Nanoplatform developed with three (3) molecular imaging modalities for tumor diagnosis – Making it possible to expand detection to more types of cancer


nanoplatform for tumor diagnosisThe composition and application of the JANUS nanoplatform for multimodal medical imaging. Credit: Marco Filice

Researchers at the Complutense University of Madrid (UCM) have developed a hybrid nanoplatform that locates tumours using three different types of contrast simultaneously to facilitate multimodal molecular medical imaging: magnetic resonance imaging (MRI), computed tomography (CT) and fluorescence optical imaging (OI).

The results of this study, led by the UCM Life Sciences Nanobiotechnology research team directed by Marco Filice and published in ACS Applied Materials & Interfaces, represent a major advance in medical diagnosis since just one session using a single contrast medium yields more precise, specific results with higher resolution, sensitivity and capacity to penetrate tissues.

“No single molecular imaging modality provides a perfect diagnosis. Our nanoplatform is designed to enable multimodal molecular imaging, thus overcoming the intrinsic limitations of each single image modality while maximising their advantages,” noted Marco Filice, a researcher in the Department of Chemistry and Pharmaceutical Sciences at the Complutense University of Madrid and the director of the study.

The platform, which has been tested on mice, targets solid cancers such as sarcomas. “However, due to its flexibility, the proposed nanoplatform can be modified, and with a suitable design of recognition element siting, it will be possible to expand detection to more types of cancer,” Filice said.

Named after the Roman god Janus, usually depicted as having two faces, these nanoparticles also “have two opposing faces, one of iron oxide embedded in a silica matrix that serves as a contrast medium for MRI and another of gold for CT,” explained Alfredo Sánchez, a researcher in the UCM Department of Analytical Chemistry and the first author of the study.

In addition, a molecular probe sited in a specific manner in the golden area permits fluorescence optical imaging while a peptide selective for hyperexpressed receptors in tumours (RGD sequence) and sited on the silica surface enveloping the  identifies the tumour and makes it possible to direct and transport the nanoplatform to its target.

Once the research team had synthesised the nanoparticles and determined their characteristics and toxicity, they then tested them in mouse models reared to present a fibrosarcoma in the right leg. The nanoparticle was injected in the tail. “Excellent imaging results were obtained for each modality tested,” reported Filice.

Although there is still much to do before these experiments can be applied to humans, this research shows that personalised treatment is closer than ever to becoming a reality, thanks to nanotechnology and biotechnology.

 Explore further: Nanoparticles on track to distinguish tumour tissue

More information: Alfredo Sánchez et al, Hybrid Decorated Core@Shell Janus Nanoparticles as a Flexible Platform for Targeted Multimodal Molecular Bioimaging of Cancer, ACS Applied Materials & Interfaces (2018). DOI: 10.1021/acsami.8b10452

 

Advertisements

A new brain-inspired architecture could improve how computers handle data and advance AI


anewbraininsBrain-inspired computing using phase change memory. Credit: Nature Nanotechnology/IBM Research

IBM researchers are developing a new computer architecture, better equipped to handle increased data loads from artificial intelligence. Their designs draw on concepts from the human brain and significantly outperform conventional computers in comparative studies. They report on their recent findings in the Journal of Applied Physics.

Today’s computers are built on the von Neumann architecture, developed in the 1940s. Von Neumann computing systems feature a central processor that executes logic and arithmetic, a memory unit, storage, and input and output devices. Unlike the stovepipe components in conventional computers, the authors propose that brain-inspired computers could have coexisting processing and memory units.

Abu Sebastian, an author on the paper, explained that executing certain  in the computer’s memory would increase the system’s efficiency and save energy.

“If you look at human beings, we compute with 20 to 30 watts of power, whereas AI today is based on supercomputers which run on kilowatts or megawatts of power,” Sebastian said. “In the brain, synapses are both computing and storing information. In a new architecture, going beyond von Neumann, memory has to play a more active role in computing.”

The IBM team drew on three different levels of inspiration from the brain. The first level exploits a memory ‘s state dynamics to perform computational tasks in the memory itself, similar to how the brain’s memory and processing are co-located. The second level draws on the brain’s synaptic network structures as inspiration for arrays of phase change memory (PCM) devices to accelerate training for deep neural networks. Lastly, the dynamic and stochastic nature of neurons and synapses inspired the team to create a powerful computational substrate for spiking neural networks.

Phase change memory is a nanoscale memory device built from compounds of Ge, Te and Sb sandwiched between electrodes. These compounds exhibit different electrical properties depending on their atomic arrangement. For example, in a disordered phase, these materials exhibit high resistivity, whereas in a crystalline phase they show low resistivity.

By applying electrical pulses, the researchers modulated the ratio of material in the crystalline and the amorphous phases so the phase change memory devices could support a continuum of electrical resistance or conductance. This analog storage better resembles nonbinary, biological synapses and enables more information to be stored in a single nanoscale device.

Sebastian and his IBM colleagues have encountered surprising results in their comparative studies on the efficiency of these proposed systems. “We always expected these systems to be much better than conventional computing systems in some tasks, but we were surprised how much more efficient some of these approaches were.”

Last year, they ran an unsupervised machine learning algorithm on a conventional  and a prototype computational memory platform based on  change  devices. “We could achieve 200 times faster performance in the  computing systems as opposed to conventional computing systems.” Sebastian said. “We always knew they would be efficient, but we didn’t expect them to outperform by this much.” The team continues to build prototype chips and systems based on brain-inspired concepts.

 Explore further: Novel synaptic architecture for brain inspired computing

More information: Hiroto Kase et al, Biosensor response from target molecules with inhomogeneous charge localization, Journal of Applied Physics (2018). DOI: 10.1063/1.5036538

 

Dengue fever vaccine delivered with nanotechnology targets all four virus serotypes – University of North Carolina Research


denguefeverCredit: CC0 Public Domain

The latest in a series of studies led by the Aravinda de Silva Lab at the UNC School of Medicine shows continued promise in a dengue virus vaccine delivered using nanoparticle technology.

 

Each year, an estimated 25,000 people die from dengue infections and millions more are infected. Scientists have been trying to create a  for many years, but creating an effective  is challenging due to the four different serotypes of the virus. For a person to be fully protected against dengue, they need to be vaccinated against all four serotypes at once – something current vaccines do not achieve. In their paper published in PLOS Neglected Tropical Diseases, Aravinda de Silva, Ph.D., professor of microbiology and immunology, and UNC research associate Stefan Metz, Ph.D., detail how their nanoparticle delivery platform is producing a more balanced immune  versus other vaccine delivery platforms.

To deliver the vaccine, the de Silva lab is using a nanoparticle platform produced with PRINT (Particle Replication in Non-wetting Templates) technology, which was developed by Joseph DeSimone, Ph.D., the Chancellor’s Eminent Professor of Chemistry at UNC-Chapel Hill, with an appointment in the department of pharmacology. Rather than using a killed or attenuated virus to develop a vaccine for , researchers are focusing on expressing the E protein and attaching it to  to induce good immune responses. In previous studies of monovalent vaccines, they have shown that the platform can induce protective immune response in individual serotypes. Their latest study of a tetravalent vaccine shows the response in all four serotypes at the same time.

“We are also seeing a more balanced immune response for each of the serotypes, which means the quality of neutralizing antibodies created is leading to a better overall protective reaction for the patient,” said Metz, the paper’s lead author.

The de Silva lab performed the experiments on their Dengue vaccine in close collaboration with co-author Shaomin Tian, Ph.D., research assistant professor in the department of microbiology and immunology. The proteins used in the experiments were produced by the UNC Protein Expression and Purification (PEP) core.

The de Silva lab’s next steps include optimizing the technique they use to attach the E protein to the nanoparticle. This work will be extremely important when trying to create a vaccine that induces consistently strong protective immune responses.

 Explore further: Nanoparticle vaccinates mice against dengue fever

More information: Stefan W. Metz et al. Nanoparticle delivery of a tetravalent E protein subunit vaccine induces balanced, type-specific neutralizing antibodies to each dengue virus serotype, PLOS Neglected Tropical Diseases (2018). DOI: 10.1371/journal.pntd.0006793

Win-Win Collaborations – Derisking Advanced Technology Commercialization: YouTube Video from David Lazovsky, Founder of Intermolecular


Intermolecular Header_Main_R

David Lazovsky, Founder of Intermolecular, addresses the audience of the Advanced Materials Commercialization Summit 2017, speaking on Win-Win Collaborations: De-risking Advanced Technology Commercialization. Read More About Intermolecular

” … We sought to establish collaborative development programs with the Companies that were the end Producers.” – David Lazovsky, Founder of Intermolecular

 

GNT US Tenka Energy“In the end you cannot “commercialize” technology (only) … you can only commercialize a Product  (technology+application) that can be produced and scaled economically into the Marketplace. You must find a way to build a bridge to span the gap between ‘Discovery, Proof of Concept, Prototype and Scaling to Funding (Finance), Market Integration and Acceptance.”

– Bruce W. Hoy, CEO of Genesis Nanotechnology, Inc.

Our Bioelectronic Future: Smaller, Smarter, Connected – De Lange Conference at Rice University: Video


softbioelectronics (1)

Bioelectronics, Our Bioelectronic Future: Smaller, Smarter, Connected

De Lange Conference XI | December 4-5, 2018 | Rice University De Lange Conference XI will bring together biologists, engineers, medical researchers, policy scholars, humanists, and industrial representatives from the nascent bioelectronics industry and federal agencies will serve to identify the grand challenges in the field, including technological, ethical, legal, and societal issues. The biennial De Lange Conferences, funded by the De Lange Endowment, were established by C.M. and Demaris Hudspeth in honor of Demaris’ parents, Albert and Demaris De Lange. For more information, visit delange.rice.edu

 

Read More About Graphene Applications for Bio-Electronics and Neuroprosthetics

Graphene Bioelectrics id50987_1The term bioelectronics, or bionics for short, describes a research field that is concerned with the integration of biological components with electronics; specifically, the application of biological materials and processes in electronics, and the use of electronic devices in living systems.
One day, bionics research could result in neural prostheses that augment or restore damaged or lost functions of the nervous system – restore vision, healing spinal cord injuries, and ameliorate neurodegenerative diseases such as Parkinson’s.

Graphene applications for bioelectronics and neuroprosthetics – Graphene BioElectronics


Graphene Bioelectrics id50987_1

The term bioelectronics, or bionics for short, describes a research field that is concerned with the integration of biological components with electronics; specifically, the application of biological materials and processes in electronics, and the use of electronic devices in living systems.
One day, bionics research could result in neural prostheses that augment or restore damaged or lost functions of the nervous system – restore vision, healing spinal cord injuries, and ameliorate neurodegenerative diseases such as Parkinson’s.
Bioelectronics has benefited greatly from the miniaturization offered by nanotechnology materials such as carbon nanotubes graphene (see for instance our previous Nanowerk Spotlights Eavesdropping on cells with graphene transistors or Nanotechnology to repair the brain.
Graphene bioelectronics has become a ground-breaking field that offers exciting opportunities for developing new kinds of sensors capable of establishing outstanding interfaces with soft tissue (see for instance: Light-driven bioelectronic implants without batteries). Graphene-based transistors, as well as electrode arrays, have emerged as a special group of biosensors with their own peculiarities, advantages and drawbacks.
Design of graphene-based in vivo neuronal probes
Design of graphene-based in vivo neuronal probes. (a-d) the simple monolayer graphene based GMEAs based on parylene-C substrates (© Springer Nature). (e-f) the porous graphene based GMEAs built on polyimide substrates. Open access. (g-h) schematics of the parylene-C based GMEAs (Image: Open access). (i) shows the optical images of the same parylene-C based GMEA µECoG devices (© Springer Nature). (click on image to enlarge)
Reviewing the progress of the field from single device measurements to in vivo neuroprosthetic devices, researchers from the Institute of Bioelectronics at Forschungszentrum Jülich in Germany, have published a review paper about graphene bioelectronics in 2D Materials (“Graphene & two-dimensional devices for bioelectronics and neuroprosthetics”).
The authors, Dmitry Kireev and Prof. Andreas Offenhaeusser, present a comprehensive overview of the use of graphene for bioelectronics applications; specifically they focus on interfacing graphene-based devices with electrogenic cells, such as cardiac and neuronal cells.
“Graphene possesses a number of important properties that may make it a game changer for future bioelectronics,” Kireev, the review’s first author, tells Nanowerk. “Above all and important for neuroscience, it was found to be biocompatible and completely stable in liquids and electrolytes. Excellent conductivity as well as transistor amplification properties allow graphene to be used for active parts of biosensors with extremely large sensitivities.”
In their review, the authors focus on a special kind of device that utilizes graphene as its active sensor material for extracellular signal detection. Starting with a short explanation of graphene-based devices, they then discuss in detail the reasons for the importance of graphene for future bioelectronics.
The paper provides a detailed description the working principle of two main graphene-based electronic devices that are currently used in bioelectronics applications: graphene field effect transistors (GFETs) and graphene multielectrode arrays (GMEAs). The authors discuss in detail the advantages and drawbacks of these devices.
The authors in-depth discussion includes past developments in order to provide a profound understanding of fundamental problems that have already been solved in order to guide future research.
Useful for researchers in the field, the paper provides a detailed time line of the development of GFETs and GMEAs, complete with key benchmarking properties.
The authors end their review with a structured perspective on future developments expected in the field.
“Basic research on graphene’s properties and proof-of-concept applications/devices is now concluding or at least declining,” notes Kireev. “We believe that research is now in the phase of optimizing these devices and searching for novel designs and approaches to utilize the given advantages of graphene and at the same time neutralize its drawbacks.”
The authors believe that the most intriguing outcome of the discovery of graphene has been the formation of a new research field: 2D materials science. Surprisingly, it appears that a myriad of standard bulk materials, such as silicon, germanium, and MoS2, whose properties have been known and studied for a long time, change their properties dramatically when thinned down to one or several monolayers. Some materials become semiconducting, some become fluorescent, and others become superconducting or create specific surface bonds. Other materials, such as 2D Ti3C2-MXenes, are suddenly sensitive to neurotransmitters, such as dopamine, creating an ultimately interesting device for neuroelectronics.
“The example of graphene and its usage for bioelectronics, which is exceptionally interesting, paves the way for further original research and exploration yet to come, possibly utilizing other 2D materials or graphene in standard forms (GFETs & GMEAs) or in the form of completely new devices,” Kireev concludes.

Re-Posted from Michael Berger/ Nanowerk

New micro-platform reveals cancer cells’ natural behavior


Nano Cancer 180919100952_1_540x360
Fluorescence images of pancreatic cancer micro-tumors after overnight culturing. Papillary structures pile up on micro-attachment sites (diameter 30?m), with numerous cells visible per patch. The rightmost micro-tumor has extended over two attachment sites. Nuclei, actin filaments, and microtubules are labeled with blue, green and red fluorescent markers respectively. Credit: Miyatake Y. et al., Scientific Reports, Sept. 19, 2018

A new cell culture platform allows researchers to observe never-before-seen behaviors of live cancer cells under the microscope, leading to explanations of long-known cancer characteristics.

The easy-to-produce platform developed by Hokkaido University researchers offers cancer cells micro-scale attachment sites that elicit never-before-seen behaviors highly relevant to cancer’s clinical properties. The observation of these behaviors shed light on the mechanisms behind well-known properties of pancreatic cancer, one of the most lethal malignant tumors, and may lead to the identification of new treatment targets.

“Cancer studies so far either use cell cultures in which cancer cells don’t necessarily behave naturally, or tissue samples that don’t allow live observation. So there is a big gap in our knowledge of how cancer cells actually behave,” says Assistant Professor Yukiko Miyatake, who led the study and focuses on cancer development mechanisms. To close this gap, she teamed up with Associate Professor Kaori Kuribayashi-Shigetomi who specializes on micro-nano-scale bio-engineering.

Together they created a new cell culture substrate from a coated glass slide with etched islands of 30?m diameter. For healthy cells, this is just enough space for one or two to attach. But when the researchers seeded them with pancreatic cancer cells (although they also tried other cancer cells with similar results) and incubated them overnight, the cells self-organized into micro-tumors that could move in a concerted way, as if it were one organism. Precursors to this turned out to be papillary structures that accommodate 4 or more cells by cell-in-cell invasion. This process, called entosis, is so far known only as a step in cell degradation. Here, the incorporated cells remained alive and, to their surprise, the incorporation was reversible.

When they treated the micro-tumors with the widely used anti-cancer agent Nocodazole, the micro-tumor disintegrated, but the now-detached cells survived. Moreover, the researchers observed the micro-tumors “fishing” for surrounding dead cells and ingesting them, in the process releasing chemical markers typical for dead cells. These markers ended up on the cancer cells’ surfaces, presumably masking them and enabling them to evade the immune system’s killer cells.

Striving to reduce the suffering cancer causes, Miyatake says: “I hope this easy and low-cost technique will find widespread adoption. If the discoveries made during these first observations are physiologically or pathologically relevant phenomena, many more new hints may be gleaned for the development of more effective cancer treatment approaches.”

Story Source:

Materials provided by Hokkaido UniversityNote: Content may be edited for style and length.


Journal Reference:

  1. Yukiko Miyatake, Kaori Kuribayashi-Shigetomi, Yusuke Ohta, Shunji Ikeshita, Agus Subagyo, Kazuhisa Sueoka, Akira Kakugo, Maho Amano, Toshiyuki Takahashi, Takaharu Okajima, Masanori Kasahara. Visualising the dynamics of live pancreatic microtumours self-organised through cell-in-cell invasionScientific Reports, 2018; 8 (1) DOI: 10.1038/s41598-018-32122-w

 

Hokkaido University. “New micro-platform reveals cancer cells’ natural behavior.” ScienceDaily. ScienceDaily, 19 September 2018. <www.sciencedaily.com/releases/2018/09/180919100952.htm>.

Penn State: Camouflaged nanoparticles deliver killer ‘knock-out’ protein to cancer


Killer Protein for Cancer Treatment 180615094843_1_540x360

Extracellular vesicle-like metal-organic framework nanoparticles are developed for the intracellular delivery of biofunctional proteins. The biomimetic nanoplatform can protect the protein cargo and overcome various biological barriers to achieve systemic delivery and autonomous release. Credit: Zheng Lab/Penn State

 

A biomimetic nanosystem can deliver therapeutic proteins to selectively target cancerous tumors, according to a team of Penn State researchers.

A biomimetic nanosystem can deliver therapeutic proteins to selectively target cancerous tumors, according to a team of Penn State researchers. Using a protein toxin called gelonin from a plant found in the Himalayan mountains, the researchers caged the proteins in self-assembled metal-organic framework (MOF) nanoparticles to protect them from the body’s immune system. To enhance the longevity of the drug in the bloodstream and to selectively target the tumor, the team cloaked the MOF in a coating made from cells from the tumor itself.

Blood is a hostile environment for drug delivery. The body’s immune system attacks alien molecules or else flushes them out of the body through the spleen or liver. But cells, including cancer cells, release small particles called extracellular vesicles that communicate with other cells in the body and send a “don’t eat me” signal to the immune system.

“We designed a strategy to take advantage of the extracellular vesicles derived from tumor cells,” said Siyang Zheng, associate professor of biomedical and electrical engineering at Penn State. “We remove 99 percent of the contents of these extracellular vesicles and then use the membrane to wrap our metal-organic framework nanoparticles. If we can get our extracellular vesicles from the patient, through biopsy or surgery, then the nanoparticles will seek out the tumor through a process called homotypic targeting.”

Gong Cheng, lead author on a new paper describing the team’s work and a former post-doctoral scholar in Zheng’s group now at Harvard, said, “MOF is a class of crystalline materials assembled by metal nodes and organic linkers. In our design, self-assembly of MOF nanoparticles and encapsulation of proteins are achieved simultaneously through a one-pot approach in aqueous environment. The enriched metal affinity sites on MOF surfaces act like the buttonhook, so the extracellular vesicle membrane can be easily buckled on the MOF nanoparticles. Our biomimetic strategy makes the synthetic nanoparticles look like extracellular vesicles, but they have the desired cargo inside.”

The nanoparticle system circulates in the bloodstream until it finds the tumor and locks on to the cell membrane. The cancer cell ingests the nanoparticle in a process called endocytosis. Once inside the cell, the higher acidity of the cancer cell’s intracellular transport vesicles causes the metal-organic framework nanoparticles to break apart and release the toxic protein into cytosol and kill the cell.

“Our metal-organic framework has very high loading capacity, so we don’t need to use a lot of the particles and that keeps the general toxicity low,” Zheng said.

The researchers studied the effectiveness of the nanosystem and its toxicity in a small animal model and reported their findings in a cover article in the Journal of the American Chemical Society.

The researchers believe their nanosystem provides a tool for the targeted delivery of other proteins that require cloaking from the immune system. Penn State has applied for patent protection for the technology.

Story Source:

Materials provided by Penn State. Original written by Walt Mills. Note: Content may be edited for style and length.

 

MIT engineers configure RFID tags to work as sensors


MIT-RFID-Sensing_0

MIT researchers are developing RFID stickers that sense their environment, enabling low-cost monitoring of chemicals and other signals in the environment Image: Chelsea Turner, MIT

Platform may enable continuous, low-cost, reliable devices that detect chemicals in the environment.

 

These days, many retailers and manufacturers are tracking their products using RFID, or radio-frequency identification tags. Often, these tags come in the form of paper-based labels outfitted with a simple antenna and memory chip. When slapped on a milk carton or jacket collar, RFID tags act as smart signatures, transmitting information to a radio-frequency reader about the identity, state, or location of a given product.

In addition to keeping tabs on products throughout a supply chain, RFID tags are used to trace everything from casino chips and cattle to amusement park visitors and marathon runners.

The Auto-ID Lab at MIT has long been at the forefront of developing RFID technology. Now engineers in this group are flipping the technology toward a new function: sensing. They have developed a new ultra-high-frequency, or UHF, RFID tag-sensor configuration that senses spikes in glucose and wirelessly transmits this information. In the future, the team plans to tailor the tag to sense chemicals and gases in the environment, such as carbon monoxide.

“People are looking toward more applications like sensing to get more value out of the existing RFID infrastructure,” says Sai Nithin Reddy Kantareddy, a graduate student in MIT’s Department of Mechanical Engineering. “Imagine creating thousands of these inexpensive RFID tag sensors which you can just slap onto the walls of an infrastructure or the surrounding objects to detect common gases like carbon monoxide or ammonia, without needing an additional battery. You could deploy these cheaply, over a huge network.”

Kantareddy developed the sensor with Rahul Bhattacharya, a research scientist in the group, and Sanjay Sarma, the Fred Fort Flowers and Daniel Fort Flowers Professor of Mechanical Engineering and vice president of open learning at MIT. The researchers presented their design at the IEEE International Conference on RFID, and their results appear online this week.

“RFID is the cheapest, lowest-power RF communication protocol out there,” Sarma says. “When generic RFID chips can be deployed to sense the real world through tricks in the tag, true pervasive sensing can become reality.”

Confounding waves

Currently, RFID tags are available in a number of configurations, including battery-assisted and “passive” varieties. Both types of tags contain a small antenna which communicates with a remote reader by backscattering the RF signal, sending it a simple code or set of data that is stored in the tag’s small integrated chip. Battery-assisted tags include a small battery that powers this chip. Passive RFID tags are designed to harvest energy from the reader itself, which naturally emits just enough radio waves within FCC limits to power the tag’s memory chip and receive a reflected signal.

Recently, researchers have been experimenting with ways to turn passive RFID tags into sensors that can operate over long stretches of time without the need for batteries or replacements. These efforts have typically focused on manipulating a tag’s antenna, engineering it in such a way that its electrical properties change in response to certain stimuli in the environment. As a result, an antenna should reflect radio waves back to a reader at a characteristically different frequency or signal-strength, indicating that a certain stimuli has been detected.

For instance, Sarma’s group previously designed an RFID tag-antenna that changes the way it transmits radio waves in response to moisture content in the soil. The team also fabricated an antenna to sense signs of anemia in blood flowing across an RFID tag.

But Kantareddy says there are drawbacks to such antenna-centric designs, the main one being “multipath interference,” a confounding effect in which radio waves, even from a single source such as an RFID reader or antenna, can reflect off multiple surfaces.

“Depending on the environment, radio waves are reflecting off walls and objects before they reflect off the tag, which interferes and creates noise,” Kantareddy says. “With antenna-based sensors, there’s more chance you’ll get false positives or negatives, meaning a sensor will tell you it sensed something even if it didn’t, because it’s affected by the interference of the radio fields. So it makes antenna-based sensing a little less reliable.”

Chipping away

Sarma’s group took a new approach: Instead of manipulating a tag’s antenna, they tried tailoring its memory chip. They purchased off-the-shelf integrated chips that are designed to switch between two different power modes: an RF energy-based mode, similar to fully passive RFIDs; and a local energy-assisted mode, such as from an external battery or capacitor, similar to semipassive RFID tags.

The team worked each chip into an RFID tag with a standard radio-frequency antenna. In a key step, the researchers built a simple circuit around the memory chip, enabling the chip to switch to a local energy-assisted mode only when it senses a certain stimuli. When in this assisted mode (commercially called battery-assisted passive mode, or BAP), the chip emits a new protocol code, distinct from the normal code it transmits when in a passive mode. A reader can then interpret this new code as a signal that a stimuli of interest has been detected.

Kantareddy says this chip-based design can create more reliable RFID sensors than antenna-based designs because it essentially separates a tag’s sensing and communication capabilities. In antenna-based sensors, both the chip that stores data and the antenna that transmits data are dependent on the radio waves reflected in the environment. With this new design, a chip does not have to depend on confounding radio waves in order to sense something.

“We hope reliability in the data will increase,” Kantareddy says. “There’s a new protocol code along with the increased signal strength whenever you’re sensing, and there’s less chance for you to confuse when a tag is sensing versus not sensing.”

“This approach is interesting because it also solves the problem of information overload that can be associated with large numbers of tags in the environment,” Bhattacharyya says. “Instead of constantly having to parse through streams of information from short-range passive tags, an RFID reader can be placed far enough away so that only events of significance are communicated and need to be processed.”

“Plug-and-play” sensors

As a demonstration, the researchers developed an RFID glucose sensor. They set up commercially available glucose-sensing electrodes, filled with the electrolyte glucose oxidase. When the electrolyte interacts with glucose, the electrode produces an electric charge, acting as a local energy source, or battery.

The researchers attached these electrodes to an RFID tag’s memory chip and circuit. When they added glucose to each electrode, the resulting charge caused the chip to switch from its passive RF power mode, to the local charge-assisted power mode. The more glucose they added, the longer the chip stayed in this secondary power mode.

Kantareddy says that a reader, sensing this new power mode, can interpret this as a signal that glucose is present. The reader can potentially determine the amount of glucose by measuring the time during which the chip stays in the battery-assisted mode: The longer it remains in this mode, the more glucose there must be.

While the team’s sensor was able to detect glucose, its performance was below that of commercially available glucose sensors. The goal, Kantareddy says, was not necessarily to develop an RFID glucose sensor, but to show that the group’s design could be manipulated to sense something more reliably than antenna-based sensors.

“With our design, the data is more trustable,” Kantareddy says.

The design is also more efficient. A tag can run passively on RF energy reflected from a nearby reader until a stimuli of interest comes around. The stimulus itself produces a charge, which powers a tag’s chip to send an alarm code to the reader. The very act of sensing, therefore, produces additional power to power the integrated chip.

“Since you’re getting energy from RF and your electrodes, this increases your communication range,” Kantareddy says. “With this design, your reader can be 10 meters away, rather than 1 or 2. This can decrease the number and cost of readers that, say, a facility requires.”

Going forward, he plans to develop an RFID carbon monoxide sensor by combining his design with different types of electrodes engineered to produce a charge in the presence of the gas.

“With antenna-based designs, you have to design specific antennas for specific applications,” Kantareddy says. “With ours, you can just plug and play with these commercially available electrodes, which makes this whole idea scalable. Then you can deploy hundreds or thousands, in your house or in a facility where you could monitor boilers, gas containers, or pipes.”

This research was supported, in part, by the GS1 organization.

The University of Texas at Arlington has successfully patented (Europe) an implantable medical device that attracts and kills circulating cancer cells


slide_3

The University of Texas at Arlington has successfully patented in Europe an implantable medical device that attracts and kills circulating cancer cells that was invented by a faculty member. This cancer trap can be used for early diagnosis and treatment of metastasized cancer.

“Our cancer trap works just like a roach motel, where you put in some bait and the roach goes there and dies,” said Liping Tang, UTA bioengineering professor and leader of the research. “We are putting biological agents in a cancer trap to attract and kill cancer cells.

“This method is effective for both diagnosing and treating metastasis cancer and can be used in combination with traditional chemotherapy and radiation therapy,” he added.

Mdanderson_logo

Currently, there are many treatments for primary tumors but they do little to prevent metastasis and stray cancer cells from relocating to another part of the body. Surgical removal of cancerous tissue also can spur the spread of cancer in the body. While there are drugs given to patients after surgery to prevent cancer cells from adhering to each other or other tissues, these drugs do not rid the body of cancer cells or collect them to allow an assessment of the patient’s status.

“We have made a nano-sized device that we can put under the skin using an injection needle to recruit the cancer cells into a small area where we can treat them with less overall side effects to the whole body,” Tang said.

“So the cancer trap is really complementary to current cancer treatments and especially beneficial at the early stages when it is difficult to see if the cancer is spreading as there are few cancer cells. We have also found it very effective in late stage cancers to stop the spread of the disease and to prolong lifespan,” he added.

The cancer trap works by releasing different chemokines or regulatory proteins to attract circulating cancer cells and then expose them to chemotherapeutic agents to eradicate potential spreading. The trap has been tested in the lab and proved effective on many kinds of cancer cells, including melanoma, prostate cancer, breast cancer, lung cancer, leukemia and esophageal cancer.

“We are hoping to move toward clinical trials in the next few years as this technology could potentially significantly increase the lifespan of cancer patients,” Tang said.

This work on cancer forms part of a larger program at UTA where more than 30 faculty from different colleges and disciplines are developing new solutions to attack this disease.

With more than $4 million in research expenditures in 2017, UTA’s program for cancer encompasses basic cancer research, identification and diagnostics, as well as in noninvasive, midterm, invasive and postoperative therapies. UTA’s multidisciplinary research teams harness proficiencies from across science, engineering, computer science, nursing and kinesiology to tackle the challenges of precision oncology and cancer treatment.

Tang’s expertise encompasses a broad area, including stem cells, tissue engineering, nanotechnology, biocompatibility, biomaterials, inflammation, infection and fibrosis. He has published many of his work in high impact journals, including BiomaterialsJournal of Clinical InvestigationProceedings of the National Academy of SciencesBloodJournal of Experimental Medicine, and Tissue Engineering.

“Tang is a remarkable innovator and internationally recognized researcher,” said Michael Cho, UTA’s chair of bioengineering. “His work is a clear example of UTA’s strategic focus on health and the human condition and of the strength of multidisciplinary work.”

Source