Israeli Scientists Claim They’re On The Path To A Cure For Cancer – ACS Cautions


Israele 3

It doesn’t seem possible. But they say it’s true. A small team of Israeli scientists is telling the world they will have the first “complete cure” for cancer within a year, The Jerusalem Post reported on Monday. And not only that, but they claim it will be brief, cheap and effective and will have no or minimal side-effects.

“We believe we will offer in a year’s time a complete cure for cancer,” said Dan Aridor, chairman of the board of Accelerated Evolution Biotechnologies Ltd. (AEBi), a company founded in 2000 in the ITEK incubator in the Kiryat Weizmann Science Park in Ness Ziona, Israel, just north of the Weizmann Institute of Science in Rehovot, Israel.

A development-stage biopharmaceutical company engaged in discovery and development of therapeutic peptides, AEBi developed the SoAP platform, a combinatorial biology screening platform technology, which provides functional leads—agonist, antagonist, inhibitor, etc.—to very difficult targets.

Still skepticism was high among those in the know. Weighing in on behalf of the American Cancer Society (ACS) on his blog, “A Cure For Cancer? Not So Fast,” Len Lichtenfeld, MD, ACS chief medical officer cautioned: “…it goes without saying, we all share the aspirational hope that they are correct. Unfortunately, we must be aware that this is far from proven as an effective treatment for people with cancer, let alone a cure.”

YOUNG ISRAELI CANCER RESEARCHRead More: Why Others Think This Claim Is Not Likely to Happen

Lichtenfeld went on to list several key points that he says must be kept in mind no matter what media reports say:

1. This is a news report based on limited information provided by researchers and a company working on this technology. It apparently has not been published in the scientific literature where it would be subject to review, support and/or criticism from knowledgeable peers.

2. My colleagues here at American Cancer Society tell me phage or peptide display techniques, while very powerful research tools for selecting high affinity binders, have had a difficult road as potential drugs. If this group is just beginning clinical trials, they may well have some difficult experiments ahead.

3. This is based on a mouse experiment which is described as “exploratory.” It appears at this point there is not a well-established program of experiments which could better define how this works—and may not work—as it moves from the laboratory bench to the clinic.

4. We all have hope that a cure for cancer can be found and found quickly. It is certainly possible this approach may be work. However, as experience has taught us so many times, the gap from a successful mouse experiment to effective, beneficial application of exciting laboratory concepts to helping cancer patients at the bedside is in fact a long and treacherous journey, filled with unforeseen and unanticipated obstacles.

5. It will likely take some time to prove the benefit of this new approach to the treatment of cancer. And unfortunately–based on other similar claims of breakthrough technologies for the treatment of cancer–the odds are that it won’t be successful.

“Our hopes are always on the side of new breakthroughs in the diagnosis and treatment of cancer. We are living in an era where many exciting advances are impacting the care of patients with cancer,” Lichtenfeld went on. “We hope that this approach also bears fruit and is successful. At the same time, we must always offer a note of caution that the process to get this treatment from mouse to man is not always a simple and uncomplicated journey.”

From Forbes – Robin Seaton Jefferson – 

Advertisements

Malaysia & Taiwan to Spur Growth of NanoTechnology + Bar-Ilan University joins UN nanotechnology lab


NanoVerify, Malaysia & Taiwan to Spur Growth of NanoTechnology, Taiwan NanoTechnology, nanotechnology

Malaysia & Taiwan to Spur Growth of NanoTechnology 

Recently NANOVerify Sdn. Bhd. (NVSB), Malaysia’s first and only nanotechnology verification body, and the Taiwan Nanotechnology Industry Development Association (TANIDA), have announced a mutual nano-verification mark recognition programme that is set to open up trade and drive market penetration of nanotechnology based products in both countries.

The programme enables certified nanotechnology products from the respective verification programmes to receive equal recognition in both Malaysia and Taiwan. This is projected to enable the certification of over 100 new nanotechnology products in Malaysia within the next 12-months, as well as facilitate the entry of more than 20 domestic companies into the Taiwanese market.
Commenting on the announcement of the programme, Johan Iskandar, Managing Director of NVSB, said, “We are proud to unveil this programme as another milestone in our mission to grow nanotechnology domestically and abroad. The nanotechnology industry is thriving with projections valuing the industry at close to RM500 billion globally by 2024. Collaborations between verification bodies such as this will be vital in achieving those projections by increasing awareness and building consumer trust through the rise of certified nano-products on a global scale.”
The programme, endorsed by the TANIDA-NVSB steering committee in conjunction with theAsian Nano Forum (ANF) 2018, in Taipei, Taiwan, allows applicants to enjoy expedited verification processes thanks to integrated test lab facilities. In addition, the synergistic co-operation is focused on developing strategic campaigns to encourage ‘nano-technopreneurs’ and businesses to certify their products in order to differentiate themselves in an increasingly crowded market space.
In collaboration with SIRIM QAS International, NVSB operates the NANOVerify Programme, a voluntary certification programme for processes and products with claims of nano-elements and nano-enhancements. Meanwhile, TANIDA oversees the operations of Taiwan’s NanoMark, for similar verification and recognition.
There are currently 34 certified nanotechnology products in Malaysia, ranging from cosmetics and cleaning solutions to home appliances and fertilizers, with growing interest from industry players.

 

 

 

 

 

Also Read About: 

Bar-Ilan University joins UN nanotechnology lab

BINA-INL_signing-768x432Big agreements sometimes start in very small packages. In the case of a new partnership between Israel’s Bar-Ilan University and the United Nations, that package is nano-sized.
” …  INL comprises 100 researchers from 30 countries across Europe. Established 10 years ago by the governments of Spain and Portugal, the UN’s nano lab has an annual budget of €100 million.”

Israel is the go-to place for nanotech research


Nano Israeil Conference 2016Cornell University professor Richard Robinson says Jewish State is ‘ahead of the curve’ when it comes to nanotechnology.

One day soon, a start-up somewhere – possibly in Israel – will come up with a system to manufacture precisely-formed nanoparticles that, when joined with other particles, will change the way electronics, clothing, computers and almost everything else can be used.

One day, but not yet, according to Richard Robinson, a visiting scholar at Hebrew University’s Institute of Chemistry. Based at Cornell University, Robinson is in Israel to do research in the area of nanotechnology, where scientists manipulate very tiny atomic particles to create surprising and unique effects that are far different than anything observed in physics until now.

“We know a lot about the principles of nanotechnology now, but there is still a lot to do at the research stage, which is one reason why nanotech hasn’t yet made its presence known to a large extent in the greater society,” Robinson told The Times of Israel. “Nevertheless nanotechnology is already having a major impact in certain applications, like lighting.”

In fact, one of the first commercially successful nano-based products to emerge came from the very Hebrew University lab where Robinson is doing research. Using unique quantum materials, Qlight developed semiconductor nanocrystals that can emit and provide extra brilliance to light, such as enhancing the color of display screens.

Last year the company was acquired by Merck, the German chemical and technology company. Qlight’s technology, said Merck CEO Karl-Ludwig Kley, is “far superior to anything currently on the market, and that will help us retain and expand our position as market leader.”

There will likely be many more such announcements and pronouncements in the future, and many of them are set to be based on technology developed in Israel, said Robinson. “Israel is ahead of the curve on nanotechnology research,” said Robinson.

And there’s plenty more research that needs to be done. “Over the past 20 years or so we have essentially been rewriting the textbooks on physics, because the laws that apply to ‘normal’ particles do not apply to nano-sized particles,” he added.

In other words, certain things happen when five nanometer-sized particles are combined with six nanometer-sized particles. “We’re still observing, categorizing and recording the reactions of these particles sizes with each other and others, in different kinds of materials, and their combinations,” said Robinson.

At home in Cornell, Robinson does a lot of work in materials, controlling their size, shape, composition and surfaces, and assembling the resulting building blocks into functional architectures. Among the applications Robinson’s lab is targeting are new materials for printable electronics and electrocatalysis. His group is also pioneering a new method to probe phonon transport in nanostructures.

On practical example of how nanotech will affect energy is to allow for a much more efficient production method for solar energy. In a solar energy system, the sun’s rays hit photovaltic cells that capture the energy and convert it into direct current (DC) electricity, which is then converted to alternating current (AC), for use in home electric systems or for transfer to the grid. But it turns out that the PV cells being used don’t capture as much of the sun’s rays as they can because of fluctuations in the wavelength of the rays due to time of day or time of year; only about 25% of the rays are captured on average.

PV cells are designed to capture the sun at its strongest in midday, but they can’t capture rays at other times of the day. Using nanomaterials that respond to specific wavelengths PV technology can be much more efficient, tripling the usable “bounty” from the sun, said Robinson.

Eventually, said Robinson, nanotech will live up to the hype that has surrounded it for the past two decades.

“The manufacturing process for nanoparticles is not yet precise. In order for nanotech to be fully commercialized, we need a way to produced nanoparticles on a mass basis with the right size needed for each application,” Robinson said. “We’re not there yet, but it’s on the way – and with all the nanotech research here in Israel, it may just be an Israeli start-up that develops it.”

GNT Thumbnail Alt 3 2015-page-001

 

Genesis Nanotech on Twitter

Genesisnanotech on Facebook

Genesis Nanotechnology – Follow Our Blog

Check Out Our Website

 

New Smartphone Battery Recharges in 30 Seconds Flat: Using Quantum Dot Technology


Discovery QD Charger shutterstock_186049325Today’s smartphones are well-equipped to satiate our appetites for instant gratification. We stream live video, look up facts on a whim, receive breaking news alerts and stay connected to our friends via social media. But one thing has lagged behind this culture of immediacy: smart phones’ batteries.

Now, it looks like recharging our phones could finally keep pace with the demands of our fast-moving culture. Yesterday an Israeli company called StoreDot unveiled a new smartphone battery that fully recharges in just 30 seconds. In contrast the couple hours it takes for a typical smartphone to fully charge, seems hopelessly outdated.

The battery manages such a speedy charge by utilizing quantum dot technology. Quantum dots are tiny bio-organic nanocrystals made of semiconducting materials. The battery is just a prototype at this point, and it’s still big and clunky — about the size of a laptop charger. However, the company plans to scale down its size and begin mass production of the device in 2016, the Wall Street Journal reports.

QD Breathe 031915 id39482

Check out this video of the battery recharging in real time:

World Economic Forum: Can Graphene Make the World’s Water Clean?


Graphene Water 071115 RTRDE3R1-628x330This post is part of a series examining the connections between nanotechnology and the top 10 trends facing the world, as described in the Outlook on the Global Agenda 2015. All authors are members of the Global Agenda Council on Nanotechnology.

In the 2015 World Economic Forum’s Global Risks Report survey participants ranked Water Crises as the biggest of all risks, higher than Weapons of Mass Destruction, Interstate Conflict and the Spread of Infectious Diseases (pandemics). Our dependence on the availability of fresh water is well documented, and the United Nations World Water Development Report 2015 highlights a 40% global shortfall between forecast water demand and available supply within the next fifteen years. Agriculture accounts for much of the demand, up to 90% in most of the world’s least-developed countries, and there is a clear relationship between water availability, health, food production and the potential for civil unrest or interstate conflict.

The looming crisis is not limited to water for drinking or agriculture. Heavy metals from urban pollution are finding their way into the aquatic ecosystem, as are drug residues and nitrates from fertilizer use that can result in massive algal blooms. To date, there has been little to stop this accretion of pollutants and in closed systems such as lakes these pollutants are being concentrated with unknown long term effects.

While current solutions such as reverse osmosis exist, and are widely used in the water desalination of seawater, the water they produce is expensive. This is because high pressures are required to force the waster through a membrane and maintaining this pressure requires around 2kWh for every cubic meter of water. While this is less of an issue for countries with cheap energy, it puts the technology beyond the reach of most of the world’s population.

Any new solution for water issues needs to be able to demonstrate precise control over pore sizes, be highly resistant to fouling and significantly reduce energy use, a mere 10% won’t make a difference. Nanotechnology has long been seen as a potential solution. Our ability to manipulate matter on the scale of a few atoms allows scientists to work at the same scale as mot of the materials that need to be removed from water — salts, metal ions, emulsified oil droplets or nitrates. In theory then it should be a simple matter of creating a structure with the correct size nanoscale pores and building a better filter.

Ten years ago, following discussions with former Israeli Prime Minister Shimon Peres, I organised a conference in Amsterdam called Nanowater to look at how nanotechnology could address global water issues. While the meeting raised many interesting points, and many companies proposed potential solutions, there was little subsequent progress.

Rather than a simple mix of one or two contaminants, most real world water can contain hundreds of different materials, and pollutants like heavy metals may be in the form of metal ions that can be removed, but are equally likely to be bound to other larger pieces of organic matter which cannot be simply filtered through nanopores.  In fact the biggest obstacle to using nanotechnology in water treatment is the simple fact that small holes are easily blocked, and susceptibility to fouling means that

Fortunately some recent developments in the ‘wonder material’ graphene may change the economics of water. One of the major challenges in the commercialisation of graphene is the ability to create large areas of defect-free material that would be suitable for displays or electronics, and this is a major research topic in Europe where the European Commission is funding graphene research to the tune of a billion euros. Simultaneously there are vast efforts inside organisations such as Samsung and IBM. While defects are not wanted for electronic applications, recent research by Nobel Prize winner Andrei Geim and Rahul Nair has indicated that in graphene oxide they result in a barrier that is highly impermeable to everything except water vapour. However, precisely controlling the pore size can be difficult.

Another approach taken by researchers at MIT involves bombarding graphene sheets with beams of gallium ions to create weak spots and then etching them to create more precisely controlled pore sizes. A similar approach to water transport through defects has been taken by researchers at Penn State University.

While all of the above show that graphene has prospects for use as a filter medium, what about the usual limiting issue, membrane fouling? Fortunately another property of graphene is that it can be hydrophilic, it repels water, and protein absorption has been reported to have been reduced by over 70% in bioreactor tests. Many other groups are working on the use of graphene oxide and graphene nanoplatelets as an anti-fouling coating.

While the graphene applications discussed so far address one or two of the issues, it seems that thin films of graphene oxide may be able to provide the whole solution. Miao Yu and his team at the University of South Carolina have fabricated membranes that deliver very high flux and do not foul. Fabrication is handled by adding a thin layer of graphene to an existing membrane, as distinct from creating a membrane out of graphene, something which is far harder to do and almost impossible to scale up.

Getting a high flux is crucial to desalination applications where up to 50% of water costs are caused by pressurising water for transmission through a membrane.  Performance tests reveal around 100% membrane recovery simply by surface water flushing and pure water flux rates (the amount of water that the membrane transmits) are two orders of magnitude higher than conventional membranes. This is the result of the spacing between the graphene plates that allows the passage of water molecules via nanoscale capillary action but not contaminants.Graphene Desalinate 0422 water

Non-fouling is crucial for all applications, and especially in oil/water separation as most of what is pumped out of oil wells is water mixed with a little oil.

According to G2O Water, the UK company commercialising Yu’s technology, the increased flux rates are expected to translate directly into energy savings of up to 90% for seawater desalination. Energy savings on that scale have the potential to change the economics of desalination with smaller plants powered by renewable energy and addressing community needs replacing the power hungry desalination behemoths currently under construction such as the Carlsbad Project. This opens the possibility of low-cost water in areas of the world where desalination is currently too expensive or there is insufficient demand to justify large scale infrastructure.

While more work is required to build a robust and cost-effective filtration system, the new ability to align sheets of graphene so that water but nothing else is transmitted may be the simple game-changer that allows the world to finally address the growing water crisis.

Author: Tim Harper is Chief Executive Officer of G2O Water.

Image: The colors of Fall can be seen reflected in a waterfall along the Blackberry River in Canaan, Connecticut REUTERS/Jessica Rinaldi

Researchers: Do (certain) Nanoparticles Threaten Heart Health?


Israel untitledNanoparticles, extremely tiny particles measured in billionths of a meter, are increasingly everywhere, and especially in biomedical products. Their toxicity has been researched in general terms, but now a team of Israeli scientists has for the first time found that exposure nanoparticles (NPs) of silicon dioxide (SiO2) can play a major role in the development of cardiovascular diseases when the NP cross tissue and cellular barriers and also find their way into the circulatory system. Their study is published in the December 2014 issue of Environmental Toxicology.

The research team was comprised of scientists from the Technion Rappaport Faculty of Medicine, Rambam Medical Center, and the Center of Excellence in Exposure Science and Environmental Health (TCEEH).

“Environmental exposure to nanoparticles is becoming unavoidable due to the rapid expansion of nanotechnology,” says the study’s lead author, Prof. Michael Aviram, of the Technion Faculty of Medicine, “This exposure may be especially chronic for those employed in research laboratories and in high tech industry where workers handle, manufacture, use and dispose of nanoparticles. Products that use silica-based nanoparticles for biomedical uses, such as various chips, drug or gene delivery and tracking, imaging, ultrasound therapy, and diagnostics, may also pose an increased cardiovascular risk for consumers as well.”

Israel Nano 01NewsImage_FlatSemi

In this study, researchers exposed cultured laboratory mouse cells resembling the arterial wall cells to NPs of silicon dioxide and investigated the effects. SiO2 NPs are toxic to and have significant adverse effects on macrophages. a type of white blood cell that take up lipids, leading to atherosclerotic lesion development and its consequent cardiovascular events, such as heart attack or stroke. Macrophages accumulation in the arterial wall under atherogenic conditions such as high cholesterol, triglycerides, oxidative stress – are converted into lipids, or laden “foam cells” which, in turn, accelerate atherosclerosis development.

“Macrophage foam cells accumulation in the are a key cell type in the development of atherosclerosis, which is an inflammatory disease” says co-author Dr. Lauren Petrick. “The aims of our study were to gain additional insight into the cardiovascular risk associated with silicon dioxide nanoparticle exposure and discover the mechanisms behind Si02’s induced atherogenic effects on macrophages. We also wanted to use nanoparticles as a model for ultrafine particle (UFP) exposure as factors.”

Both NPs and UFPs can be inhaled and induce negative biological effects. However, until this study, their effect on the development of atherosclerosis has been largely unknown. Here, researchers have discovered for the first time that the toxicity of nanoparticles has a “significant and substantial effect on the accumulation of triglycerides in the macrophages,” at all exposure concentrations analyzed, and that they also “increase oxidative stress and toxicity.”

A recent update from the American Heart Association also suggested that “fine particles” in air pollution leads to elevated risk for cardiovascular diseases. However, more research was needed to examine the role of “ultrafine particles” (which are much smaller than “fine particles”) on atherosclerosis development and .

“The number of nano-based consumer products has risen a thousand fold in recent years, with an estimated world market of $3 trillion by the year 2020,” conclude the researchers. “This reality leads to increased human exposure and interaction of silica-based nanoparticles with biological systems. Because our research demonstrates a clear cardiovascular health risk associated with this trend, steps need to be taken to help ensure that potential health and environmental hazards are being addressed at the same time as the nanotechnology is being developed.

Explore further: New driver of atherosclerosis offers potential as therapeutic target