New Nano-Polymer could prevent heart failure (56 Million Deaths Annually)


heart-e1434991196876

Researchers at Ben-Gurion University (BGU) and the Sheba Medical Center have developed a new therapy to treat atherosclerosis and prevent heart failure with a new biomedical polymer that reduces arterial plaque and inflammation in the cardiovascular system.

 
Atherosclerotic cardiovascular disease causes 56 million deaths annually worldwide, according to the 2015 Lancet Global Burden of Disease Report. Arteries are lined by a thin layer of cells called the “endothelium” which keep them toned and smooth and maintain blood flow. Atherosclerosis begins with damage to the endothelium and is caused by , smoking or high cholesterol. The resulting damage leads to plaque formation.

When endothelial cells experience inflammation, they produce a molecule called “E-selectin,” which brings (monocytes) to the area and causes plaque accumulation in the arteries.

“Our E-selectin-targeting polymer reduces existing plaque and prevents further plaque progression and inflammation, preventing arterial thrombosis, ischemia, myocardial infarction, and stroke,” says Prof. Ayelet David of the BGU Department of Clinical Biochemistry and Pharmacology.

This innovative nano-polymer has several advantages. First, it targets only damaged tissue and does not harm healthy tissue. At present, there are several available treatment options for atherosclerosis, but no other reverses arterial damage and improves the heart muscle. Lastly, the polymer has no side effects, unlike statins, which are currently the leading medication used for treating atherosclerosis.

Patented and in preclinical stage, the new polymer has been tested on mice with positive results. In a study that has been submitted for publication, the researchers treated atherosclerotic mice with four injections of the new biomedical polymer and tested the change in their arteries after four weeks. “We were stunned by the results,” says Prof. David. “The myocardial function of the treated mice was greatly improved, there was less inflammation and a significant decrease in the thickness of the arteries.”

Ben Gurion ShowImageProf. David and collaborator Prof. Jonathan Leor, director of the Cardiovascular Research Institute of the Sheba Medical Center and professor of cardiology at Tel Aviv University, suggest that this polymer-based therapy can also be helpful to people with diabetes, hypertension and other age-related conditions. “As such, the new polymeric therapy may have life-changing benefits for millions of people,” the researchers say.

“This is unprecedented,” says Prof. Leor. “We achieved an adherence level similar to that of an antibody, which may explain the strong beneficial effect we observed.”

“We are now seeking a pharmaceutical company to bring our therapy through the next stages of drug development and ultimately to market,” says Dr. Ora Horovitz, senior vice president of business development at BGN Technologies (BGN). BGU’s technology transfer and commercialization company. “We believe that this therapy has the potential to help a great number of people.”

Explore further: Inflammation worsens danger due to atherosclerosis

 

Advertisements

University of Cambridge: “Nano-Marbles” Create Intriguing New Materials – Opening Up Applications for Smart Clothing – Buildings – Banknote Security.


Nano-Squezze 060616 160603071657_1_540x360

Researchers have devised a new method for stacking microscopic marbles into regular layers, producing intriguing materials which scatter light into intense colors, and which change color when twisted or stretched.

The team, led by the University of Cambridge, have invented a way to make such sheets on industrial scales, opening up applications ranging from smart clothing for people or buildings, to banknote security.

Using a new method called Bend-Induced-Oscillatory-Shearing (BIOS), the researchers are now able to produce hundreds of metres of these materials, known as ‘polymer opals’, on a roll-to-roll process. The results are reported in the journal Nature Communications.

Some of the brightest colours in nature can be found in opal gemstones, butterfly wings and beetles. These materials get their colour not from dyes or pigments, but from the systematically-ordered microstructures they contain.

The team behind the current research, based at Cambridge’s Cavendish Laboratory, have been working on methods of artificially recreating this ‘structural colour’ for several years, but to date, it has been difficult to make these materials using techniques that are cheap enough to allow their widespread use.

Nano-Squezze 060616 160603071657_1_540x360

Researchers at the University of Cambridge have devised a method to produce “Polymer Opals” on an industrial scale.
Credit: Nick Saffell/University of Cambridge

 

In order to make the polymer opals, the team starts by growing vats of transparent plastic nano-spheres. Each tiny sphere is solid in the middle but sticky on the outside. The spheres are then dried out into a congealed mass. By bending sheets containing a sandwich of these spheres around successive rollers the balls are magically forced into perfectly arranged stacks, by which stage they have intense colour.

By changing the sizes of the starting nano-spheres, different colours (or wavelengths) of light are reflected. And since the material has a rubber-like consistency, when it is twisted and stretched, the spacing between the spheres changes, causing the material to change colour. When stretched, the material shifts into the blue range of the spectrum, and when compressed, the colour shifts towards red. When released, the material returns to its original colour. Such chameleon materials could find their way into colour-changing wallpapers, or building coatings that reflect away infrared thermal radiation.

“Finding a way to coax objects a billionth of a metre across into perfect formation over kilometre scales is a miracle,” said Professor Jeremy Baumberg, the paper’s senior author. “But spheres are only the first step, as it should be applicable to more complex architectures on tiny scales.”

In order to make polymer opals in large quantities, the team first needed to understand their internal structure so that it could be replicated. Using a variety of techniques, including electron microscopy, x-ray scattering, rheology and optical spectroscopy, the researchers were able to see the three-dimensional position of the spheres within the material, measure how the spheres slide past each other, and how the colours change.

“It’s wonderful to finally understand the secrets of these attractive films,” said PhD student Qibin Zhao, the paper’s lead author.

Cambridge Enterprise, the University’s commercialisation arm which is helping to commercialise the material, has been contacted by more than 100 companies interested in using polymer opals, and a new spin-out Phomera Technologies has been founded. Phomera will look at ways of scaling up production of polymer opals, as well as selling the material to potential buyers. Possible applications the company is considering include coatings for buildings to reflect heat, smart clothing and footwear, or for banknote security and packaging applications.

The research is funded as part of a UK Engineering and Physical Sciences Research Council (EPSRC) investment in the Cambridge NanoPhotonics Centre, as well as the European Research Council (ERC).


Story Source:

The above post is reprinted from materials provided byUniversity of Cambridge. The original story is licensed under aCreative Commons Attribution 4.0 International License. Note: Materials may be edited for content and length.


Journal Reference:

  1. Qibin Zhao, Chris E. Finlayson, David R. E. Snoswell, Andrew Haines, Christian Schäfer, Peter Spahn, Goetz P. Hellmann, Andrei V. Petukhov, Lars Herrmann, Pierre Burdet, Paul A. Midgley, Simon Butler, Malcolm Mackley, Qixin Guo, Jeremy J. Baumberg. Large-scale ordering of nanoparticles using viscoelastic shear processing.Nature Communications, 2016; 7: 11661 DOI:10.1038/ncomms11661

Rice University: Microwaved “Nanoribbons” may bolster oil and gas wells


Oil and Gas Nanoribbons 051316 3-microwavedna
Rice University researchers have developed a method to treat composite materials of graphene nanoribbons and thermoset polymers with microwaves in a way that could dramatically reinforce wellbores for oil and gas production. Credit: Nam Dong Kim/Rice University

 

Wellbores drilled to extract oil and gas can be dramatically reinforced with a small amount of modified graphene nanoribbons added to a polymer and microwaved, according to Rice University researchers.

The Rice labs of chemist James Tour and civil and environmental engineer Rouzbeh Shahsavari combined the nanoribbons with an oil-based thermoset intended to make wells more stable and cut production costs. When cured in place with low-power microwaves emanating from the drill assembly, the composite would plug the microscopic fractures that allow drilling fluid to seep through and destabilize the walls.

Results of their study appeared in the American Chemical Society journal ACS Applied Materials and Interfaces.

The researchers said that in the past, drillers have tried to plug fractures with mica, calcium carbonate, gilsonite and asphalt to little avail because the particles are too large and the method is not efficient enough to stabilize the wellbore.

In lab tests, a polymer-nanoribbon mixture was placed on a sandstone block, similar to the rock that is encountered in many wells. The team found that rapidly heating the to more than 200 degrees Celsius with a 30-watt microwave was enough to cause crosslinking in the polymer that had infiltrated the sandstone, Tour said. The needed is just a fraction of that typically used by a kitchen appliance, he said.

“This is a far more practical and cost-effective way to increase the stability of a well over a long period,” Tour said.

In the lab, the nanoribbons were functionalized—or modified—with polypropylene oxide to aid their dispersal in the polymer. Mechanical tests on composite-reinforced sandstone showed the process increased its average strength from 5.8 to 13.3 megapascals, a 130 percent boost in this measurement of internal pressure, Shahsavari said. Similarly, the toughness of the composite increased by a factor of six.

“That indicates the composite can absorb about six times more energy before failure,” he said. “Mechanical testing at smaller scales via nanoindentation exhibited even more local enhancement, mainly due to the strong interaction between nanoribbons and the polymer. This, combined with the filling effect of the nanoribbon-polymer into the pore spaces of the sandstone, led to the observed enhancements.”

The researchers suggested a low-power microwave attachment on the drill head would allow for in-well curing of the nanoribbon-polymer solution.

Explore further: Graphene nanoribbons grow due to domino-like effect

More information: Nam Dong Kim et al, Microwave Heating of Functionalized Graphene Nanoribbons in Thermoset Polymers for Wellbore Reinforcement, ACS Applied Materials & Interfaces (2016). DOI: 10.1021/acsami.6b01756

GNT Thumbnail Alt 3 2015-page-001

Genesis Nanotechnology, Inc. ~ “Great Things from Small Things”

Facebook 042616.jpg Follow Us on Facebook    https://www.facebook.com/GenesisNanoTech/

Twitter Icon 042616.jpg Get the Latest on Our Twitter  https://twitter.com/GenesisNanoTech

 LinkedIn IconA 042316.jpg ‘Link Up With Us on LinkedIn      https://www.linkedin.com/groups/3935461

Website Icon 042616Connect with Us and Get More Information on Our Website      http://genesisnanotech.com/

YouTube small 050516 Watch Our YouTube Video   https://youtu.be/Y1618kgUSXI

 

Cleaning Waste Water and Salt Water with a Solar Heater Inspired by the Lotus Flower: KAUST


KAUST Sunlight Steam untitledChemical tricks improve the efficiency and durability of photothermal membranes that use sunlight to turn water into steam.

A point-of-use solar distillation device that can clean up saltwater and wastewater without producing greenhouse gases has been constructed by a research team from King Abdullah University of Science and Technology (KAUST)1.

The key to the new technology is a floating membrane coated with a special light-absorbing polymer that repairs its hydrophobic “skin” when damaged.

For centuries, attempts have been made to use the sun’s heat to distill clean water from polluted sources. Simple solar stills, such as a glass plate placed over a water-filled box, are inexpensive to operate but are notoriously inefficient. This is because water is a poor light absorber, and any captured heat tends to distribute uniformly through the still instead of localizing at surfaces where evaporation occurs.

To combat these problems, researchers are developing floating “solar generator” materials that heat up quickly in sunlight and then trap heat at air–water interfaces for steam production.

KAUST Sunlight Steam untitled

A polypyrrole (PPy)-coated device that absorbs sunlight and releases it as heat can rapidly purify water through distillation  Reproduced with permission © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim

These devices are usually coated with water-repellant waxy molecules, such as fluorinated alkyl chains, for better floating. However, damage from ultraviolet rays and oxidative chemicals can degrade the hydrophobic layers, causing the generator to sink.

Inspired by the lotus flower, a plant that restores damage to its hydrophobic leaves through the migration of waxy molecules, KAUST Associate Professor Peng Wang and colleagues from the University’s Biological and Environmental Science and Engineering Division developed a self-healing solar generator.

The researchers coated a tightly woven stainless steel mesh with polypyrrole (PPy), a light-absorbing polymer with high photothermal conversion efficiency and bumpy surface microstructures. The team modified the PPy film with fluoroalkylsilane chains, enabling it to act as a reservoir that supplies additional hydrophobic chains to damaged regions through biomimetic self-migration.

The new device nearly tripled the output of freshwater from typical solar stills, thanks to a significant jump in temperature at the air–water interface and a conversion efficiency of close to 60 percent. It also exhibited remarkable damage resistance: after the team used a plasma source to oxidize the mesh and make it sink to the bottom of a beaker, they found a simple one-hour treatment in sunlight was sufficient to restore its self-floating capability.

The team’s first prototype — a transparent plastic condensing chamber and solar fan mounted on top of a PPy-coated mesh — floats lightly on the surface of seawater and distills a steady stream of water for more than 100 consecutive hours.

“Careful material selection allowed us to integrate two types of functions into one distillation device,” Wang said. “This has great potential to be employed in point-of-use potable water production.”

Reference

  1. Zhang, L., Tang, B., Wu, J., Li, R. & Wang, P.  Hydrophobic light-to-heat conversion membranes with self-healing ability for interfacial solar heating. Advanced Materials advance online publication, 17 July 2015 doi: 10.1002/adma.201502362 | article

Nanotechnology Applied to Remove Heavy Metallic Ions from Water


Iran Water 50641

Abstract: Posted on December 29th, 2014

Researchers used nanotechnology to produce super bio-magnetic sorbent for the removal of pollutions dissolved in water.

 

The nanocomposite sorbent has very high sorption capacity and can be separated from the sorption environment to be reused easily with the help of a magnetic field.
Contamination of surface and underground waters has been one of the most important concerns in the recent years. Ions of heavy metals, including lead, cadmium, cobalt, nickel, copper and chrome are among clear samples of water contaminations, which are growing every day as the industry develops and the population increases. The ions are not biodegradable and they easily enter the food cycle and damage the body of living creatures. Therefore, they create irreversible and serious damages to the environment, humans and other creatures.

The researchers have proposed the application of a nanocomposite super sorbent made of a biological polymer containing thiacalixarene to settle this problem. Thiacalyxarene is a compound that has high reactivity with heavy cations due to the presence of pores and hydroxy funcational groups. The nanocomposite can be produced at a reasonable price with high efficiency. Based on the test results, the sorption capacity of the nanocomposite is much higher than that of similar products.

The results have confirmed very good sorption of metallic ions from water due to the use of the nanocomposite. In addition, the sorbent can be separated from the sorption environment very easily by imposing a magnetic field.

Results of the research have been published in Iranian Polymer Journal, vol. 23, issue 12, 2014, pp. 933-945.

Carbon Nanotubes to Improve Coatings


image descriptionResin coatings are widely used in various sectors, like the aeronautical and automotive sectors, and in the structural components of aircraft and vehicles, in particular. Research by the UPV/EHU-University of the Basque Country has used carbon nanotubes to improve the properties of these coatings.

The research has been conducted within the POCO European project and seeks to come up with strategies to spread carbon nanotubes properly throughout different polymers. Carbon nanotubes improve the conductivity of these coatings, repair any scratches they may have and have excellent mechanical properties: they are tough and rigid and, what is more, conduct electricity. Epoxy resins, by contrast, are insulating materials. So if these nanotubes are added to them, the coatings are also turned into conductors. “However, to transmit or enhance these properties better, the carbon nanotubes must be properly spread throughout the material,” pointed out the UPV/EHU chemist Galder Kortaberria. But this advantage turns into a problem for the nanotubes because they tend to form clusters and often group together. So they cause problems when it comes to being expanded across a matrix. So for that very reason strategies or methods are needed to help the carbon nanotubes spread as much as possible within the polymer matrix.

image description

A new development: the use of copolymers

Different strategies are used to spread the carbon nanotubes across the polymer matrix. Firstly, electric and magnetic fields. Since carbon nanotubes are conductors, they position and align themselves in the desired direction when they come up against an electric field. What is more, the surface of these nanotubes can be changed by means of chemical treatments until a specific affinity or compatibility is achieved with the epoxy. Finally, this UPV/EHU research team has put forward a new strategy: the use of copolymers, in other words, blocks of two different polymers joined to each other by means of chemical bonds. In this case, the styrene-butadiene-styrene copolymer was used.

The first step was to chemically transform one of the blocks of the copolymer (the butadiene in this case), to make it compatible with the epoxy resin matrix. The other block, by contrast, was divided, but as it has a covalent bond with the butadiene, the division was on a nanometric scale and nanostructures were produced. “That way the carbon nanotubes disperse much better across the epoxy matrix, without forming clusters,” pointed out Kortaberria. In general, “all the coatings we prepared were more stable than the ones based on the epoxy alone. The most stable coating is the one that has 0.2% of carbon nanotubes,” he added. The research team saw that the coating properties could be improved by varying the quantities of copolymers and nanotubes, thermal stability and behaviour, in particular, when handling temperature, and that coatings suitable for industry could be designed.

“The spread of the nanotubes has improved considerably with the use of copolymers, and the properties of the epoxy resin-based coatings are maintained; in some cases they have even improved,” asserted Kortaberria. “All this makes it possible to produce coatings suitable for industry with enhanced characteristics,” he added.

Source: nanoBasque

Eco-Friendly ‘pre-fab nanoparticles’ Could Revolutionize Nano Manufacturing


 

Eco-Friendly Nano 49975

Eco-friendly ‘pre-fab nanoparticles’ could revolutionize nano manufacturing: UMass Amherst team invents a way to create versatile, water-soluble nano-modules

Amherst. MA | Posted on August 13th, 2014

 

A team of materials chemists, polymer scientists, device physicists and others at the University of Massachusetts Amherst today report a breakthrough technique for controlling molecular assembly of nanoparticles over multiple length scales that should allow faster, cheaper, more ecologically friendly manufacture of organic photovoltaics and other electronic devices. Details are in the current issue of Nano Letters.

Lead investigator, chemist Dhandapani Venkataraman, points out that the new techniques successfully address two major goals for device manufacture: controlling molecular assembly and avoiding toxic solvents like chlorobenzene. “Now we have a rational way of controlling this assembly in a water-based system,” he says. “It’s a completely new way to look at problems. With this technique we can force it into the exact structure that you want.”

Materials chemist Paul Lahti, co-director with Thomas Russell of UMass Amherst’s Energy Frontiers Research Center (EFRC) supported by the U.S. Department of Energy, says, “One of the big implications of this work is that it goes well beyond organic photovoltaics or solar cells, where this advance is being applied right now. Looking at the bigger picture, this technique offers a very promising, flexible and ecologically friendly new approach to assembling materials to make device structures.”

Eco-Friendly Nano 49975

 

Lahti likens the UMass Amherst team’s advance in materials science to the kind of benefits the construction industry saw with prefabricated building units. “This strategy is right along that general philosophical line,” he says. “Our group discovered a way to use sphere packing to get all sorts of materials to behave themselves in a water solution before they are sprayed onto surfaces in thin layers and assembled into a module. We are pre-assembling some basic building blocks with a few predictable characteristics, which are then available to build your complex device.”

“Somebody still has to hook it up and fit it out the way they want,” Lahti adds. “It’s not finished, but many parts are pre-assembled. And you can order characteristics that you need, for example, a certain electron flow direction or strength. All the modules can be tuned to have the ability to provide electron availability in a certain way. The availability can be adjusted, and we’ve shown that it works.”

The new method should reduce the time nano manufacturing firms spend in trial-and-error searches for materials to make electronic devices such as solar cells, organic transistors and organic light-emitting diodes. “The old way can take years,” Lahti says.

“Another of our main objectives is to make something that can be scaled up from nano- to mesoscale, and our method does that. It is also much more ecologically friendly because we use water instead of dangerous solvents in the process,” he adds.

For photovoltaics, Venkataraman points out, “The next thing is to make devices with other polymers coming along, to increase power conversion efficiency and to make them on flexible substrates. In this paper we worked on glass, but we want to translate to flexible materials and produce roll-to-roll manufactured materials with water. We expect to actually get much greater efficiency.” He suggests that reaching 5 percent power conversion efficiency would justify the investment for making small, flexible solar panels to power devices such as smart phones.

If the average smart phone uses 5 watts of power and all 307 million United States users switched from batteries to flexible solar, it could save more than 1500 megawatts per year. “That’s nearly the output of a nuclear power station,” Venkataraman says, “and it’s more dramatic when you consider that coal-fired power plants generate 1 megawatt and release 2,250 lbs. of carbon dioxide. So if a fraction of the 6.6 billion mobile phone users globally changed to solar, it would reduce our carbon footprint a lot.”

Doctoral student and first author Tim Gehan says that organic solar cells made in this way can be semi-transparent, as well, “so you could replace tinted windows in a skyscraper and have them all producing electricity during the day when it’s needed. And processing is much cheaper and cleaner with our cells than in traditional methods.”

Venkataraman credits organic materials chemist Gehan, with postdoctoral fellow and device physicist Monojit Bag, with making “crucial observations” and using “persistent detective work” to get past various roadblocks in the experiments. “These two were outstanding in helping this story move ahead,” he notes. For their part, Gehan and Bag say they got critical help from the Amherst Fire Department, which loaned them an infrared camera to pinpoint some problem hot spots on a device.

It was Bag who put similar sized and charged nanoparticles together to form a building block, then used an artist’s airbrush to spray layers of electrical circuits atop each other to create a solar-powered device. He says, “Here we pre-formed structures at nanoscale so they will form a known structure assembled at the meso scale, from which you can make a device. Before, you just hoped your two components in solution would form the right mesostructure, but with this technique we can direct it to that end.”

###

This work at the Polymer-Based Materials for Harvesting Solar Energy is part of an EFRC supported by the U.S. DOE’s Office of Basic Energy Science.

 

Copyright © University of Massachusetts at Amherst

 

Anti-Counterfeit Drug Labels (w/video): Only a ‘Breath’ Away


Breath Drug Counterfeit id36807An outline of Marilyn Monroe’s iconic face appeared on the clear, plastic film when a researcher fogs it with her breath. Terry Shyu, a doctoral student in chemical engineering at the University of Michigan, was demonstrating a new high-tech label for fighting drug counterfeiting. While the researchers don’t envision movie stars on medicine bottles, but they used Monroe’s image to prove their concept.

Counterfeit drugs, which at best contain wrong doses and at worst are toxic, are thought to kill more than 700,000 people per year. While less than 1 percent of the U.S. pharmaceuticals market is believed to be counterfeit, it is a huge problem in the developing world where as much as a third of the available medicine is fake.

To fight back against these and other forms of counterfeiting, researchers at U-M and in South Korea have developed a way to make labels that change when you breathe on them, revealing a hidden image. This work is reported in Advanced Materials (“Shear-Resistant Scalable Nanopillar Arrays with LBL-Patterned Overt and Covert Images”). “One challenge in fighting counterfeiting is the need to stay ahead of the counterfeiters,” said Nicholas Kotov, the Joseph B. and Florence V. Cejka Professor of Chemical Engineering who led the Michigan effort.

 

 

The method requires access to sophisticated equipment that can create very tiny features, roughly 500 times smaller than the width of a human hair. But once the template is made, labels can be printed in large rolls at a cost of roughly one dollar per square inch. That’s cheap enough for companies to use in protecting the reputation of their products—and potentially the safety of their consumers.

Breath Drug Counterfeit id36807

Terry Shyu, MSE PhD Student, demonstrates use of nanopillars that reveal hidden images via condensation of fluid on the structures.

 

“We use a molding process,” Shyu said, noting that this inexpensive manufacturing technique is also used to make plastic cups.

The labels work because an array of tiny pillars on the top of a surface effectively hides images written on the material beneath. Shyu compares the texture of the pillars to a submicroscopic toothbrush. The hidden images appear when the pillars trap moisture.
“You can verify that you have the real product with just a breath of air,” Kotov said.
The simple phenomenon could make it easy for buyers to avoid being fooled by fake packaging.
Previously, it was impossible to make nanopillars through cheap molding processes because the pillars were made from materials that preferred adhering to the mold rather than whatever surface they were supposed to cover. To overcome this challenge, the team developed a special blend of polyurethane and an adhesive.
The liquid polymer filled the mold, but as it cured, the material shrunk slightly. This allowed the pillars to release easily. They are also strong enough to withstand rubbing, ensuring that the label would survive some wear, such as would occur during shipping. The usual material for making nanopillars is too brittle to survive handling well.
The team demonstrated the nanopillars could stick to plastics, fabric, paper and metal, and they anticipate that the arrays will also transfer easily to glass and leather.
Following seed funding from the National Science Foundation’s Innovation Corps program and DARPA’s Small Business Technology Transfer program, the university is pursuing patent protection for the intellectual property and is seeking commercialization partners to help bring the technology to market.
Source: University of Michigan

 

Genesis Nanotech Headlines Are Out!


Organ on a chip organx250Genesis Nanotech Headlines Are Out! Read All About It!

https://paper.li/GenesisNanoTech/1354215819#!headlines

Visit Our Website: www.genesisnanotech.com

Visit/ Post on Our Blog: https://genesisnanotech.wordpress.com

 

SUBCOMMITTE EXAMINES BREAKTHROUGH NANOTECHNOLOGY OPPORTUNITIES FOR AMERICA

Chairman Terry: “Nanotech is a true science race between the nations, and we should be encouraging the transition from research breakthroughs to commercial development.”

WASHINGTON, DCThe Subcommittee on Commerce, Manufacturing, and Trade, chaired by Rep. Lee Terry (R-NE), today held a hearing on:

“Nanotechnology: Understanding How Small Solutions Drive Big Innovation.”

 

 

electron-tomography

“Great Things from Small Things!” … We Couldn’t Agree More!

 

Subcommittee Examines Breakthrough Nanotechnology Opportunities for America


Applications-of-Nanomaterials-Chart-Picture1SUBCOMMITTE EXAMINES BREAKTHROUGH NANOTECHNOLOGY OPPORTUNITIES FOR AMERICA
July 29, 2014

WASHINGTON, DCThe Subcommittee on Commerce, Manufacturing, and Trade, chaired by Rep. Lee Terry (R-NE), today held a hearing on “Nanotechnology: Understanding How Small Solutions Drive Big Innovation.” Nanotechnology is science, engineering, and technology conducted at the nanoscale, which is approximately 1 to 100 nanometers (one nanometer is a billionth of a meter). This technology brings great opportunities to advance a broad range of industries, bolster our U.S. economy, and create new manufacturing jobs. Members heard from several nanotech industry leaders about the current state of nanotechnology and the direction that it is headed.UNIVERSITY OF WATERLOO - New $5 million lab

“Just as electricity, telecommunications, and the combustion engine fundamentally altered American economics in the ‘second industrial revolution,’ nanotechnology is poised to drive the next surge of economic growth across all sectors,” said Chairman Terry.

 

 

Applications of Nanomaterials Chart Picture1

Dr. Christian Binek, Associate Professor at the University of Nebraska-Lincoln, explained the potential of nanotechnology to transform a range of industries, stating, “Virtually all of the national and global challenges can at least in part be addressed by advances in nanotechnology. Although the boundary between science and fiction is blurry, it appears reasonable to predict that the transformative power of nanotechnology can rival the industrial revolution. Nanotechnology is expected to make major contributions in fields such as; information technology, medical applications, energy, water supply with strong correlation to the energy problem, smart materials, and manufacturing. It is perhaps one of the major transformative powers of nanotechnology that many of these traditionally separated fields will merge.”

Dr. James M. Tour at the Smalley Institute for Nanoscale Science and Technology at Rice University encouraged steps to help the U.S better compete with markets abroad. “The situation has become untenable. Not only are our best and brightest international students returning to their home countries upon graduation, taking our advanced technology expertise with them, but our top professors also are moving abroad in order to keep their programs funded,” said Tour. “This is an issue for Congress to explore further, working with industry, tax experts, and universities to design an effective incentive structure that will increase industry support for research and development – especially as it relates to nanotechnology. This is a win-win for all parties.”

** Follow Our Nano-Blog: “Great Things from Small Things” – Just Click on the ‘Follow Blog”

** Follow us on Twitter at: @Genesisnanotech1x2 logo sm

** ‘Like Us’ on Facebook

Professor Milan Mrksich of Northwestern University discussed the economic opportunities of nanotechnology, and obstacles to realizing these benefits. He explained, “Nanotechnology is a broad-based field that, unlike traditional disciplines, engages the entire scientific and engineering enterprise and that promises new technologies across these fields. … Current challenges to realizing the broader economic promise of the nanotechnology industry include the development of strategies to ensure the continued investment in fundamental research, to increase the fraction of these discoveries that are translated to technology companies, to have effective regulations on nanomaterials, to efficiently process and protect intellectual property to ensure that within the global landscape, the United States remains the leader in realizing the economic benefits of the nanotechnology industry.”

James Phillips, Chairman & CEO at NanoMech, Inc., added, “It’s time for America to lead. … We must capitalize immediately on our great University system, our National Labs, and tremendous agencies like the National Science Foundation, to be sure this unique and best in class innovation ecosystem, is organized in a way that promotes nanotechnology, tech transfer and commercialization in dramatic and laser focused ways so that we capture the best ideas into patents quickly, that are easily transferred into our capitalistic economy so that our nation’s best ideas and inventions are never left stranded, but instead accelerated to market at the speed of innovation so that we build good jobs and improve the quality of life and security for our citizens faster and better than any other country on our planet.”

Chairman Terry concluded, “Nanotech is a true science race between the nations, and we should be encouraging the transition from research breakthroughs to commercial development. I believe the U.S. should excel in this area.”

– See more at: http://energycommerce.house.gov/press-release/subcommittee-examines-breakthrough-nanotechnology-opportunities-america#sthash.YnSzFU10.dpuf