchers say the commercial implementation of their work is years off, Holland points out that an efficient, low-cost system would have uses beyond energy. “Any industry that requires large amounts of hydrogen would benefit, including pharmaceuticals and fertilizers,” said Holland.

The process developed by Holland, Eisenberg, and Krauss is similar to other photocatalytic systems; they needed a chromophore (the light-absorbing material), a catalyst to combine protons and electrons, and a solution, which in this case is water. Krauss, an expert in nanocrystals, provided cadmium selenide (CdSe) quantum dots (nanocrystals) as the chromophore. Holland, whose expertise lies in catalysis and nickel research, supplied a nickel catalyst (nickel nitrate). The nanocrystals were capped with DHLA (dihydrolipoic acid) to make them soluble, and ascorbic acid was added to the water as an electron donor.

Photons from a light source excite electrons in the nanocrystals and transfer them to the nickel catalyst. When two electrons are available, they combine on the catalyst with protons from water, to form a hydrogen molecule (H2).

This system was so robust that it kept producing hydrogen until the source of electrons was removed after two weeks. “Presumably, it could continue even longer, but we ran out of patience!” said Holland.

One of the next steps will be to look at the nature of the nanocrystal. “Some nanocrystals are like M&Ms – they have a core with a shell around it,” said Eisenberg. “Ours is just like the core. So we need to consider if they would they work better if they were enclosed in shells.”